首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, behavior of the SARAL/AltiKa (Satellite with ARgos and ALtiKa) waveforms over Maithon Reservoir (~65 km2 of surface area), Jharkhand, India, has been studied. The estimated water level has been compared with the in situ measurements at hydro-gauging station at the dam site. The problem of minimization of errors in the water level retrieval from AltiKa measurements has been resolved by improvement of the retracking method. A real retracking gate detection algorithm based on statistical analysis harnessing various physical parameters of the waveform has been developed, which has been applied to SARAL/AltiKa waveforms over the Maithon reservoir. Comparing the in-situ measurements with altimetry data (from cycle 1, 19 March 2013 to cycle 12, 8 April 2014) showed that it is crucial to improve the retracking method. Results showed accuracy of water level monitoring increased by nearly 76% by the newly developed waveform retracking algorithm over non-retracked water level. We also compared this new method with the existing ice-1 algorithm and found that with the new method there is improvement of ~27% over ice-1 retracked water level. The correlation coefficient values and root mean square values without retracking, with ice-1 algorithm and with newly developed retracking algorithm were 0.87, 0.91, and 0.95, and 8.12 cm, 2.08 cm, and 1.42 cm, respectively. This shows the proposed retracker performed better than ice-1. The retracking procedure helped in outliers' identification and substitution and with waveform fitting and waveform parameter extraction. This algorithm should have good performance capability for retrieving water level over inland water bodies like Maithon reservoir.  相似文献   

2.
提出了基于聚类分析的多子波优化重定算法,即利用聚类分析对波形进行分类,然后在分类的基础上对每一聚类的波形分别采用β参数拟合算法和门槛算法对其进行重定,最后以误差平方和最小为依据选择最优的作为最后的结果。经过基于聚类分析的多子波优化算法重定后的卫星测高数据与验潮站数据进行了比较,发现该算法能在一定程度上改善近海卫星测高数据的精度,提高重定成功率,降低重定次数。  相似文献   

3.
Radar altimetry has demonstrated strong capabilities for the monitoring of water levels of lakes, rivers and wetlands over the last 20 years. The Indo-French SARAL/AltiKa mission, launched in February 2013, is the first satellite radar altimetry mission to carry onboard a Ka-band sensor. We propose here to evaluate the potential of this new instrument for land hydrology through comparisons with other altimetry-derived stages and discharges in the Ganges-Brahmaputra and Irrawaddy river basins using its first year of data. Due to the lack of concomitant in situ measurements for the current period, Jason-2 data, previously evaluated against in situ gauge records, were used as reference. Comparisons between Jason-2 and SARAL-derived water levels and discharges, and Jason-2 and Envisat (which flew the same orbit as SARAL from 2002 to 2010)-derived ones, was performed. Time-series of only one year of SARAL-derived water levels and discharges present better performances (lower RMSE and higher R, generally greater than 0.95) than the ones derived from Envisat when compared with Jason-2.  相似文献   

4.
中国近岸海域高度计JASON-1测量数据的波形重构算法研究   总被引:3,自引:1,他引:2  
卫星雷达高度计的测量数据目前已被广泛应用于各个领域,但高度计在近海的测量数据却一直不可用,一方面是因为高度计在近岸海域的回波波形测量受陆地回波的影响,另一方面是因为一些校正量对近海不准确,如大气湿对流层校正、海洋潮汐校正以及大气高频因数校正等。通过对高度计在近海测量的回波波形进行重构处理,可以缩短近海数据不可用的距离,提高数据的数量和质量。以我国海域及邻近海域(14°~45°N,105°~130°E)为研究区域,采用四种波形重构算法(海洋算法、重力中心偏离算法、冰层算法二和阈值算法)对JASON-1高度计1 a共31个周期的测量波形重新进行了计算,比较了轨道交叉点处升轨和降轨的海面高度异常值以及海面高度值与验潮站的实测水位,结果表明重力中心偏离法比其他三种算法更适合我国近海的测高波形重构:计算结果精度最高,有效数目最多。  相似文献   

