首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
环台湾岛海域半日潮波特征的三维模拟   总被引:10,自引:0,他引:10  
用1997版POM海洋模式,首次应用于环台湾岛海域的潮波数值研究.得到该海域的半日潮波主要为23°N以南西太平洋传来的胁振潮.影响台湾海峡的半日潮波分别由海峡南北口传入的两支潮波,且北支强于南支.福建沿岸湄州湾-兴化湾为最强潮区,其M2分潮最大振幅可达240cm.最强潮流区位于澎湖水道,M2分潮最大潮流达196cm/s.环台湾岛海域潮波潮流水平结构上除海峡北部原有一个圆流点外,还发现另外存在4个新的圆流点.潮流垂直结构上主要为右偏,接近底层处为左偏.  相似文献   

2.
渤、黄、东海潮汐、潮流的数值模拟与研究   总被引:9,自引:4,他引:5  
基于FVCOM海洋数值模式,采用高分辨率的三角形网格,对渤、黄、东海的潮汐、潮流进行数值模拟,并通过比较120个沿岸验潮站和14个潮流观测站的实测与模拟结果进行模型验证,两者符合较好。根据模拟结果,给出了四个主要分潮的潮汐同潮图和5m层潮流最大流速及最大潮流同潮时分布。渤、黄、东海共有5个半日分潮和3个全日分潮的独立旋转潮波系统,且都呈逆时针方向旋转;半日潮流和全日潮流各有12个圆流点;在冲绳岛和奄美岛两侧的4个半日潮流圆流点分别呈对称分布,其中有3个为本文首次给出;在日本九州岛西侧还新给出2个全日潮流圆流点。有关它们的存在性需要实测资料的进一步检验。  相似文献   

3.
台湾海峡M2分潮的三维数值模拟   总被引:8,自引:0,他引:8  
本文利用普林斯顿海洋模式对台湾海峡M2分潮作了分辨率较高的三维数值模拟,在较准确地模拟了潮汐分布的基础上,研究了M2分潮流椭圆分析,最大流同时线分布,潮流场的水平及垂直结构,最后还给出了M2分潮余流,余水位的分布。结果表明,M2分潮最大流同时线在海峡中部同时形成密集区的一个圆流点;构成海峡潮波系统的两股潮波中,南支潮波的影响似超出了以往所构成;最大潮流仅在近海底处急剧减小,最大流方向随深度增加右转  相似文献   

4.
台湾海峡内的潮运动是相当强烈和复杂的,一方面由于自海峡外传入的两支太平洋潮波在海峡内传播、相汇,形成强烈的潮运动;另一方面海峡内地形的复杂和岸线的曲折又使海峡内潮汐、潮流的分布变得特别复杂。自80年代以来,国内学者对海峡内的潮汐、潮流进行了不少研究(丁文兰,1983;方国洪等,1985;叶安乐等,1985,1986;李立等,1990;陈新忠,1983;郑文振等,1982),并获得了有价值的成果。但是,他们对海峡内潮运动的过程、性质等尚有许多不同的看法。例如,关于M2分潮最大流速同潮时线的分布状况,以上学者的结论各不相同,有的甚至差异很大。对海峡内M2分潮最大流速同潮时线聚点(即圆流点)的问题也有两种观点。关于潮流分布状况,由于实测流资料缺乏,尽管已有的研究在潮流极值区的出现位置上基本达成共识,但在潮流流速量值的大小问题上仍有诸多分歧。 鉴于上述研究现状,为了对海峡内潮汐、潮流的分布状况有更准确、细致的认识,以便弄清海峡内潮过程在上升流形成过程中的作用,本文在已有研究的基础上,重新对台湾海峡内的潮汐、潮流作了数值计算。我们将讨论的重点放在以往研究中有争议的问题上,依据计算结果并结合实测资料提出我们的见解。  相似文献   

