首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
This paper presents experimental results from a wave energy converter (WEC) that is based on a linear generator connected to a rectifier and filter components. The converter-filter system is installed onshore, while the linear wave generator operates offshore a few kilometers from the Swedish west coast. The power from the generator has been rectified with a diode bridge and then filtered using a capacitive filter. Performance of the whole conversion system was studied using resistive loads connected across the filter. The aim was to investigate the operational characteristics of the generator while supplying a nonlinear load. By changing the value of the resistive component of the load, the speed of the translator can be changed and so also the damping of the generator. The power absorbed by the generator was studied at different sea states as well. The observations presented in this paper could be beneficial for the design of efficient wave energy conversion systems.   相似文献   

2.
为充分利用海洋可再生能源,文章针对波浪能具有不稳定和不连续的特点,设计采用带有蓄能器的液压传动系统,保障波浪能发电装置稳定地输出电能;利用AMESim对液压系统进行仿真,分别研究蓄能器对电能输出的影响以及蓄能器的释放压力对永磁发电机的影响,并搭建应用蓄能器的摇臂式波能发电平台进行实验验证。仿真与实验结果表明:具有蓄能器的液压传动系统电能输出稳定,且合适的释放压力可优化液压系统和发电机的输出,可为实海况应用提供理论支持。  相似文献   

3.
为解决海洋监测微型传感器供能问题,设计新型波浪能捕获装置,在海面振荡浮筒气室产生空气气柱,驱动介电弹性体形变发电为传感器供能。建立振荡浮子式气柱数值模型,研究新型振荡水柱发电计算理论。利用水动力仿真软件AQWA求解浮子所受波浪力作用振荡幅值、辐射阻尼和附加质量。基于Simulink软件分别计算波浪作用下浮子位移和气室内水柱位移,根据两者的位移差计算气室体积变化所产生的空气压强、介电弹性体发电薄膜形变量和系统输出电能,单次循环周期最大发电量达到24.6 mJ。分析波浪周期、发电薄膜几何参数等对输出电能的影响。  相似文献   

4.
点吸收式波浪能发电装置是一种最简单的振荡体式波浪能发电装置, 但其安装成本高、生存能力较差。本文针对点吸收式波浪能发电装置的姿态稳定性问题, 开展了其在波浪作用下的运动姿态和发电功率之间的关系研究。首先介绍了点吸收波浪能发电装置的工作原理; 然后,根据我国南海海域的自然资源条件, 划定波况范围, 利用相似理论在实验室中模拟波浪参数,选定工况, 建立模型, 设计测量系统, 开展物理模型试验; 最后, 利用试验结果分析了发电装置的最佳发电周期、波高对装置发电功率的影响, 装置姿态对发电功率的影响等。本文为点吸收式波浪能发电装置设计及测试提供了参考。  相似文献   

5.
The first Chinese experimental wave power plant, i. e., the shoremountcd experimental wave power plant at the Pearl River Estuary was successful in trial power generation on February 15, 1990. The plant is on the south shore of the Dawanshan Island in the Pearl River Estuary, facing the vast waving South China Sea. With a designed wave condition of H1/10= 1.5 m and T= 6.5 s, the planned installed capacity is 8 kW comprising the first unit of 3 kW brushless clawpole generator which delivers 110 V DC current and the second unit of 5 kW brushless single phase synchro AC generator which delivers 220 V AC current. At present, the first unit has been put into trial operation.  相似文献   

6.
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter , which is different from linear converters characteristics of sinusoidal response in regular waves.  相似文献   

7.
A heaving-buoy wave energy converter equipped with hydraulic power take-off is studied in this paper. This wave energy converter system is divided into five subsystems: a heaving buoy, hydraulic pump, pipelines, non-return check valves and a hydraulic motor combined with an electric generator. A dynamic model was developed by considering the interactions between the subsystems in a state space form. The transient pressures caused by starting/stopping the buoy or closing/opening the check valves were predicted numerically using the established model. The simulation results show that transmission line dynamics play a dominant role in the studied wave energy converter system. The length of the pipeline will not only affect the amplitude of the transient pressures but also affect the converted power. The variation of the time-averaged converted electric power with the pipeline length is estimated using the simulation method for the buoy exposed to one irregular sea state. Finally, it is suggested how reduced power efficiency due to the pipelines may be ameliorated.  相似文献   