5.
Spatial patterns of interannual sea level variations in the South China Sea (SCS) are investigated by analyzing an EOF-based 2-dimensional past sea level reconstruction from 1950 to 2009 and satellite altimetry data from 1993 to 2009. Long-term tide gauge records from 14 selected stations in this region are also used to assess the quality of reconstructed sea levels and determine the rate of sea level along the coastal area. We found that the rising rate of sea levels derived from merged satellite altimetry data during 1993–2009 and past sea level reconstruction over 1950–2009 is about 3.9 ± 0.6 mm/yr and 1.7 ± 0.1 mm/yr, respectively. For the longer period, this rate is not significantly different from the global mean rate (of 1.8 ± 0.3 mm/yr). The interannual mean sea level of the SCS region appears highly correlated with Niño 4 indices (a proxy of El Niño-Southern Oscillation/ENSO), suggesting that the interannual sea level variations over the SCS region is driven by ENSO events. Interpolation of the reconstructed sea level data for 1950–2009 at sites where tide gauge records are of poor quality (either short or gapped) show that sea level along the Chinese coastal area is rising faster than the global mean rate of 1.8 mm/yr. At some sites, the rate is up to 2.5 mm/yr.  相似文献   

6.
The accuracy of the marine gravity field derived from satellite altimetry depends on dense track spacing as well as high range precision. Here, we investigate the range precision that can be achieved using a new shorter wavelength Ka-band altimeter AltiKa aboard the SARAL spacecraft. We agree with a previous study that found that the range precision given in the SARAL/AltiKa Geophysical Data Records is more precise than that of Ku-band altimeter by a factor of two. Moreover, we show that two-pass retracking can further improve the range precision by a factor of 1.7 with respect to the 40 Hz-retracked data (item of range_40 hz) provided in the Geophysical Data Records. The important conclusion is that a dedicated Ka-band altimeter-mapping mission could substantially improve the global accuracy of the marine gravity field with complete coverage and a track spacing of <6 km achievable in ~1.3 years. This would reveal thousands of uncharted seamounts on the ocean floor as well as important tectonic features such as microplates and abyssal hill fabric.  相似文献   

7.
In the absence of many gauging stations in the major and mighty river systems, there is a need for satellite-based observations to estimate temporal variations in the river water storage and associated water management. In this study, SARAL/AltiKa application for setting up hydraulic model (HEC-RAS) and river flow simulations over Tapi River India has been discussed. Waveform data of 40 Hz from Ka band altimeter has been used for water levels retrieval in the Tapi river. SARAL/AltiKa retrieved water levels were converted to discharge in the upstream location (track-926) using the rating curve available for the nearby gauging site and using linear spatial interpolation technique. Steady state simulations were done for various flow conditions in the upstream. Validation of river flow model was done in the downstream location (track-367) by comparing simulated and altimeter retrieved water levels (RMSE 0.67 m). Validated model was used to develop rating curve between water levels and simulated discharge for the downstream location which enables to monitor discharge variations from satellite platform in the absence of in situ observations. It has been demonstrated that SARAL/AltiKa data has potential for river flow monitoring and modeling which will feed for flood disaster forecasting, management and planning.  相似文献   

8.
This paper presents an assessment of SARAL/AltiKa satellite altimeter for the monitoring of a tropical western boundary current in the south-western Pacific Ocean: the East Caledonian Current. We compare surface geostrophic current estimates obtained from two versions of AltiKa along-track sea level height (AVISO 1 Hz and PEACHI 40 Hz) with two kinds of dedicated in situ datasets harvested along the satellite ground tracks: one deep-ocean current-meter mooring deployed in the core of the boundary current and five glider transects. It is concluded that the AltiKa-derived current successfully captures the velocity of the boundary current, with a standard error of 11 cm/s with respect to the in situ data. It also appears important to reference AltiKa sea level anomaly to the latest mean dynamic topography available in our area. Doing so, Ka-band altimetry provides a satisfactory representation of the western boundary current. Thereby, it usefully contributes to observing its variability in such a remote and under-observed ocean region. However, the rather long repeat period of SARAL (35 days) in comparison to the high frequency variability seen in the flow velocity of the boundary current calls for a combined use of SARAL with the other satellite altimetry missions.  相似文献   

9.
There have been a number of applications of satellite altimetry to seasonal and interannual sea level variability in the South China Sea. However, these applications usually exclude shallow waters along the coast, with one of the concerns being large aliased tide-correction error. In this study the authors analyzed 14 years of merged satellite altimeter data to obtain the amplitude and phase of the semi-annual cycle and to examine the variation at the K1 alias frequency (close to the semi-annual frequency). The results indicate that the amplitude of the semi-annual cycle ranges from 3-7 cm, substantial compared with that of the annual cycle; while the amplitude at the K1 alias frequency (error of the K1 tidal correction) is essentially 1 cm only. Altimeter–derived semi-annual cycle is in good agreement with that from independent tide-gauge observations, pointing to the competent ability of satellite altimetry in observing semi-annual sea level variations in the South China Sea.  相似文献   

