首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to contribute to efforts for a robust and effective numerical tool addressing ship motion in astern seas, this paper presents the development of a coupled non-linear 6-DOF model with frequency dependent coefficients, incorporating memory effects and random waves. A new axes system that allows straightforward combination between seakeeping and manoeuvring, whilst accounting for extreme motions, is proposed. Validation of the numerical model with the results of benchmark tests commissioned by ITTC's Specialist Group on Stability demonstrated qualitative, yet not fully satisfactory agreement between numerical and experimental results in line with other predictive tools. The numerical results indicate that the inclusion of frequency coefficients definitely affects the accuracy of the predictions. In order to enhance further the numerical model and obtain useful information on motion coupling, extensive captive and free running model tests were carried out. Good agreement with the experimental results was achieved. These studies provide convincing evidence of the capability of the developed numerical model to predict the dangerous conditions that a ship could encounter in extreme astern seas. As a result, it could offer new insights towards establishing relationships linking ship behaviour to design, environmental and operational parameters.  相似文献   

2.
由于在前壁上设置了尺寸较小的孔,开孔沉箱受流体黏性力作用显著,依照弗劳德数相似准则设计模型存在比尺效应。为揭示比尺效应,建立了模拟波浪与开孔沉箱相互作用的光滑粒子流体动力学(SPH)模型。其中流体运动由连续性方程和Navier-Stokes方程控制,固壁边界由改进的动力边界粒子施加。模型收敛性通过分析不同粒子分辨率下的波浪反射系数得到,模型精度通过比较计算与理论波浪反射系数证明。使用经过验证的SPH模型,计算并比较了不同几何比尺和开孔率下开孔沉箱附近的涡量场、箱体外侧的波面时程曲线和波浪反射系数。结果表明,随着模型几何比尺的减小,开孔沉箱受到偏大的流体黏性力,致使更多波能在湍流运动中耗散,进而减小了波浪反射系数并降低了箱体外侧的波面高度。  相似文献   

3.
4.
The hydrodynamic interaction between an Autonomous Underwater Vehicle (AUV) manoeuvring in close proximity to a larger underwater vehicle can cause rapid changes in the motion of the AUV. This interaction can lead to mission failure and possible vehicle collision. Being self-piloted and comparatively small, an AUV is more susceptible to these interaction effects than the larger body. In an aim to predict the manoeuvring performance of an AUV under the effects of the interaction, the Australian Maritime College (AMC) has conducted a series of computer simulations and captive model experiments. A numerical model was developed to simulate pure sway motion of an AUV at different lateral and longitudinal positions relative to a larger underwater vehicle using Computational Fluid Dynamics (CFDs). The variables investigated include the surge force, sway force and the yaw moment coefficients acting on the AUV due to interaction effects, which were in turn validated against experimental results. A simplified method is presented to obtain the hydrodynamic coefficients of an AUV when operating close to a larger underwater body by transforming the single body hydrodynamic coefficients of the AUV using the steady-state interaction forces. This method is considerably less time consuming than traditional methods. Furthermore, the inverse of this method (i.e. to obtain the steady state interaction force) is also presented to obtain the steady-state interaction force at multiple lateral separations efficiently. Both the CFD model and the simplified methods have been validated against the experimental data and are capable of providing adequate interaction predictions. Such methods are critical for accurate prediction of vehicle performance under varying conditions present in real life.  相似文献   

