首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nemopilema nomurai, an endemic and blooming jellyfish species in the waters of Korea, China and Japan, were monitored from June to October, 2017, in the Bohai and northwestern Yellow Seas, using the ship sighting method, as a preliminary study to investigate the spatiotemporal distribution of medusae. Monitoring revealed that the mass appearance of young medusae was observed in Liaodong Bay in summer. In late summer they disappeared and a high density zone shifted to the mid- and northern Bohai Strait. In early fall, healthy adults with relatively high density were observed in the area around the border of the South and North Yellow Seas. These results suggest that medusae of N. nomurai originated from the Bohai Sea and were advected into the Yellow Sea through the Bohai Strait.  相似文献   

2.
左涛  王俊  吴强  袁伟  栾青杉 《海洋与湖沼》2016,47(1):195-204
2015年5月搭载“北斗”渔业调查船、使用渔拖网的采样方式,在整个黄海及东海北部进行系统的走航式大面调查,记录了30°N—39°N海区内的大型水母种类组成、伞径大小及生物量分布,估算和比较了大型水母与其他渔业生物的生物量。结果表明,5月整个调查区,大型水母的总生物量估算值5.9万t,绝大部分由黄海中部的多管水母和洋须水母生物量贡献所致。出现的大型水母种类伞径分布呈单峰型。不同种类的水母分布具有明显地理区域和水文偏好性。其中,洋须水母主要分布于黄海中、北部50m水深以深水域,多管水母主要分布于黄海中部50m水深以浅的西侧以及整个东海北部;沙海蜇多为幼体,分布于黄、东海交汇区31°N—33°N间;霞水母较为集中出现于31°N以南、123°N以西近海。各水母种类的高密区的底层水温按洋须水母、沙海蜇、四叶小舌水母、霞水母呈升高趋势。东海多管水母分布区的底层水温与沙海蜇相近;黄海多管水母分布区的底层水温较洋须水母略高。沙海蜇和四叶小舌水母较其他水母的适温范围宽。霞水母和洋须水母处于相对高盐区域。  相似文献   

3.
Nemopilema nomurai have appeared massively since 2003 in Korean waters, and regular offshore monitoring has been performed since 2005 in the eastern Yellow Sea (YS), northwestern East China Sea (ECS), Korean southern waters (Ksw), and western East Sea (ES). Korea Jellyfish Monitoring Network (KoJEM) was established in 2006 for coastal jellyfish monitoring. From these, sight survey monitoring data were gathered and analyzed to extract the yearly and seasonal fluctuation of N. nomurai’s abundance and distribution. The first massive annual appearance of N. nomurai occurred in the northwestern ECS, off Shanghai, China, in mid May of 2005–2008 and of 2012–2013. In other years or concurrently with the appearance in the northwestern ECS in the same year, several individuals were found in the mid-eastern YS and Ksw, and southwestern ES. The population of N. nomurai at the northwestern ECS moved to the southeastern YS and Jeju Strait in June, and from the July to August it extended its distribution all around the Korean peninsula and persisted till October. Since October, the distribution was retracted into the southern YS and Ksw, and disappeared slowly. N. nomurai’s yearly abundance varied a lot, from nearly 0 inds 10?4m?2 in 2010 to 62.4 inds 10?4m?2 in 2005. The highest abundance was recorded in 2005, followed by 2007 and 2009, and the least abundance was in 2008 and 2010–2013. The results were compared with those of the Liaoning Bay, Bohai Sea, which led to speculation about a new seeding place of N. nomurai, and mortality during the early planktonic phase of N. nomurai was proposed as the determinant of the yearly variation in abundance.  相似文献   

4.
Bacterial abundance, phytoplankton community structure and environmental parameters were investigated to study the relationships between bacteria and phytoplankton during giant jellyfish Nemopilema nomurai blooms in the central Yellow Sea during 2013. N. nomurai appeared in June, increased in August, reached a peak and began to degrade in September 2013. Results showed that phosphate was possible a key nutrient for both phytoplankton and bacteria in June, but it changed to nitrate in August and September. Phytoplankton composition significantly changed that pico-phytoplankton relative biomass significantly increased, whereas other size phytoplankton significantly decreased during jellyfish bloom. In June, a significantly positive correlation was observed between chlorophyll a concentration and bacterial abundance(r=0.67, P0.001, n=34).During jellyfish outbreak in August, there was no significant correlation between phytoplankton and bacteria(r=0.11, P0.05, n=25), but the relationship(r=0.71, P0.001, n=31) was rebuilt with jellyfish degradation in September. In August, small size phytoplankton occupied the mixed layer in offshore stations, while bacteria almost distributed evenly in vertical. Chlorophyll a concentration significantly increased from(0.42±0.056) μg/L in June to(0.74±0.174) μg/L in August, while bacterial abundance just slightly increased. Additionally, the negative net community production indicated that community respiration was not entirely determined by the local primary productivity in August. These results indicated that jellyfish blooms potentially affect coupling of phytoplankton and bacteria in marine ecosystems.  相似文献   