10.
To better monitor the vertical crustal movements and sea level changes around Greenland, multiple data sources were used in this paper, including global positioning system(GPS), tide gauge, satellite gravimetry, satellite altimetry, glacial isostatic adjustment(GIA). First, the observations of more than 50 GPS stations from the international GNSS service(IGS) and Greenland network(GNET) in 2007–2018 were processed and the common mode error(CME) was eliminated with using the principal component analysis(PCA). The results show that all GPS stations show an uplift trend and the stations in southern Greenland have a higher vertical speed. Second, by deducting the influence of GIA, the impact of current Gr IS mass changes on GPS stations was analysed, and the GIA-corrected vertical velocity of the GPS is in good agreement with the vertical velocity obtained by gravity recovery and climate experiment(GRACE). Third, the absolute sea level change around Greenland at 4 gauge stations was obtained by combining relative sea level derived from tide gauge observations and crustal uplift rates derived from GPS observations, and was validated by sea level products of satellite altimetry. The results show that although the mass loss of Gr IS can cause considerable global sea level rise, eustatic movements along the coasts of Greenland are quite complex under different mechanisms of sea level changes.  相似文献   

11.
Several remotely sensed sea surface salinity(SSS) retrievals with various resolutions from the soil moisture and ocean salinity(SMOS) and Aquarius/SAC-D missions are applied as inputs for retrieving salinity profiles(S) using multilinear regressions. The performance is evaluated using a total root mean square(RMS) error, different error sources, and the feature resolutions of the retrieved S fields. In the mixed layer of the salinity, the SSS-S regression coefficients are uniformly large. The SSS inputs yield smaller RMS errors in the retrieved S with respect to Argo profiles as their spatial or temporal resolution decreases. The projected SSS errors are dominant, and the retrieved S values are more accurate than those of climatology in the tropics except for the tropical Atlantic, where the regression errors are abnormally large. Below that level, because of the influence of a sea level anomaly, the areas of high-accuracy S values shift to higher latitudes except in the high-latitude southern oceans, where the projected SSS errors are abnormally large. A spectral analysis suggests that the CATDS-0.25° results are much noisier and that the BEC-L4-0.25° results are much smoother than those of the other retrievals. Aquarius-CAP-1° generates the smallest RMS errors, and Aquarius-V2-1° performs well in depicting large-scale phenomena. BEC-L3-0.25°,which has small RMS errors and remarkable mesoscale energy, is the best fit for portraying mesoscale features in the SSS and retrieved S fields. The current priority for retrieving S is to improve the reliability of satellite SSS especially at middle and high latitudes, by developing advanced algorithms, combining both sensors, or weighing between accuracy and resolutions.  相似文献   

12.
We analyze errors in the global bathymetry models of Smith and Sandwell that combine satellite altimetry with acoustic soundings and shorelines to estimate depths. Versions of these models have been incorporated into Google Earth and the General Bathymetric Chart of the Oceans (GEBCO). We use Japan Agency for Marine-Earth Science and Technology (JAMSTEC) multibeam surveys not previously incorporated into the models as “ground truth” to compare against model versions 7.2 through 12.1, defining vertical differences as “errors.” Overall error statistics improve over time: 50th percentile errors declined from 57 to 55 to 49 m, and 90th percentile errors declined from 257 to 235 to 219 m, in versions 8.2, 11.1 and 12.1. This improvement is partly due to an increasing number of soundings incorporated into successive models, and partly to improvements in the satellite gravity model. Inspection of specific sites reveals that changes in the algorithms used to interpolate across survey gaps with altimetry have affected some errors. Versions 9.1 through 11.1 show a bias in the scaling from gravity in milliGals to topography in meters that affected the 15–160 km wavelength band. Regionally averaged (>160 km wavelength) depths have accumulated error over successive versions 9 through 11. These problems have been mitigated in version 12.1, which shows no systematic variation of errors with depth. Even so, version 12.1 is in some respects not as good as version 8.2, which employed a different algorithm.  相似文献   

