首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
混合坐标模式HYCOM模拟COADS强迫下的南海平均环流   总被引:1,自引:0,他引:1  
采用混合坐标模式(HYCOM)模拟南海环流,同时利用海表温度卫星资料和吕宋海峡Sb-ADCP观测海流数据来评估模式结果.地形敏感性实验表明,吕宋海峡地形数据对模拟黑潮入侵方式影响较大,在地形误差较大的情况下,模拟的黑潮可能以反气旋流套方式入侵.和Pathfinder海表温度卫星资料比较,模式输出的月平均温度在海盆区域误差较小.ERA-15资料强迫所模拟的吕宋海峡上层环流和Sb-ADCP观测一致,而COADS结果低估了吕宋海峡的体积输送.  相似文献   

2.
南海北部海峡热输送特征   总被引:1,自引:0,他引:1  
计算和分析了南海北部(14.75°N以北)热含量、吕宋海峡和台湾海峡的体积输送和热输送的时空变化和季节转换特征。研究表明:南海通过吕宋海峡交换体积输送和热输送,两者都在12月份达到最大,但体积输送5月达到最小,而热输送则滞后1个月,在6月达到最小。南海北部水体热含量异常具有2~3 a的变化周期。吕宋海峡的整体热输送异常存在3 a左右变化周期,季节变化上比南海北部热含量超前2个月。台湾海峡的整体热输送异常存在2~4 a变化周期,季节变化上整体向外热输送最小值比南海北部热含量最大值超前1~2个月。吕宋海峡的整体热输送与台湾海峡相比季节变化上反位相。  相似文献   

3.
本文采用美国伍兹霍尔研究所研发的海洋-大气-波浪-泥沙输运耦合模式COAWST(Coupled Dcean-Atmosphere-Wave-Sediment Transport)对南海及邻近海域进行了9 km分辨率的数值模拟研究。结果表明,南海贯穿流的季节变化再现了冬强夏弱的特征,在南海内部冬季呈现气旋环流结构,夏季呈现反气旋环流结构,尤其在冬季其流轴结构更为清晰和稳定,海水从吕宋海峡进入南海,从民都洛海峡、卡里马塔海峡、台湾海峡和巴拉巴克海峡流出,吕宋海峡断面流量与其他4个海峡流量合计在数量级上相当,保持南海海水总量不变。吕宋海峡、卡里马塔海峡、民都洛海峡的流量呈现明显相关性,吕宋海峡流量增大时,民都洛海峡和卡里马塔海峡的流量也相应增大,相关系数分别达到0.78和0.9。通过更适于分析中短期变化的简化绕岛环流理论,定量计算2019年吕宋海峡、黑潮和棉兰老流流量与北赤道流分叉点位置的关系,发现夏季北赤道流分叉点NECBL(North Equatorial Current Bifurcation Latitude)偏南,在13.6°N附近;冬季NECBL偏北,在15.6°N左右,同期黑潮流量减少,棉兰老流流量增加,作为南海贯穿流入流的吕宋海峡流量可达13.4 Sv。吕宋海峡输运补偿了北赤道流到达菲律宾海岸后的北向分支的流量,与棉兰老流的流量呈正相关,相关系数达到0.5361。  相似文献   

4.
从海洋动力学角度,概述了太平洋-印度洋贯穿流南海分支的主要入流和出流通道—吕宋海峡和卡里马塔海峡的研究现状。太平洋-印度洋贯穿流南海分支是太平洋、南海和印度尼西亚海域进行水体和热盐交换的传输带,对西太平洋、南海、印尼海和东印度洋的环流系统有重要影响。吕宋海峡水交换和卡里马塔海峡贯穿流都呈现冬季大夏季小的季节变化特征,对维持南海的物质、能量和动量平衡起重要作用。太平洋通过吕宋海峡向南海输运水体和热盐,并传递ENSO等气候信号,对南海的环流、水体和海洋环境都产生重要影响。卡里马塔海峡向印度尼西亚海区的水体和热盐输运对印度尼西亚贯穿流有重要意义。太平洋-印度洋贯穿流南海分支和印尼贯穿流的年际变化趋势呈反位相,两者相互调制相互影响,维持了太平洋-印度洋两大洋间的平衡关系,对全球大洋环流的结构和长期的气候变化有重要作用。  相似文献   