5.
通过2009-2011年5月下旬-7月下旬辽东湾北部近海10m等深线内的大型水母调查数据,分析了辽东湾北部近海近三年中大型水母资源状况,并探讨了辽东湾大型水母的生态类型。结果显示:辽东湾北部近海大型水母种类主要有海蜇(Rhopilema esculentum)、沙蜇(Nemopilema nomurai)、白色霞水母(Cyanea nozakii)、海月水母(Aurelia sp.1),海蜇和沙蜇是优势种。海蜇幼水母阶段主要集中分布在5m等深线以内的近岸河口水域,随着个体增大有略向深水或密度较小的水域扩散的趋势,仍主要分布在5m等深线两侧水域,属于高温低盐种类。6月份调查海区中发现大量的沙蜇幼水母,随着沙蜇个体增大,7月份调查海区中沙蜇数量大幅度减少。辽东湾海月水母在南部海域出现较多,2010、2011年在北部近海部分海域出现。白色霞水母近几年来辽东湾出现较少,栖息在盐度较高的水域。辽东湾各种大型水母中,沙蜇的生长速度最快。辽东湾海蜇幼水母、沙蜇幼水母的海区出现时间要晚于黄、东海。  相似文献   

6.
The aim of this study was to investigate nitrogen and phosphorus released in the process of the decomposition of giant jellyfish in the laboratory and found the evidence to verify the influence of nutrients released by the decomposition of jellyfish on the ecosystem in the field. The release of nitrogen and phosphorus from the decomposition of Nemopilema nomurai was examined in a series of experiments under different incubation conditions such as different p H values, salinity values, temperatures and nitrogen and phosphorus concentrations. The results showed that the complete decomposition of Nemopilema nomurai generally took about 4–8 d. The release of nitrogen and phosphorus from the decomposition of Nemopilema nomurai could be divided into two stages: the early stage and the later stage, although the efflux rate of nitrogen was one order more than phosphorus. In the early stage of the decomposition of Nemopilema nomurai, the concentrations of dissolved nitrogen, dissolved phosphorus, total nitrogen and total phosphorus in seawater increased rapidly, and the concentration of nitrogen could reach the highest level in the whole degradation process. In the later stage of the decomposition, the concentrations of dissolved nitrogen and total nitrogen declined slowly, while the concentration of phosphorus in water could reach a maximum in the degradation process. High p H, low salinity,high temperature and N/P will promote the release of nitrogen; low p H is unfavorable to the release of nitrogen but favorable to the release of phosphorus. In addition, we found the concentrations of ammonium and phosphate in the bottom water were higher than those in the surface water during the period of jellyfish bloom in the Jiaozhou Bay, proving that nutrients released by the decomposition of jellyfish have significant influence on nitrogen and phosphorus in the field. For the whole Yellow Sea, nutrients released by jellyfish carcasses may reach up to(2.63±2.98)×107 mol/d of dissolved nitrogen(DN) and(0.74±0.84)×106 mol/d of dissolved phosphorus(DP) during the period of jellyfish bloom. The values are comparable to riverine inputs in a day, but much higher than sediment–water exchange flux in the Yellow Sea. The great amounts of nutrients must have significant influence on the nutrients balance of the Yellow Sea during the period of jellyfish dead and decomposition. Both the experimental data and field observations proved that the decomposition of jellyfish may release a great amount of nutrient to the surrounding environment during the period of jellyfish decomposition.  相似文献   

7.
北黄海冷水团对獐子岛微微型浮游生物分布的影响   总被引:3,自引:1,他引:2  
Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3–and PO43–)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.  相似文献   