13.
This study focuses on assessing the accuracy of 20-Hz waveform retracked Jason-2 (J-2) altimetry sea surface heights (SSHs) in the vicinity of Taiwan by comparisons with the TOPEX/Poseidon (T/P) 10-Hz SSHs and sea level data from the Anping tide gauge. The study areas exhibit high, medium, and low amplitudes of ocean tides and contain diverse bathymetries with depths of 0–4000 m. The performance of Offset Center of Gravity (OCOG), threshold, modified threshold, and ice retrackers was examined by comparing the retracked SSHs with Earth Gravitational Model 2008 (EGM08) geoid via the use of the improvement percentages (IMPs). The results indicate that both altimetry measurements are significantly improved by waveform retracking techniques, with a maximum IMP of 46.6% for T/P and 82.0% for J-2, and the optimal achievement of retrackers is influenced by the characteristics of the study areas. In addition, valid retracked J-2 SSHs are much closer to shorelines than T/P. A comparison of retracked J-2 data with Anping tide gauge records reveals that applying the optimal retracking algorithms reduces the root mean squares of differences and increases the number of valid measurements.  相似文献   

14.
程芦颖 《海洋测绘》2013,33(3):13-16
利用卫星测高技术确定海洋重力场,垂线偏差数据作为导出观测量在实际工作中被普遍采用。利用物理大地测量边值问题的定义以及扰动位在球面边界条件下的解,给出了由垂线偏差计算大地水准面高、重力异常和扰动重力的公式。分析了不同积分计算公式在重力场阶谱表达形式下对垂线偏差误差的抑制作用,也分析了不同积分核函数的变化特性,得出基本结论:在利用卫星测高数据求解海洋重力场时,当以格网化海面垂线偏差数据计算重力场参数时,求解的大地水准面高的有效性和稳定性优于重力异常和扰动重力。  相似文献   

15.
Guoqi Han 《Marine Geodesy》2004,27(3):577-595
Sea level observations from the tandem TOPEX/Poseidon (T/P) and Jason-1 altimetry missions (2002-2003) are used to study characteristics of sea level and surface currents over the Scotian Shelf and Slope off Nova Scotia. The consistency and error characteristics of T/P and Jason-1 measurements are examined not only in terms of sea level and cross-track current anomalies but also with respect to current anomalies at crossovers, kinematic properties associated with Gulf Stream warm core rings (WCR), and the shelf-edge current transport. Nominal absolute currents are constructed by adding the altimetric geostrophic current anomalies to an annual-mean model circulation field. The concurrent frontal analysis data are analyzed for occurrence of the WCRs and associated kinematic properties are derived from altimetric current anomalies. The comparison of the sea level and cross-track current anomalies from January to July 2002 shows overall good agreement between T/P and Jason, with correlation coefficients different from zero at the 5% significance level at essentially all locations for sea level and at most locations for currents. The cross-track geostrophic current anomalies from January to July 2002 and from September 2002 to December 2003 are further used to calculate the root-mean-square (rms) current magnitude, and the normalized relative vorticity associated with WCRs. The altimetric currents are consistent with each other and complementary to frontal analysis data in deriving the properties of the WCRs. The rms current magnitude is ∼55 cm/s and the normalized relative vorticity is ∼0.15. The model-altimetry combined absolute currents are used to estimate near-surface transport associated with the shelf-edge current, showing good correlation between T/P and Jason estimates and strong seasonal changes. The current anomalies derived from altimetry and moored measurements are significantly (at the 5% significance level) correlated and comparable in the rms magnitude.  相似文献   

16.
运用调和分析方法分离卫星高度计资料中的潮汐信息   总被引:10,自引:0,他引:10  
针对TOPEX/POSEIDON卫星高度计资料中的潮汐高频混淆现象,采用潮汐调和分析方法,通过比较卫星上、下行轨道交叉点两组资料分析的分潮振幅和分离潮汐后的海面高度;同时比较潮位站实测资料与遥感资料分析的分潮振幅,结果表明:采用潮汐调和分析可以有效地分离高度计资料中的潮汐信息。  相似文献   

