首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
黄、渤海沿岸港湾的假潮及成因探讨   总被引:1,自引:0,他引:1  
本文通过对日照港以北黄、渤海沿岸18个港湾8~27年假潮资料的分析,给出了不同区域港湾的假潮状况和成因.在该区域只有龙口港可时常发生100cm左右的大振幅假潮和>150cm甚至>300cm的特大振幅假潮,属假潮特别严重和唯一发生较大危害性假潮港湾;其余分属假潮相对较重、较轻和无假潮港湾,其假潮基本不具危害性或无危害性.分析结果表明其突然而剧烈的风场变化是导致各港湾假潮的直接原因,地理环境差异是造成港湾假潮强弱的关键因素;龙口港100cm左右和>1 50cm的大和特大振幅假潮,是其特殊地理环境、港湾及附近大范围海域骤猛的向港爆发性大风,尤其强雷暴大风涌水在港内骤然积聚和海水惯性振荡的综合结果.  相似文献   

2.
龙口港的假潮及成因探讨   总被引:1,自引:0,他引:1  
利用 23 a (1964—1986 年)的假潮资料,讨论了龙口港假潮的振幅、频率、周期和持续时间等;给出了导致假潮的各种天气形势和风场;分析了不同气象要素对假潮的贡献;探讨了大和特大振幅假潮的成因。分析结果表明:风场变化是导致龙口港假潮的直接原因;100 cm 左右和 >150 cm 的大和特大振幅假潮,是龙口港特殊地理环境、港湾及附近大范围海域骤猛的向港爆发性大风尤其强雷暴大风涌水在港内骤然积聚和海水惯性振荡的综合结果,该假潮具有较大危害性。  相似文献   

3.
渤海、黄海沿岸主要港湾大振幅假潮成因的天气学分析   总被引:1,自引:0,他引:1  
对渤海、黄海主要港湾发生的振幅大于50cm(龙口港湾取振幅大于80cm)的65次假潮过程与地面天气图进行对比分析,着重分析了伴随大振幅假潮过程的天气形势.分析结果表明:(1)龙口港湾22次大振幅假潮中有19次与雷暴天气(其中有3次伴随有飑线,1次还伴有龙卷)有关,2次与大风天气有关,1次由外海雷暴引起;因此得出雷暴、飑线是引起大振幅假潮的主要原因;雷暴强弱和持续时间长短变化,导致假潮振幅大小及持续时间长短变化;雷暴的季节变化引起大振幅假潮的季节变化;雷暴发生的局地性导致假潮出现的局地性;雷暴传播方向的不同引起大振幅假潮的周期不同.(2)北方气旋型和江淮气旋及西南倒槽型这两种天气类型有利于产生雷暴,并导致大振幅假潮的发生.这两类型分别占62个例的468%和177%.  相似文献   

4.
本文给出了该港湾假潮振幅> 20cm 出现的频数、假潮的周期和延时,还讨论了假潮变化的成因。  相似文献   

5.
山东半岛两港湾假潮的基本特征   总被引:2,自引:0,他引:2  
本文根据1970~1996年某验潮站(1)和1964~1995年某验潮站(2)水位自记曲线资料,分析了这两个港湾假潮(振幅大于20cm)的基本特征,给出了假潮出现的频数、周期、延时和峰值出现的时刻,还讨论了假潮的类型及成因。  相似文献   

6.
山东半岛沿岸的大振幅假潮   总被引:6,自引:0,他引:6  
根据山东半岛沿岸12个验潮站的水位资料曲线,摘取了各站的假潮参数,并对该区域沿岸大振幅假潮变化做了统计分析,给出了假潮的基本特征-发生频率,月出现率,振动周期,延时和峰值出现的时刻,分析了假潮周期的谱型,最后还讨论了大振幅假潮形成的初步原因。  相似文献   