8.
赵亮  李夏  张芳 《海洋与湖沼》2016,47(3):564-571
近十年来,我国黄、东海沙海蜇的数量呈上下波动趋势,除2008、2010、2011、2013年为不暴发年外,其余年份均为暴发年或弱暴发年(本文界定沙海蜇平均丰度范围为2—10ind./100m2为暴发年,1—2ind./100m2为弱暴发年,0—1ind./100m2为不暴发年)。为研究沙海蜇数量年际变化的原因,本文借助同化的海洋模式结果,分析了2006—2013年南黄海沙海蜇平均丰度与表底层海水温度的关系、与不同温度持续时间的关系。研究结果发现,在海州湾附近,对于暴发年2007年和2009年,春季底层海水10—18°C持续时间为130天,比不暴发年2010年和2011年多近15天。在长江口区域,不暴发年2008年和2011年夏秋季底层海水18—25°C持续时间较长,约80天,比暴发年2007年多20天。在长江口、苏北近岸以及海州湾区域,春季底层海水10—18°C持续时间越长,南黄海水母丰度呈现越大的趋势;夏秋季底层海水18—25°C持续时间越长,第二年水母生物量则越大。结果支持和验证了春季底层10—18°C持续时间长有利于当年水母暴发及夏秋季底层18—25°C持续时间长有利于来年水母暴发的推论。本文通过分析沙海蜇丰度和温度变化的关系,可以为将来预测该水母数量提供基础。  相似文献   

9.
Using the hydroacoustic method with a 200 kHz scientific echo sounding system,the diel vertical migration(DVM) of the sound-scattering layer(SSL) in the Yellow Sea Bottom Cold Water(YSBCW) of the southeastern Yellow Sea was studied in April(spring) and August(summer) of 2010 and 2011.For each survey,13–27 hours of acoustic data were continuously collected at a stationary station.The acoustic volume scattering strength(Sv) data were analyzed with temperature profile data.In the spring of both 2010 and 2011,the SSL clearly showed the vertical migration throughout the entire water column,moving from the surface layer at night to near the bottom during the day.Conductivity,temperature,and depth data indicated that the entire water column was well mixed with low temperature of about 8 C.However,the SSL showed different patterns in the summers of 2010 and 2011.In the summer of 2010(28 C at the surface),the SSL migrated to near the bottom during the day,but there were two SSLs above and below the thermocline at depth of 10–30 m at night.In the summer of 2011(20 C at the surface),the SSL extended throughout the entire water column at night,possibly owing to an abrupt change in sea weather conditions caused by the passage of a Typhoon Muifa over the study area.It was concluded that the DVM patterns in summer in the YSBCW area may be greatly influenced by a strengthened or weakened thermocline.  相似文献   

10.
2018年6月渤海大型水母分布特征   总被引:3,自引:0,他引:3  
2018年6月使用渔业底拖网采样,对渤海大型水母进行了全面调查,调查船舶为"中渔科102"渔业科考船。本研究分析了渤海大型水母的种类组成、渔获密度与伞径大小,并对其源地进行了探讨。结果表明:本次调查共采集到海月水母、沙海蜇、海蜇、多管水母四种大型水母,其中海蜇、多管水母数量较少,各采集到一只。海月水母在渤海三湾均有分布,各海区伞径大小无显著差异且多为幼体(<10cm),密度高值区出现在渤海湾东南侧海域,可达38-221.21ind./(net·h),辽东湾海月水母出现于湾南,密度<5ind./(net·h),湾北未见;作者推测,海月水母在渤海沿岸可能存在多个源头,诸如:莱州湾与渤海湾交界近岸海域、河北近岸、辽东湾大连近岸以及北部近岸。沙海蜇在渤海分布较广,辽东湾为密度高值区,均值为(35.32±21.64)ind./(net·h),但伞径较小,均值为(12.15±6.52)cm;与此相对,渤海湾与莱州湾外侧海域沙海蜇密度虽小[<20ind./(net·h)],但伞径要显著大于辽东湾,最大伞径均值可达(33.86±7.40)cm;作者推测,沙海蜇在渤海海域发源地主要集中于辽东湾近岸,渤海湾与莱州湾,外海出现的沙海蜇可能源于辽东湾,随海流运输至此。海月水母、沙海蜇在渤海发生时间要晚于黄、东海。本研究结果可为深入分析渤海大型水母的种群动态变化、暴发机理提供基础。  相似文献   