5.
Y. Kim  B.W. Nam  D.W. Kim  Y.S. Kim 《Ocean Engineering》2007,34(16):2176-2187
This study considers the coupling effects of ship motion and sloshing. The linear ship motion is solved using an impulse-response-function (IRF) method, while the nonlinear sloshing flow is simulated using a finite-difference method. The IRF method requires the frequency-domain solution prior to conversion to time domain, but the computational effort is much less than that of direct time-domain approaches. The developed scheme is verified by comparing the motion RAOs between the frequency-domain solution and the solution obtained by the IRF method. Furthermore, a soft-spring concept and linear roll damping are implemented to predict more realistic motions of surge, sway, yaw, and roll. For the simulation of sloshing flow in liquid tanks, a physics-based numerical approach adopted by Kim [2001. Numerical simulation of sloshing flows with impact load. Applied Ocean Research 23, 53–62] and Kim et al. [2004. Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Applied Ocean Research 26, 213–226] is applied. In particular, the present method focuses on the simulation of the global motion of sloshing flow, ignoring some local phenomena. The sloshing-induced forces and moments are added to wave-excitation forces and moments, and then the corresponding body motion is obtained. The developed schemes are applied for two problems: the sway motion of a box-type barge with rectangular tanks and the roll motion of a modified S175 hull with rectangular anti-rolling tank. Motion RAOs are compared with existing results, showing fair agreement. It is found that the nonlinearity of sloshing flow is very important in coupling analysis. Due to the nonlinearity of sloshing flow, ship motion shows a strong sensitivity to wave slope.  相似文献   

6.
A numerical model, based on Reynolds equations, was developed to estimate the drag coefficient of a probe. The relation of the displacement of the probe and time was obtained applying the drag coefficients to equations governing the motion of the probe. Experiments were conducted for verification of the calculations. To count in the influence of probe's weight and seawater's density, numerical analysis were carried out. Results indicate both the change of probe's weight due to wire releasing and the difference of density of the different sea area have accumulated influence on the trace of probe and should not be neglected.  相似文献   

7.
A finite-difference approach is used to develop a time-dependent mild-slope equation incorporating the effects of bottom dissipation and nonlinearity.The Euler predictor-corrector method and the three-point finite-difference method with varying spatial steps are adopted to discretize the time derivatives and the two-dimensional horizontal ones,respectively,thus leading both the time and spatial derivatives to the second-order accuracy.The boundary conditions for the present model are treated on the basis of the general conditions for open and fixed boundaries with an arbitrary reflection coefficient and phase shift.Both the linear and nonlinear versions of the numerical model are applied to the wave propagation and transformation over an elliptic shoal on a sloping beach,respectively,and the linear version is applied to the simulation of wave propagation in a fully open rectangular harbor.From comparison of numerical results with theoretical or experimental ones,it is found that they are in reasonable agreement.  相似文献   

8.
A three-dimensional time-domain potential flow model is developed and applied to simulate the wave resonance in a gap between two side-by-side rectangular barges. A fourth-order predict-correct method is implemented to update free surface boundary conditions. The response of an up-wave barge is predicted by solving the motion equation with the Newmark-β method. Following the validation of the developed numerical model for wave radiation and diffraction around two side-by-side barges, the influence of up-wave barge motion on the gap surfaceresonance is investigated in two different locations of the up-wave barge relative to the back-wave barge at various frequencies. The results reveal that the freely floating up-wave barge significantly influences the resonance frequency and the resonance wave amplitude. Simultaneously, the up-wave barge located in the middle of the back-wave barge leads to a reduction in the resonance wave amplitude and motion response when compared with other configurations.  相似文献   

9.
In this paper, a hydrodynamic model is developed to simulate the six degrees of freedom motions of the underwater remotely operated vehicle (ROV) including the umbilical cable effect. The corresponding hydrodynamic forces on the underwater vehicle are obtained by the planar motion mechanism test technique. With the relevant hydrodynamic coefficients, the 4th-order Runge–Kutta numerical method is then adopted to solve the equations of motions of the ROV and the configuration of the umbilical cable. The multi-step shooting method is also suggested to solve the two-end boundary-value problem on the umbilical cable with respect to a set of first-order ordinary differential equation system. All operation simulations for the ROV including forward moving, ascending, descending, sideward moving and turning motions can be analyzed, either with or without umbilical cable effect. The current effect is also taken into consideration. The present results reveal that the umbilical cable indeed significantly affects the motion of the ROV and should not be neglected in the simulation.  相似文献   