5.
本文利用普林斯顿海洋模式对台湾海峡 M 2 分潮作了分辨率较高的三维数值模拟。在较准确地模拟了潮汐分布的基础上,研究了 M 2 分潮流椭圆分析、最大流同时线分布、潮流场的水平及垂直结构,最后还给出了 M 2 分潮余流、余水位的分布。结果表明, M 2 分潮最大流同时线在海峡中部同时形成密集区和一个圆流点;构成海峡潮波系统的两股潮波中,南支潮波的影响似超出了以往所认为的范围;最大潮流仅在近海底处急剧减小,最大流方向随深度增加右转,到近底层又向左转;潮汐余流和余水位均较弱,仅在澎湖水道、台湾浅滩附近余流较大。  相似文献   

6.
环台湾岛海域全日分潮的特征和潮汐、潮流的综合性质   总被引:6,自引:0,他引:6  
用97版POC海洋模式,对环台湾岛海域的全日分潮和整个潮汐,潮流综合特征进行三维数值研究。研究海域全日分潮是由太平洋传入的,且来自台湾岛北部海区传入的潮波穿越海峡。由吕宋海峡传入的全日分潮对维持南海的潮运动起着重要作用。全日分潮最大流同时线分布表层有5个圆流点,其中4个本文首次得到。台湾海峡及其以北海区和台湾东部洋区为不规则半日潮区,台湾东南为全日分潮为主的混合潮区。台湾岛北部为气旋式余流涡旋区,环绕台浅滩为反气旋余流涡旋区,澎湖水道开始的转向流预示着海峡及其邻近海区的涨潮流或落潮流的来临。  相似文献   

7.
渤海、黄海、东海潮流、潮能通量与耗散的数值模拟研究   总被引:2,自引:1,他引:1  
基于ROMS海洋数值模式,对渤海、黄海、东海的潮汐、潮流进行数值模拟,模拟结果与91个沿岸验潮站的实测结果拟合较好。研究表明,渤、黄、东海内的潮波以半日潮为主,共有4个半日潮、2个全日潮和1个退化的半日潮旋转潮波系统,且都呈逆时针方向旋转;渤海的半日潮流主要呈顺时针方向旋转,全日潮流呈逆时针方向旋转,黄海的潮流以逆时针旋转为主,东海、朝鲜海峡潮流以顺时针旋转为主;半日分潮流共有13个圆流点,K1(O1)分潮流有10(9)个圆流点,但全日潮流的同潮时线分布较为复杂;太平洋传入东海的4个主要分潮潮能通量分别为118.341GW、19.525GW、5.630GW、3.871GW,一半以上的潮能耗散在南黄海,30%—40%的潮能耗散在东海,其次是北黄海,而渤海最小。  相似文献   

8.
南海潮汐和潮流的分布特征   总被引:10,自引:3,他引:10  
丁文兰 《海洋与湖沼》1986,17(6):468-480
本文分析结果表明:(1)在深海区域潮波以前进波的形式自北向南传播,到陆架海域形成驻波。M_2分潮在泰国湾的东部有一个顺时针旋转的无潮点,K_2分潮在北部湾顺化附近和泰国湾西部各育两个反时针旋转的无潮点;(2)M_2分潮流在北部湾和泰国湾最大流速的同潮流时线都存在着两个圆流点,且位于半日分潮波的腹部,在圆流点附近最大流速发生时刻按逆时针方向增加,而其它区域几乎是在同一时刻发生的。K_1分潮流在北部湾和泰国湾也各有一个圆流点;(3)北部湾海防附近的最大变差可达6m以上,而赤道附近、越南顺化、泰国湾中部变差最小,只有1m左右。琼州海峡中部近最大潮流为最强,可达3kn以上,东部深水区域最小,仅0.1kn。  相似文献   