5.
南海次表层和中层水团年平均和季节变化特征   总被引:5,自引:0,他引:5       下载免费PDF全文
为了弄清北太平洋水入侵南海的状况,利用历史观测温-盐数据等资料对其进行了分析。结果表明:在盐度极大值层北太平洋水通过吕宋海峡的入侵整年发生,并且其入侵有很大的季节变化,冬季东北季风盛行时最强。北太平洋热带水(NPTW)入侵的季节变化与次表层地转流和南海的经向翻转环流结构有密切联系。具有盐度极小值特性的北太平洋中层水(NPIW)也通过吕宋海峡入侵南海,但其季节变化与NPTW完全反位相。冬季,由于在中层水深度北向运动的南海经向翻转环流的阻碍作用,NPIW入侵南海最弱。作者认为,北太平洋水入侵南海的机制可以基本上从南海的地转流及经向翻转环流得到解释。  相似文献   

6.
印尼贯穿流与南海贯穿流的年代际变化特征及机制   总被引:5,自引:0,他引:5  
通过绕岛环流理论和SODA(Simple Ocean Data Assimilation)数据对印尼贯穿流(ITF)和南海贯穿流(即吕宋海峡水交换,LST)在1976年气候突变前后的特征进行分析。结果表明,1976年后吕宋海峡水交换体积输送(LSTT)异常增大,而印尼贯穿流体积输送(ITFT)异常减少。吕宋海峡东部东风分量和南海内部的北风分量的局地驱动是导致LSTT在1976年后增加的主要因素,南海内部异常北风分量对LSTT增加的贡献能够达到53%;而赤道太平洋的西风分量则是导致ITFT在1976年后减少的主要因素,其贡献大约为61%。1976年后15°N左右的NEC(North Equatorial Current)体积输送异常增强,但总NEC体积输送异常减弱。KC(Kuroshio Current)体积输送异常增强,而MC(Mindanao Current)、NECC(North Equatorial Countercurrent)、SEC(South EquatorialCurrent)体积输送异常减弱。赤道西太平洋由风场变化通过Sverdrup动力过程产生的异常气旋性环流阻碍了太平洋水体向印度洋的输入。  相似文献   

7.
北赤道流分叉点及南海北部环流的研究进展   总被引:6,自引:0,他引:6  
介绍了北赤道流分叉点、南海北部环流的一些研究成果,并就黑潮对南海的影响所作的研究进行了回顾.北赤道流分叉点的位置对于北赤道流系水体疏运变化及在黑潮和MC之间水体、热量、盐度输运的分配中起着重要的作用.北赤道流分叉点位置约在14.6°N上,分叉点位置随深度增加而北移.分叉点有明显的季节变化和年际变化,在春、夏季向南移动,而在秋、冬季则向北移动.年际变化与ENSO现象相关紧密,在El Nio事件NEC分叉纬度处于最北端,在La Nio事件处于最南端.对于分叉点位置的定量化研究,仍然需要更多的观测结果进行研究.季风和黑潮是影响南海北部环流的两种主要因素.南海北部上层流场主要由广东沿岸流、黑潮入侵流套、东沙海流、南海暖流和吕宋海流组成.除海盆、次海盆尺度环流外,受季风、黑潮和地形等因素的影响,南海表现出多涡结构.通过近些年的卫星观测和数值模拟的结果,人们对南海中尺度涡的认识大大加深,但要想模拟出风应力形成涡的机制,还需要提高风场和模式的分辨率.由于观测资料的限制,对南海流场的垂直结构、以及春-秋季季风转相时期的流场结构等还研究得较少.吕宋海峡水交换是西太平洋对南海影响的主要途径.黑潮在吕宋海峡附近的形变一直是有争议的热点问题,目前对于黑潮入侵有3种观点:(1) 认为黑潮经过吕宋海峡形成流套结构,并分离出中尺度涡影响南海流场、水团结构;(2) 认为黑潮有一直接分支分离出来进入南海形成黑潮分支;(3) 认为吕宋海峡水交换不属于以上两种情况,西太平洋对南海的水团输送另有机制.北赤道流分叉点在对黑潮的水体、热量、盐度输运的分配中起着重要的作用,黑潮对南海北部环流的影响可能与NEC的分叉点位置有关,但目前对NEC的分叉点位置与南海北部环流相关性的研究甚少.最后提出了对未来加强该方面研究的一些展望.  相似文献   