7.
根据山东半岛沿岸12 个验潮站的水位资料曲线,摘取了各站的假潮参数(周期、振幅、延时和峰值出现时刻),并对该区域沿岸大振幅假潮变化做了统计分析,给出了假潮的基本特征——发生频率、月出现率、振动周期、延时和峰值出现的时刻;分析了假潮周期的谱型,最后还讨论了大振幅假潮形成的初步原因。  相似文献   

8.
大连老虎滩澳的大振幅假潮   总被引:3,自引:0,他引:3  
潮汐周期以外的大振幅水位波动(即大振幅假潮),在老虎滩澳时有发生。老虎滩澳位于大连湾侧,是一半封闭深度较浅的三角形小海湾(图1).验潮站位于湾的左岸,距湾顶约1km,水深2.8m.据统计,1980~1994年15年间出现波高大于20cm的假潮共61次。波高超过40cm的为12次。较大振幅事件发生在1994年7月3日,其最大波高为91cm,谱分析显着周期为10min.类似这种小海湾的大振幅假潮在世界其他港湾也经常观测到。其中,以中国的龙口港、日本的长崎港和巴利亚里群岛西岸的锡尤达德拉(Ciu-tadella)港发生的大振幅假潮最为突出。  相似文献   

9.
小长山港内港湾假潮变化的基本特征   总被引:3,自引:0,他引:3  
本文给出了该港湾假潮振幅〉20cm出现的频数,假潮的周期和延时,还讨论了假潮变化的成因。  相似文献   

10.
南海北部沿岸海洋站的假潮   总被引:1,自引:0,他引:1  
收集和分析了南海北部沿岸15个海洋站所在港湾发生假潮的资料,并对其中较大振幅的典型假潮个例,进行了港湾基态自然周期分析和假潮振动的频谱分析。研究发现,假潮最大振幅振动多发生在天文潮的高潮或低潮期间;根据海湾地形尺度用梅立恩(Merian)公式计算得出的海湾基态自然周期;和根据资料曲线估计得出的假潮周期,以及功率谱分析得出的周期,三者非常接近。从本文研究所得结果来看,这些海湾的较大振幅假潮多发生在春、夏季,且都和风速、风向以及气压的剧烈变化有关。这些大气扰动在春天多为冷空气南下,在夏季多为热带气旋活动。研究认为,假潮的发生很可能是大气振动通过外海表面波作为中间机制,与港湾自由态振动之间产生耦合共振的结果。  相似文献   

11.
The variations in the free surface of Lake Baikal at three stations (Bol’shie Koty, Listvyanka, and Baikal’sk) are measured. A modern recording method and an advanced technique of record processing are used. Based on 1-year-long observation data, the amplitudes of seiche oscillations and their seasonal changes are analyzed. It is found, in particular, that 67-min seiches are manifested in different seasons. Numerical calculations of seiches in Lake Baikal are made with the use of up-to-date bathymetric data on one-dimensional, plan, and spherical models. Spatial structures of oscillations with periods of 277, 152, 84, 67, and 59 min, corresponding to the well-expressed peaks of power spectral density, are studied. It is shown that the first four periods correspond to uninodal, binodal, trinodal, and quadrinodal longitudinal seiche modes of Lake Baikal. The periods of three solutions can correspond to the value of 59 min. The first of them is the seiche of the lake’s South Basin, and two others are characterized by significant amplitude growth in the Small Sea and Chivyrkui Bay.  相似文献   

12.
Characteristics of seiches in Onagawa Bay are investigated on the basis of observations at the bay head, Konorihama, from May 1972 to May 1973 and at the outside of the bay, Enoshima during the same period. At Konorihama seiches with the double amplitude of 7 to 11 cm occurred most frequently (63 percent of the total samples) and the maximum reached 31 cm. Short-time spectral analyses indicate that the periods of the spectral peaks shift considerably with the lapse of time, and that the location of the nodal line near the bay mouth moves offshore and inshore of Enoshima. The cause of these phenomena seems to be attributed to the change of incident angle of waves coming from the open sea to excite seiches. Amplitudes of the fundamental and of the lateral modes of seiches increase or decrease alternately with time, suggesting the energy transfer between these modes. Bay oscillations induced by remarkable atmospheric pressure-waves were observed. However, the amplitudes of the oscillations were within a few centimeters and dissipated in a few hours.  相似文献   