9.
台湾海峡同时拥有居我国第二位的大潮区和除无潮点外的小潮区,M2分潮作为主要分量,其潮汐结构的形成机制尚存争议。本研究基于MIKE 21水动力模型,建立了台湾海峡及其周边海域潮汐潮流的数值模型,数值模拟结果与20个验潮站以及4个ADCP(Acoustic Doppler Current Profiler)观测站数据吻合程度良好。根据数值模拟结果分别给出M2分潮在台湾海峡的同潮图、潮流椭圆和潮能通量分布,同时分别针对地形和南边界条件进行敏感性实验。研究结果表明M2分潮受东海传入的潮波控制,潮波受台湾岛以南陡峭地形影响发生反射,由于反射波的迟角与吕宋海峡传入潮波的相近,二者叠加后向北传入台湾海峡,在与南下潮波迟角相同处,出现最大振幅,即在台湾海峡西岸形成强潮区。研究还表明,吕宋海峡传入潮波在台湾岛南缘迟角与南下潮波的相反是出现波节带结构的主要原因,其对台湾海峡西岸振幅增益也起到促进作用。  相似文献   

10.
建立北黎湾及邻近海域二维潮流数值模型,重现该海域潮波及潮流的分布规律,计算得到m1分潮和M2分潮的同潮时线与等振幅线、潮流椭圆,m1与M2合成的潮致欧拉余流、最大潮流和不同时刻潮流场分布。  相似文献   

11.
台湾海峡及其邻近海域潮汐数值计算   总被引:2,自引:0,他引:2  
建立二维潮波模式,模拟了台湾海峡及其邻近海域(18-30°N,110-130°E)八个主要分潮(M2、S2、K1、O1、P1、Q1、K2、N2),并利用中国大陆及环台湾岛20多个潮位站的实测资料进行验证,计算结果与实测值吻合良好.此外,给出了八个主要分潮的同潮图,并逐个讨论了潮汐特征.结果显示:⑴台湾海峡中的潮波运动是北部蜕化了的旋转潮波系统和南部的前进潮波系统共同作用的结果.⑵半日分潮南、北两支潮波在台湾海峽中部汇合,而全日分潮则在台湾海峽南部海域汇合后继续朝西南方向传播.⑶半日分潮振幅最高值发生在福建省湄洲湾—兴化湾一带,全日分潮最高值则出现在雷州半岛以东一带近岸海域.⑷N2、K2和O1、P1、Q1分潮的振幅、迟角分布分别同M2与K1分潮的整体分布趋势相似.  相似文献   

12.
从南海潮波数值模拟潮能通量的结果中,勾勒出南海北部潮波的传播路径,显示出众多的路径分支。分析表明南海北部陆架包括北部湾海区,仅获得太平洋传入潮能的一小部分,因而南海北部沿岸的潮汐潮流都表现得比较弱。由于复杂的地形,导致了潮波传播路径指向不同方向。文章通过实测资料以及潮波的传播路径,特别讨论了粤东甲子站附近的潮波异常现象,并指出流向台湾海峡南口的分支和流向珠江口、广州湾的分支之间的潮能辐散,可能是造成甲子站附近潮性系数特别大以及潮汐潮流性质迥异现象的重要原因之一。  相似文献   

13.
建立二维潮波模式,模拟了台湾海峡及其邻近海域(18~30°N,110~130°E)八个主要分潮(M2、S2、K1、O1、P1、Q1、K2、N2),并利用中国大陆及环台湾岛20多个潮位站的实洲资料进行验证,计算结果与实测值吻合良好。此外,给出了八个主要分潮的同潮图,并逐个讨论了潮汐特征。结果艟示:(1)台湾海峡中的潮波运动是北部蜕化了的旋转潮波系统和南部的前进潮波系统共同作用的结果。(2)半日分潮南、北两支潮波在台湾海峡中部汇合,而今日分潮则在台湾海峡南部海域汇合后继续朝西南方向传播。(3)半日分潮振幅最高值发生在福建省湄洲湾-兴化湾一带,全日分湖最高值则出现在雷州半岛以东一带近岸海域。(4)N2、K2和O1、P1、Q1分湖的振幅、迟角分布分别同M2与K1分潮的整体分布趋势相似。  相似文献   

14.
渤海西南部海域潮流数值计算   总被引:1,自引:0,他引:1  
采用二维有限差分解法对渤海西南部海域进行潮流数值模拟,得出M_2分潮的潮波图,椭圆长短轴图,最大流速分布和不同时刻的潮流场图,并根据实测资料对其进行了验证。从而可系统地了解这一海区M_2分潮的潮波系统及逐时潮流场等海洋要素的分布情况。  相似文献   