8.
基于海洋模式HYCOM(Hybrid Coordinate Ocean Model),利用大小区嵌套技术,分别对全球海洋和西北太平洋进行了网格嵌套数值模拟,研究了吕宋海峡海域环流场的季节性变化。考虑全球海洋环流影响的西北太平洋模式,成功地刻画了黑潮的流结构及季节变化。吕宋海峡海洋环流流场在不同深度处差异较大,存在着明显的季节变化。黑潮入侵南海主要发生在500m深度以上,冬季最明显,夏秋两季不明显。在500m层常年存在一支南海暖流流入西北太平洋,在800m层南海暖流消失。一年四季黑潮主要通过吕宋海峡的南部和中部进入南海。1 000m层流场表明,黑潮主要通过吕宋海峡的中部入侵南海。在800~1 000m处主要是黑潮水流入南海。  相似文献   

9.
通过一个全球的二维诊断模型,采用Levitus温盐资料和COADS风应力资料,并结合动力计算来研究南海上层环流的季节变化。计算结果与其它模式结果和观测结果非常相似。南海北部(南部)全年存在一气旋式(反气旋式)环流。在冬季气旋式环流几乎占据了整个南海,夏季则以反气旋式环流为主。泰国湾的环流在冬季(夏季)是气旋式的(反气旋的)。南海的西边界流有明显的季节变化,其在冬季从卡里马塔海峡流出南海,夏季部分西边界流从台湾海峡流出南海。越南离岸流在春季就开始出现,其位置比夏季的越南离岸流的位置偏北。  相似文献   

10.
南海海面高度季节变化的数值模拟   总被引:8,自引:1,他引:8  
比较POM模式模拟与观测(TOPEX/Poseidon高度计资料)的南海海面高度(SSH)的季节变化在空间分布上的一致性和差异.结果表明:本文使用的POM模式能较好地模拟南海SSH的季节变化;冬季与夏季,春季与秋季南海海面异常场形式完全相反,冬季Ekman输运造成在西海岸的堆积要比夏季在东海岸堆积更明显,而吕宋冷涡中心附近和吕宋海峡海面季节变化振幅最大;除春季以外,在南海绝大部分海域,海面高度的季节变化主要受风力的控制,南海海面热量通量对SSH的季节变化贡献约为20%,风应力对SSH的季节变化的贡献约为80%.  相似文献   

11.
The low-frequency variability of the shallow meridional overturning circulation(MOC) in the South China Sea(SCS) is investigated using a Simple Ocean Data Assimilation(SODA) product for the period of 1900–2010. A dynamical decomposition method is used in which the MOC is decomposed into the Ekman, external mode, and vertical shear components. Results show that all the three dynamical components contribute to the formation of the seasonal and annual mean shallow MOC in the SCS. The shallow MOC in the SCS consists of two cells: a clockwise cell in the south and an anticlockwise cell in the north; the former is controlled by the Ekman flow and the latter is dominated by the external barotropic flow, with the contribution of the vertical shear being to reduce the magnitude of both cells. In addition, the strength of the MOC in the south is found to have a falling trend over the past century, due mainly to a weakening of the Luzon Strait transport(LST) that reduces the transport of the external component. Further analysis suggests that the weakening of the LST is closely related to a weakening of the westerly wind anomalies over the equatorial Pacific, which leads to a southward shift of the North Equatorial Current(NEC) bifurcation and thus a stronger transport of the Kuroshio east of Luzon.  相似文献   

12.
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is interdecadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.  相似文献   

13.
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.  相似文献   

14.
南海暖水季节和年际变化的初步研究   总被引:1,自引:1,他引:1  
南海暖水具有明显的季节和年际变化。利用气候平均的COADS资料和NCEP大气资料分析了南海暖水的季节变化及其与海面净热通量的关系,以及由此引起的南海地区大气环流的变化。发现海面净热通量在南海暖水的季节变化过程中起到了主要的作用;冬季无暖水存在时,最大上升气流位于赤道及以南地区的印尼群岛附近,夏季最大上升气流北移到了南海暖水上空,南海暖水上空对流强烈,成为大气的对流活动中心。利用50年逐月的SODA海温资料进行垂直方向的3次样条插值,定义并计算南海暖水的强度指数,分析南海暖水的年际变化,并对南海暖水的几个异常暖年份作了合成分析,探讨了暖水年际变化的形成因素。  相似文献   