13.
Hydrodynamics and sediment resuspension events, induced at the shoreline by a deep-draft vessel passing nearby, are described. Measurements (pressure, currents and turbidity) were obtained at 4 Hz, on a lower beach ~50 m from a channel where large car ferries operate in Wootton Creek, Isle of Wight. The study focuses on a representative 8-min 32-s-long record, during which two large vessels passed the channel section. At the shore, the passage of each vessel induced a long-period water-level drawdown, followed by a water-level oscillation (seiche) of similar period, and the short-period waves of the wake. Both drawdowns were the main constituents of the prevailing wave pattern. The second drawdown was the largest in amplitude, in response to a higher speed of the ferry, and the influence of the seiche which had been activated during the preceding event. Two successive peaks of turbidity were observed shortly after this drawdown. Analyses of current velocity and direction indicate that the sediments resuspended originated from the shallower upper beach. Anthropogenically induced erosion of the foreshore is predicted at Wootton Creek.  相似文献   

14.
Numerical experiments were performed to explain the observed results of the internal tides in Uchiura Bay. The experiments for the generation of the internal tides in Suruga Bay indicate that the internal tides, generated at the slopes in the bay, are not as large an amplitude as those observed in Uchiura Bay. However, when the semidiurnal internal tides incident through the mouth of Suruga Bay are considered, they are amplified. The amplitude at the head of Uchiura Bay is 6–12 times larger than that at the mouth of Suruga Bay under the summer density structure. Under the fall density structure, the amplitude ratio is approximately 4–6. The amplification of the semidiurnal internal tides in Uchiura Bay is considered to be due to resonance of the longitudinal internal seiche of Uchiura Bay. On the other hand, the calculated diurnal internal tides are not as large as those observed. Therefore, the diurnal internal tides are thought to already have these large amplitudes at the mouth of Suruga Bay. Therefore, from the observations and numerical experiments, it is concluded that the internal tides observed in Uchiura Bay are mostly the internal tides originating from the outer region of Suruga Bay, and the semidiurnal tides are the internal seiche which is resonantly amplified.  相似文献   

15.
A salient feature of sea level records from the Adriatic Sea is the frequent occurrence of energetic seiches of period about 21 h. Once excited by a sudden wind event, such seiches often persist for days. They lose energy either to friction within the Adriatic, or by radiation through Otranto Strait into the Mediterranean.The free decay time of the dominant (lowest mode) seiche was determined from envelopes of handpassed sea level residuals from three locations (Bakar, Split and Dubrovnik) along the Croatian coast during twelve seiche episodes between 1963 and 1986 by taking into consideration only time intervals when the envelopes decreased exponentially in time, when the modelled effects of along-basin winds were smaller than the error of estimation of decay time from the envelopes and when across-basin winds were small. The free decay time thus obtained was 3.2±0.5 d. This value is consonant with the observed width of the spectral peak.The decay caused by both bottom friction and radiation was included in a one dimensional variable cross section shallow water model of the Adriatic. Bottom friction is parameterized by the coefficient k appearing in the linearized bottom stress term ρ0u (where u is the along-basin velocity and ρ0 the fluid density). The coefficient k is constrained by values obtained from linearization of the quadratic bottom stress law using estimates of near bottom currents associated with the seiche, with wind driven currents, with tides and with wind waves. Radiation is parameterized by the coefficient f appearing in the open strait boundary condition ζ =auh/c (where ζ is sea level, h is depth and c is phase speed). This parameterization of radiation provides results comparable to allowing the Adriatic to radiate into an unbounded half plane ocean. Repeated runs of the model delineate the dependence of model free seiche decay time on k and a, and these plus the estimates of k allow estimation of a.The principle conclusions of this work are as follows.
1. (1) Exponential decay of seiche amplitude with time does not necessarily guarantee that the observed decay is free of wind influence.
2. (2) Winds blowing across the Adriatic may be of comparable importance to winds blowing along the Adriatic in influencing apparent decay of seiches; across-basin winds are probably coupled to the longitudinal seiche on account of the strong along-basin variability of across-basin winds forced by Croatian coastal orography.
3. (3) The free decay time of the 21.2 h Adriatic seiche is 3.2±0.5 d.
4. (4) A one dimensional shallow water model of the seiche damped by bottom stress represented by Godin's (1988) approximation to the quadratic bottom friction law ρ0CDu|u| using the commonly accepted drag coefficient CD = 0.0015 and quantitative estimates of bottom currents associated with wind driven currents, tides and wind waves, as well as with the seiche itself with no radiation gives a damping time of 9.46 d; radiation sufficient to give the observed damping time must then account for 66% of the energy loss per period. But independent estimates of bottom friction for Adriatic wind driven currents and inertial oscillations, as well as comparisons between quadratic law bottom stress and directly measured bottom stress, all suggest that the quadratic law with CD=0.0015 substantially underestimates the bottom stress. Based on these studies, a more appropriate value of the drag coefficient is at least CD=0. In this case, bottom friction with no radiation leads to a damping time of 4.73 d, radiation sufficient to give the observed damping time then accounts for 32% of the energy loss per period.
  相似文献   