15.
渤黄东海潮能通量与潮能耗散   总被引:7,自引:0,他引:7  
利用同化高度计资料和沿岸验潮站资料对潮汐数值模式进行同化,根据同化后的数值模式结果,对渤黄东海中的潮能通量和潮能耗散进行了研究.M2分潮从太平洋进入渤黄东海的潮能为122.499GW,占4个主要分潮进入总量的79%.黄海是半日分潮潮能耗散的主要海区.全日分潮则主要耗散在东海.全日分潮在遇到陆坡的阻挡以后有一部分潮能沿着冲绳海槽向西南传播,并有一部分潮能反射回太平洋,其中O1分潮通过C3断面反射回太平洋的潮能,约占其传入东海潮能的44%.  相似文献   

16.
莫桑比克海峡及其邻近海区是全球海洋潮流和潮能耗散最强的海区之一。文章利用高分辨率通用环流模式对该海区的正压潮流进行模拟, 并对该海区潮能通量和潮能耗散特征进行分析。结果表明, 莫桑比克海峡及其邻近海区的潮波主要是半日分潮占主导地位, 全日分潮可忽略不计, M2分潮形成1个左旋潮波系统和1个右旋潮波系统, S2分潮形成1个左旋潮波系统。莫桑比克海峡和马达加斯加岛南部等绝大数区域的M2和S2半日潮流是逆时针旋转, 在马达加斯加岛顶部等局部区域是顺时针旋转, 而且在海峡通道等复杂地形处潮流流速量级较大。潮能通量矢量主要来自东边界, 大部分潮能通量沿马达加斯岛北部传入莫桑比克海峡区域, 其中经过马达加斯加岛北部和进入莫桑比克海峡的M2 (S2)分潮的潮能通量分别为156.86GW (40.53GW)和148.07GW (36.05GW), S2分潮潮能通量的量级大约为M2分潮的1/5~1/4。底摩擦耗散主要发生莫桑比克海峡和马达加斯加岛南北部, 其中莫桑比克海峡M2 (S2)分潮的底摩擦耗散为1.762GW (0.460GW), 占其底部总耗散的43.74% (39.72%)。  相似文献   

17.
To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce the amphidromic system of the M2 tide in the south end of the Taiwan strait, and consequently confirm the existence of the degenerate amphidromic system. On this basis, further discussion is conducted on the M2 system and its formation mechanism. It can be concluded that the tidal waves of the TS is consisted of the progressing wave from the north entrance and the degenerate amphidromic system from the south entrance, in which the progressing wave from the north entrance dominates the tidal wave motion in the strait. Except for the convergent effect caused by the landform and boundary, the degenerate amphidromic system produced in the south of the strait is another important factor for the following phenomena: the large tidal range in the middle of the strait, the concentrative zone of co-amplitude and co-phase line in the south of the strait. The degenerate amphidromic system is mainly produced by the incident Pacific Ocean tidal wave from the Luzon strait and the action by the shoreline and landform. The position of the amphidromic point is compelled to move toward southwest until degenerating by the powerful progressing wave from the north entrance.  相似文献   

18.
Employing harmonic analysis of tidal data in the Taiwan Strait, the cross-strait tidal characteristics are completely illustrated. Based on the two dimensional mild-slope equation which can be reduced to the shallow-water wave equation, a finite element model (Tsay et al., 1989) is applied to investigate the characteristics of tides in the Taiwan Strait. The co-range and equi-phase charts of major tidal constituents, such as M2, S2, N2, and K1, are reproduced. Anomalous amplification of semidiurnal tides in the Taiwan Strait is verified. With rotation effects neglected and by applying a non-reflective condition on the open boundaries, the numerical results of phase-lag and co-range distributions show very good agreement with observed data for semidiurnal tides in the Taiwan Strait. Due to crude representation of the topography at two ends along the China coast, computed tidal distributions deviate from the observations. However, both computed amplitudes and phase-lags compare very well with observed data along the central half of the China coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号