10.
A numerical algorithm for modeling the vertical propagation and breaking of nonlinear acoustic-gravity waves (AGWs) from the Earth’s surface to the upper atmosphere is described in brief. Monochromatic variations in the vertical velocity at the Earth’s surface are used as an AGW source in the model. The algorithm for solving atmospheric hydrodynamic equations is based on three-dimensional finite-difference analogues of fundamental conservation laws. This approach selects physically correct generalized solutions to hydrodynamic equations. A numerical simulation is carried out in an altitude region from the Earth’s surface to 500 km. Vertical profiles of the background temperature, density, and coefficients of molecular viscosity and heat conduction are taken from the standard atmosphere models. Calculations are made for different amplitudes of lower-boundary wave forcing. The AGW amplitudes increase with altitude, and waves may break in the middle and upper atmosphere.  相似文献   

11.
The aim of this paper is to investigate the shape and tension distribution of fishing nets in current. A numerical model is developed, based on lumped mass method to simplify the net. The motion equation is set up for each lumped mass. The Runge–Kutta–Verner fifth-order and sixth-order method is used to solve these simultaneous equations, and then the displacement and tension of each lumped mass are obtained. In order to verify the validity of the numerical method, model tests have been carried out. The results by the numerical simulation agree well with the experimental data.  相似文献   

12.
The transformation of irrotational surface gravity waves in an inviscid fluid can be studied by time stepping the kinematic and dynamic surface boundary conditions. This requires a closure providing the normal surface particle velocity in terms of the surface velocity potential or its tangential derivative. A convolution integral giving this closure as an explicit expression is derived for linear 1D waves over a mildly sloping bottom. The model has exact linear dispersion and shoaling properties. A discrete numerical model is developed for a spatially staggered uniform grid. The model involves a spatial derivative which is discretized by an arbitrary-order finite-difference scheme. Error control is attained by solving the discrete dispersion relation a priori and model results make a perfect match to this prediction. A procedure is developed by which the computational effort is minimized for a specific physical problem while adapting the numerical parameters under the constraint of a predefined tolerance of damping and dispersion error. Two computational examples show that accurate irregular-wave transformation on the kilometre scale can be computed in seconds. Thus, the method makes up a highly efficient basis for a forthcoming extension that includes nonlinearity at arbitrary order. The relation to Boussinesq equations, mild-slope wave equations, boundary integral equations and spectral methods is briefly discussed.  相似文献   

13.
To examine the circulation in shallow water with tidal flat, a finite element model for the numerical solution of the shallow water equations was developed by means of standard Galerkin's method. The domain computed was covered with triangular finite elements, and water elevation and velocity were approximated by linear interpolation functions, and the lumped coefficients were used to substitute for solving the high order algebraic equation system. The time-dependent land-water boundary changes are treated mathematically by interrelating the location of the land-water boundary with the instantaneous tidal level. The implicit scheme was adopted for the terms of the bottom friction and the Coriolis effect in the motion equation so that the numerical stability of the model has been improved.The model was applied to the tidal current on shoaling water with large tidal flat off Pikou, and a comparison between observed and calculated values showed good agreement, the flow pattern being reproduced. The result  相似文献   

14.
A finite-differnece method was used to calculate the nonlinear hydrodynamic pressures acting on the coastal embankment faces by seismic-wave actions. The nonlinearity of free surface flow, convective acceleration, viscosity and surface tension of fluid are included in the analysis. The kinematic and dynamic free surface boundary conditions are employed for calculating the horizontal fluid velocity, pressure at the free surface and the surface profile of the fluid. The time-dependent water surface is transformed to the horizontal plane, and the flow field is mapped onto a rectangular, making it convenient to model the complex sea bottom geometry and the wavy water surface by the finite-difference method. Fully nonlinear and weakly nonlinear dynamic free surface conditions are used and compared. The effects of surface tension of fluid are also discussed. The nonslip boundary condition is applied on the most part of the interface between fluid and solid face, except the region near the intersection between free surface and wall face. The numerical results are presented for various water depths and ground motion intensities, and their associate viscous effects on coastal embankment hydrodynamics are discussed.  相似文献   