15.
南海混合层深度的季节变化及年际变化特征   总被引:2,自引:0,他引:2  
通过分析新的SODA(Simple Ocean Data Assimilation)资料,得到南海混合层时空场的分布特征,剖析了南海混合层深度的季节及年际变化特征。资料分析表明:南海混合层存在着显著的季节和年际变化,且两者的均方差分布存在一定的差异。在季节变化中,冬季混合层在南海北部及西北陆架区深,在南海南部及吕宋冷涡处浅;夏季混合层在南海西北部浅,东南深。南海这种混合层深度分布特征除了与热通量的季节变化有关外,在相当大的程度上与季风引起的Ekman输送及Ekman抽吸有关。混合层深度距平场EOF(Empirical Othorgnal Function)第一模和第二模时间变化的主信号均为周期的年际变化信号,其中第一模态约为3 a,第二模态则有1.8,2.4和4.3 a的3个显著周期。EOF第一模显示混合层深度在南海东南部年际变化幅度最大,且滞后Nino3指数7个月时相关性最好(相关系数为0.422 3);EOF第二模显示在南海南部和北部混合层深度呈反位相变化。  相似文献   

16.
Researches on the currents in the South China Sea (SCS) and the interaction between the SCS and its adjacent seas are reviewed. Overall seasonal circulation in the SCS is cyclonic in winter and anticyclonic in summer with a few stable eddies. The seasonal circulation is mostly driven by monsoon winds, and is related to water exchange between the SCS and the East China Sea through the Taiwan Strait, and between the SCS and the Kuroshio through the Luzon Strait. Seasonal characteristics of the South China Sea Warm Current in the northern SCS and the Kuroshio intrusion to the SCS are summarized in terms of the interaction between the SCS and its adjacent seas.  相似文献   

17.
Intercomparison of three South China Sea circulation models   总被引:1,自引:1,他引:1  
1IntroductionTheSouthChinaSeaisthelargesttropicalmarginaldeepsealocatingbetweenthewesternPacificOceanandtheeasternIndianOcean.AsapartofAsia-Australiamaritimecontinent,monsoonisaprimaryfactorforcingtheSouthChinaSeaCurrent(SCSC)variation.Drivenbynortheasterlymonsooninwinterandsouth-westerlymonsooninsummer,respectively,theSCSCbehavesacyclonicgyreandananticy-clonicgyre,correspondingly(Wyrtki,1961;Xuetal.,1982).Owingtotheshortageandexpen-sivenessofdirectobservationsintheSCS,fur-therunder…  相似文献   

18.
Using wavelet transform we studied the mesoscale variability in the South China Sea (SCS) by analyzing 5-yr (October 1992 to August 1997) TOPEX/Poseidon (T/P) altimetry data. Our analysis suggests that mesoscale variability inside the SCS is weaker than that outside the SCS in the Kuroshio. It is found that despite the large temporal variation in the mesoscale variability, there are two narrow bands of significant mesoscale variability north of 10°N throughout much of the 5-yr period. The stronger one lies along the western boundary, while the weaker one is oriented in a southwest-to-northeast direction across the central SCS. In the rest of the SCS, the mesoscale variability is much weaker. In light of the numerical simulation by Metzger and Hurlburt (1996, Journal of Geophysical Research, 101, 12,331–12,352) and an XBT section along 15°N, the broad characteristic structure of the mesoscale variability indicates that the large-scale mean circulation in the SCS is primarily a cyclonic gyre north of about 10°N. In addition to the mesoscale variability, analysis of both the T/P and the XBT data indicates that there also exists significant intra-annual variability within similar geographic locations. The intra-annual variability is found to be primarily a subsurface feature with a very weak surface signature.  相似文献   

19.
Tropical cyclones (TCs) that affect the South China Sea (SCS) can be generated in either the SCS or the northwestern Pacific (NWP). Using satellite measurements, the Sverdrup theory and a 1.5-layer nonlinear reduced gravity model, the present paper investigates the effects of SCS and NWP TCs on the summer SCS upper layer ocean circulation. Both SCS and NWP TCs enhance the summer mean circulation pattern of the cyclonic gyre in the northern SCS and the anti-cyclonic gyre in the southern SCS. However, the effect of SCS TCs is much larger than that of NWP TCs, although the number of SCS TCs is smaller than NWP TCs. This is because the SCS TCs-induced wind stress curl pattern is favorable for enhancing the summer SCS mean circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号