17.
A retrospective analysis has been done for the hydrophysical fields of the Black Sea for 1993–2012 with the assimilation of undisturbed monthly average profiles of temperature and salinity that were obtained by using an original procedure of joint processing of satellite altimetry and rare hydrological observations. The accuracy of the reconstructed fields of temperature and salinity of the Black Sea is evaluated by comparison with the data of sounding from the hydrological stations and the Argo floats. A comparative analysis is performed for the integral characteristics of the fields of temperature, salinity, and kinetic energy with the same characteristics of the reanalysis for 1992–2012 that assimilated the average annual profiles of temperature and salinity, surface temperature and altimetry level of the sea after being adjusted with respect to climate seasonal variability. The proposed procedure of the reanalysis execution allows a more precise reconstruction of the interannual variability of temperature and salinity stratification in the main pycnocline. The correlation between the annual and seasonal variability of the eddy of the wind friction tangential stress and the average kinetic energy at the levels is revealed.  相似文献   

18.
Joint analysis of wind wave characteristics derived from the Voluntary Observing Ship data (VOS) and satellite altimetry is presented as the first step of the synthesis of different data sources. Global distributions of significant wave heights and periods along with wind speed are constructed using various techniques and empirical parameterizations. Good qualitative and quantitative agreement of VOS and satellite altimetry is found especially for regions with high spatio-temporal density of observations. The problems and prospects of the further development of the study are discussed in the context of global wave climatology and marine safety.  相似文献   

19.
Ice sheets investigation is important with regard to climate change and contribution to the sea level rise or fall. Radar altimetry in complement with laser altimetry can serve as a suitable candidate for precise monitoring of ice sheet evaluations. SARAL due to higher observation into the polar region (up to 82.5°N) can cover nearly 100% of the Greenland ice sheet. Continuous ice tracking mode retracker can provide useful information about ice surfaces, that is, determining the snow coverage, ice sheet transaction margin, and the evolution of snow depth during winter more accurately. This study present the results obtained with SARAL satellite Altika radar altimeter over the Greenland ice sheet region. The altimeter high rate waveforms products are used for utilizing the full capability of the instrument. High resolution DEM (1 km) generated using ICESAT/GLAS altimeter has been used for selecting the good quality data over the study region. Four different retrackers—Ocean, ICE-1, ICE-2, and Sea-Ice—were tested on the SARAL altimeter data set and compared with the DEM extracted ice sheet elevations. Three different data analysis—region of interest (ROI), track analysis, and cross-over analysis—were performed for in-depth analysis of the ice height changes and back scattering coefficient variability. ROI's (1° × 0.5°) were selected based on accumulation dry snow zone, percolation zone, wet snow zone, and ablation zone. Finally to observe the effect of Ka band, SARAL results has been compared with the Envisat altimeter in terms of back scatter and error in the height retrieval due to penetration problem within the ice sheet layer. The new SARAL data set confirms the potential of ice altimetry and provides a new opportunity to monitor the ice sheet surface topography evolution.  相似文献   

20.
GUOQI HAN 《Marine Geodesy》2013,36(3-4):577-595
Sea level observations from the tandem TOPEX/Poseidon (T/P) and Jason-1 altimetry missions (2002–2003) are used to study characteristics of sea level and surface currents over the Scotian Shelf and Slope off Nova Scotia. The consistency and error characteristics of T/P and Jason-1 measurements are examined not only in terms of sea level and cross-track current anomalies but also with respect to current anomalies at crossovers, kinematic properties associated with Gulf Stream warm core rings (WCR), and the shelf-edge current transport. Nominal absolute currents are constructed by adding the altimetric geostrophic current anomalies to an annual-mean model circulation field. The concurrent frontal analysis data are analyzed for occurrence of the WCRs and associated kinematic properties are derived from altimetric current anomalies. The comparison of the sea level and cross-track current anomalies from January to July 2002 shows overall good agreement between T/P and Jason, with correlation coefficients different from zero at the 5% significance level at essentially all locations for sea level and at most locations for currents. The cross-track geostrophic current anomalies from January to July 2002 and from September 2002 to December 2003 are further used to calculate the root-mean-square (rms) current magnitude, and the normalized relative vorticity associated with WCRs. The altimetric currents are consistent with each other and complementary to frontal analysis data in deriving the properties of the WCRs. The rms current magnitude is ~55 cm/s and the normalized relative vorticity is ~0.15. The model-altimetry combined absolute currents are used to estimate near-surface transport associated with the shelf-edge current, showing good correlation between T/P and Jason estimates and strong seasonal changes. The current anomalies derived from altimetry and moored measurements are significantly (at the 5% significance level) correlated and comparable in the rms magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号