8.
In-service pipelines are often subject to external disturbances that produce dent defects, and the presence of dent defects often affects the pipeline's ultimate bearing capacity. This paper analyzes the equilibrium state of dent pipelines under external force for in-service pipelines with type II dent defects. A simplified calculation model for the shell is established through a series of assumptions and simplifications. Firstly, the pipe ring is crushed and analyzed to obtain the crushing power of the pipe ring, and then the pipe generator is subjected to deformation analysis to obtain the generator dissipating power. According to the principle of virtual work, the relationship between the external force power and the internal power dissipation power in equilibrium state is obtained.Under the condition of internal pressure, the type II dent defect is analyzed, and the relationship between the external force and the depth of the dent defect and its corresponding analytical expression are obtained. Under the condition of no internal pressure, the dent defect under different constraints is analyzed, and the analytical expression of the applied load under different constraints is obtained.  相似文献   

9.
Ocean wave energy is an emerging kind of renewable energy, and several energy conversion methods are available today. One solution is to connect a buoy to a linear generator. Such units are quite small (10–100 kW), and farm solutions are suggested to increase power production. This paper shows the results from small farm simulations where the translator motion is varied for the generators in the farm.Simulations with five and 10 units show that power fluctuations decrease with an increasing number of generators.  相似文献   

10.
This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.  相似文献   

11.
12.
This paper concerns the design of feedback control systems to maximize power generation of a wave energy converter (WEC) in a random sea. In the literature on WEC control, most of the proposed feedback controllers fall into three categories. Many are static; i.e., they extract power by imposing an equivalent damping or resistive load on the power take-off (PTO) devices. Others are dynamic and are designed to maximize power generation at all frequencies, which results in an anticausal feedback law. Other dynamic control design methods are causal, and are tuned to achieve the anticausal performance at only a single frequency. By contrast, this paper illustrates that the determination of the true optimal causal dynamic controller for a WEC can be found as the solution to a nonstandard linear quadratic Gaussian (LQG) optimal control problem. The theory assumes that the control system must make power generation decisions based only on present and past measurements of the generator voltages and/or velocities. It is shown that unlike optimal anticausal control, optimal causal control requires knowledge of the stationary spectral characteristics of the random sea state. Additionally, it is shown that the efficiency of the generator factors into the feedback synthesis. The theory is illustrated on a linear dynamical model for a buoy-type WEC with significant resonant modes in surge and pitch, and equipped with three spatially-distributed generators.  相似文献   

13.
利用特征函数展开法对台阶式变深水槽中推板式造波机造波问题进行了研究,建立了相应速度势和波面的解析表达式。与高阶边界元方法(HOBEM)数值结果进行了对比,验证了本解析解的正确性。通过数值试验,研究了台阶对入射波的影响,同时分析了造波板所在位置(上部台阶)水深、水槽工作区(下部台阶)水深、造波板运动周期和造波板水平位置等因素对生成波浪高度的影响。由此选择合适的造波板所在位置及水深来得到所需要的波浪高度,进而根据需要生成波浪的周期和波幅来反演造波板的运动。  相似文献   

14.
点吸收式波能转换装置是具有较好应用前景的一种波浪能开发利用装置,其参数设计直接影响到波浪能开发利用的可行性与有效性。作者针对青岛斋堂岛目标海域海况,通过数值模拟首先应用单因素敏感性分析法分析了双浮子点吸收式波能转换装置的结构尺寸、锚固形式、波流夹角、PTO阻尼、PTO刚度等参数对装置俘能功率的独立影响规律。之后考虑多参数的综合影响,通过运用稳健设计方法,以上述参数为控制因子并确定合理的变动水准,将俘能功率作为评价标准,选取合理的正交实验L矩阵,得到了不同参数组合情况下的装置俘能功率并进行统计分析。结果表明,浮子尺寸、PTO阻尼、波流夹角对装置俘能功率影响较大,而PTO刚度、锚链与铅垂线夹角、锚链与波浪在水平面内的夹角对俘能功率影响不明显。提出的参数研究方法可为其他海域点吸收式波能转换装置参数设计提供参考。  相似文献   

15.
A lift based cycloidal wave energy converter (WEC) was investigated using potential flow numerical simulations in combination with viscous loss estimates based on published hydrofoil data. This type of wave energy converter consists of a shaft with one or more hydrofoils attached eccentrically at a radius. The main shaft is aligned parallel to the wave crests and submerged at a fixed depth. The operation of the WEC as a wave-to-shaft energy converter interacting with straight crested waves was estimated for an actual ocean wave climate. The climate chosen was the climate recorded by a buoy off the north-east shore of Oahu/Hawaii, which was a typical moderate wave climate featuring an average annual wave power PW = 17 kWh/m of wave crest. The impact of the design variables radius, chord, span and maximum generator power on the average annual shaft energy yield, capacity factor and power production time fraction were explored. In the selected wave climate, a radius R = 5 m, chord C = 5 m and span of S = 60 m along with a maximum generator power of PG = 1.25 MW were found to be optimal in terms of annual shaft energy yield. At the design point, the CycWEC achieved a wave-to-shaft power efficiency of 70%. In the annual average, 40% of the incoming wave energy was converted to shaft energy, and a capacity factor of 42% was achieved. These numbers exceeded the typical performance of competing renewables like wind power, and demonstrated that the WEC was able to convert wave energy to shaft energy efficiently for a range of wave periods and wave heights as encountered in a typical wave climate.  相似文献   