15.
建立了求解一维全非线性Green-Naghdi水波方程的中心有限体积/有限差分混合数值格式。采用结构化网格对守恒形式的控制方程进行离散和积分,界面数值通量采用有限体积法计算,剩余项则采用中心有限差分格式求解。其中,采用中心迎风有限体积格式计算控制体界面数值通量,并结合界面变量的线性重构方法,使其在空间上具有四阶精度,通过引入静压重构技术和波浪破碎指标使模型具备处理海岸水-陆动边界及波浪破碎的能力。时间积分则采用具有总时间变差减小(Total Variation Diminishing,TVD)性质的三阶龙格-库塔法进行。应用该模型对孤立波在常水深和斜坡海岸上的传播过程及规则波跨越潜堤传播的实验进行了数值模型研究,数值计算同解析解及实验数据吻合良好。  相似文献   

16.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

17.
This paper focuses on the numerical modelling of tsunami propagation in the open Black Sea. Two types of numerical models are discussed: a model for the radial propagation of long waves and an evolutionary finite-difference prognostic model. Experimentally derived numerical data on the model source of tsunamis are reported. Translated by Vladimir A. Puchkin.  相似文献   

18.
冰动力学的拉格郎日离散元模式   总被引:5,自引:0,他引:5  
沈洪道 《海洋预报》1999,16(3):71-84
本文描述一种应用于河冰和海冰动力学研究的平滑质点流体力学的离散元模式。该离散元方法是一种自由拉格郎日方法,和传统的欧拉网格数值方法相比,它具有较小的数值扩散并且能够更加灵活地处理复杂的冰过程等许多优点。本文首先给出海冰动力学的离散元模式的基本方法,并与欧拉有限差分方法和半拉格郎日的质点一网格方法进行了对比,其次,本文还给出了离散元海冰模式在渤海的一个应用。  相似文献   

19.
The linearized potential flow approximation for the forward speed radiation problem is solved in the time domain using a high-order finite difference method. The finite-difference discretization is developed on overlapping, curvilinear body-fitted grids. To ensure numerical stability, the convective derivatives in the free-surface boundary conditions are treated using an upwind-biased stencil. Instead of solving for the radiation impulse response functions, a pseudo-impulsive Gaussian type displacement is employed in order to tailor the frequency-content to the discrete spatial resolution. Frequency-domain results are then obtained from a Fourier transform of the force and motion signals. In order to make a robust Fourier transform, and capture the response around the critical frequency, the tail of the force signal is asymptotically extrapolated assuming a linear decay rate. Fourth-order convergence of the calculations on simple geometries is demonstrated, along with a nearly linear scaling of the solution effort with increasing grid resolution. The code is validated by comparison with analytical and semi-analytical solutions using submerged and floating closed-form geometries. Calculations are also made for a modern bulk carrier, and good agreement is found with experimental measurements.  相似文献   

20.
A hybrid finite-volume and finite-difference method is proposed for numerically solving the two-dimensional (2D) extended Boussinesq equations. The governing equations are written in such a way that the convective flux is approximated using finite volume (FV) method while the remaining terms are discretized using finite difference (FD) method. Multi-stage (MUSTA) scheme, instead of commonly used HLL or Roe schemes, is adopted to evaluate the convective flux as it has the simplicity of centred scheme and accuracy of upwind scheme. The third order Runge–Kutta method is used for time marching. Wave breaking and wet–dry interface are also treated in the model. In addition to model validation, the emphasis is given to compare the merits and limitations of using MUSTA scheme and HLL scheme in the model. The analytical and experimental data available in the literature have been used for the assessment. Numerical tests demonstrate that the developed model has the advantages of stability preserving, shock-capturing and numerical efficiency when applied in the complex nearshore region. Compared with that using HLL scheme, the proposed model has comparable numerical accuracy, but requires slightly less computation time and is much simpler to code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号