16.
There have been a number of applications of satellite altimetry to seasonal and interannual sea level variability in the South China Sea. However, these applications usually exclude shallow waters along the coast, with one of the concerns being large aliased tide-correction error. In this study the authors analyzed 14 years of merged satellite altimeter data to obtain the amplitude and phase of the semi-annual cycle and to examine the variation at the K1 alias frequency (close to the semi-annual frequency). The results indicate that the amplitude of the semi-annual cycle ranges from 3-7 cm, substantial compared with that of the annual cycle; while the amplitude at the K1 alias frequency (error of the K1 tidal correction) is essentially 1 cm only. Altimeter–derived semi-annual cycle is in good agreement with that from independent tide-gauge observations, pointing to the competent ability of satellite altimetry in observing semi-annual sea level variations in the South China Sea.  相似文献   

17.
使用卫星测高、海表温度以及中国沿海台站水位等数据,分析研究了ENSO对中国近海海平面影响的区域特征。结果表明:(1)赤道东太平洋海表温度与我国近海海平面存在显著的遥相关关系。相关系数自北至南呈梯度递增,分为3个影响明显的区域,分别是渤、黄海、东海和南海海域。南海海平面异常与赤道东太平洋区域的海表温度异常相关性最强,大部分区域的相关系数超过了0.6;东海海域海平面异常与赤道东太平洋海表温度的遥相关系数弱于南海,强于渤、黄海,大部分海域的遥相关系数超过了0.4;渤、黄海海域海平面异常与赤道东太平洋海表温度的遥相关系数最弱,但是大部分海域的遥相关系数超过了0.3,通过了显著性检验。(2)中国沿海海平面的季节变化与ENSO有明显的相关关系,且影响范围具有明显的区域特征,以长江口和台湾海峡为分界线分为长江口以北、长江口到台湾海峡以及台湾海峡以南3个区域。海平面的年振幅在厄尔尼诺年均出现偏低的现象,并且年振幅的极小值均出现在厄尔尼诺年。另外,海平面的年振幅对厄尔尼诺事件的响应与其强弱有关,在强厄尔尼诺事件中,响应区域和幅度较大,弱事件中,响应区域和幅度偏小。(3)南海、东海和渤、黄海这3个区域沿海的海平面变化均存在4~7 a的显著振荡周期,说明这3个区域的海平面均受ENSO的影响。其中,南海7 a周期的振荡幅度最大,约为1.5 cm;东海7 a周期的振荡幅度次之,约为1.3 cm;渤、黄海6 a周期的振荡幅度最小,不到1 cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号