16.
Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters (WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system (HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system (HESS) and a hydraulic power generation system (HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs..  相似文献   

17.
以正在研制的水平轴潮流能发电装置为对象,开展了工作流程控制方法的研究工作。建立了基于叶素-动量理论的动力特性仿真模型;利用仿真模型考察了发电装置的启动转矩和转速特性,以及流速大于额定流速条件下的功率限定问题,制定了基于发电机输出电压的启动控制策略和基于发电机输出功率的功率限定控制策略。根据控制策略,设计了装置的控制流程。结合潮流变化情况,对控制流程进行了仿真。仿真结果表明,基于发电机输出电力参数的控制流程能够较好地实现对发电装置的控制。  相似文献   

18.
This paper investigates wave-by-wave control of a wave energy converter using incident wave prediction based on up-wave surface elevation measurement. The goal of control is to approach the hydrodynamically optimum velocity leading to optimum power absorption. This work aims to study the gains in energy conversion from a deterministic wave propagation model that accounts for a range of group velocities in deriving the prediction. The up-wave measurement distance is assumed to be small enough to allow a deterministic propagation model, and further, both wave propagation and device response are assumed to be linear. For deep water conditions and long-crested waves, the propagation process is also described using an impulse response function (e.g. [1]). Approximate low and high frequency limits for realistic band-limited spectra are used to compute the corresponding group velocity limits. The prediction time into the future is based on the device impulse response function needed for the evaluation of the control force. The up-wave distance and the duration of measurement are then determined using the group velocity limits above.A 2-body axisymmetric heaving device is considered, for which power capture is through the relative heave oscillation between the two co-axial bodies. The power take-off is assumed to be linear and ideal as well as capable of applying the necessary resistive and reactive load components on the relative heave oscillation. The predicted wave profile is used along with device impulse response functions to compute the actuator force components at each instant. Calculations are carried out in irregular waves generated using a number of uni-modal wave spectra over a range of energy periods and significant wave heights. Results are compared with previous studies based on the use of instantaneous up-wave wave-profile measurements, both without and with oscillation constraints imposed. Considerable improvements in power capture are observed with the present approach over the range of wave conditions studied.  相似文献   

19.
The physical simulation of tsunami in the laboratory has taken a major leap forward with the construction and testing of a new wave generator, capable of recreating scaled tsunami waves. Numerical tools fail to reproduce tsunami nearshore and onshore processes well, and physical experiments in large scale hydraulic facilities worldwide have been limited to the generation of solitary waves as an (controversial) approximation for evolved forms of tsunami. The new concept in wave generation presented herein is born of collaboration between UCL's Earthquake and People Interaction Centre (EPICentre) and HR Wallingford. It allows for the first time the stable simulation of extremely long waves led either by a crest or a trough (depressed wave). This paper presents the working concepts behind the new wave generator and the first stages of testing for verifying its capacities and limitations. It is shown that the new wave generator can not only reproduce solitary waves and N-waves with large wavelengths, but also the 2004 Indian Ocean Tsunami as recorded off the coast of Thailand (“Mercator” trace).  相似文献   

20.
This paper investigates the performance of a small axisymmetric buoy under wave-by-wave near optimal control in surge, heave, and pitch modes in long-crested irregular waves. Wave prediction is obtained using a deterministic propagation model. The paper describes the overall formulation leading up to the derivation of the feedforward control forces in surge and heave, and the control moment in pitch. The radiation coupling between surge and pitch modes is accounted for in the model. Actuation is relative to deeply submerged reaction masses. Heave oscillations are constrained by the swept-volume limit. Oscillation constraints are also applied on the surge and pitch oscillations. The paper discusses time-domain simulations for an irregular wave input with and without the present control. Also discussed are results obtained over a range of irregular wave conditions derived for energy periods from 7 s to 17 s, and a significant wave height of 1 m. It is found that, while the gains in power capture enabled by the present control are significant, the actuation forces are also very large, given the small size of the buoy. Further, due to the small size, heave is found to be the dominant contributor to power capture, with relatively modest contributions from surge and pitch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号