11.
The features of the vertical distribution of chlorophyll a, particulate organic carbon and its isotopic composition, total suspended particulate matter (SPM), and the structure of the phytoplankton community in the Middle and South Caspian Sea in May–June 2012 are discussed. The subsurface chlorophyll a maximum (SCM) was found everywhere at depths of ~20 to 40–60 m. The position of this layer is confined to the depth of the seasonal thermocline, which is determined by the development of a cold-water (dark) phytocenosis. The genesis of this layer was studied. The increase in chlorophyll a concentration in this layer is caused by an abundance of phytoplankton or an increased concentration of this phytopigments per algal cell. The highest values of the studied organic compounds and phytoplankton biomass are revealed as close to the seasonal thermocline extending from the southern periphery of the Derbent Depression to the Apsheron Sill, which is determined by the bottom topography. The presence of chlorophyll a at depths exceeding 300 m (up to ≥1 mg/m3) was revealed. This was supported by findings of individual algal cells containing chlorophyll a and even their accumulations in the deep water layer. The most probable mechanisms responsible for the presence of these cells at the deep water level are discussed in the paper. The vertical distribution of the values of the organic carbon isotopic composition is primarily controlled by the vertical structure of phytoplankton and chlorophyll a in the water column up to ~500 m and by biogeochemical processes at the redox barrier (~600 m layer). The relative stability of chlorophyll a and the stability of pheophytin a in anaerobic environments were verified. A significant amount of weakly transformed chlorophyll a was found close the sea bottom.  相似文献   

12.
郭东杰  张芳  王朋鹏  吴强 《海洋与湖沼》2019,50(6):1292-1301
2019年5月,利用渔业底拖网,对我国黄海以及东海北部海域进行了全面系统的大型水母调查,分析了大型水母的种类组成、伞径大小和生物量以及与温度、盐度的关系。结果表明,本次调查主要捕获到沙海蛰、霞水母、洋须水母、多管水母四种大型水母,沙海蛰生物量最高,多管水母分布范围最广、数量最大。沙海蛰集中分布在调查海域南部,各海域伞径差异显著,在黄东海交界海域采集到幼水母体(10cm),生物量高值区出现在东海北部离岸海域,可达6422.16kg/km2;白色霞水母集中分布在东海北部,在近岸海域采集到幼水母体(6—7cm),生物量高值区位于离岸海域,可达7417.49kg/km2;洋须水母集中分布在黄海水深较深海域,北部海域个体较大,在黄海中部、南部交界处采集到幼水母体(10cm),生物量较低,高值区出现在黄海中部与南部,可达449.94kg/km2;多管水母分布范围较广,东海北部海域个体伞径较大,在山东半岛东部发现幼水母体(5cm),生物量高值区出现在黄海中部近岸海域,可达4901.42kg/km2。对比文献资料,发现整个调查海域,大型水母总体生物量比2015年同期有所增加。本文为研究该海域大型水母的年际变化规律提供数据基础。  相似文献   

13.
Giant jellyfish (Nemopilema nomurai) outbreaks in relation to satellite sea surface temperature (SST) and chlorophyll-a concentrations (Chl-a) were investigated in the Yellow Sea and East China Sea (YECS) from 1998 to 2010. Temperature, eutrophication, and match–mismatch hypotheses were examined to explain long-term increases and recent reductions of N. nomurai outbreaks. We focused on the timing of SST reaching 15 °C, a critical temperature enabling polyps to induce strobilation and enabling released ephyra to grow. We analyzed the relationship of the timing with interannual variability of SST, Chl-a, and the timing of phytoplankton blooms. Different environmental characteristics among pre-jellyfish years (1998–2001), jellyfish years (2002–2007, 2009), and non-jellyfish years (2008, 2010) were assessed on this basis. The SST during late spring and early summer increased significantly from 1985 to 2007. This indicated that high SST is beneficial to the long-term increases in jellyfish outbreaks. SST was significantly lower in non-jellyfish years than in jellyfish years, suggesting that low SST might reduce the proliferation of N. nomurai. We identified three (winter, spring, and summer) major phytoplankton bloom regions and one summer decline region. Both Chl-a during non-blooming periods and the peak increased significantly from 1998 to 2010 in most of the YECS. This result indicates that eutrophication is beneficial to the long-term increases in jellyfish outbreaks. Timing of phytoplankton blooms varied interannually and spatially, and their match and mismatch to the timing of SST reaching 15 °C did not correspond to long-term increases in N. nomurai outbreaks and the recent absence.  相似文献   

14.
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10~(-7))-O(10~(-6)) W/kg and O(10~(-3))-O(10~(-2)) m~2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10~(-8)) to O(10~(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10~(-6)) to O(10~(-5)) m~2/s.In the marginal ice zone,K is vertically stable with the order of10~(-4) m~2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.  相似文献   

15.
Oxygen and carbon isotope ratios(δ~(18)O and δ~(13)C) in otoliths were used to identify the stock structure of small yellow croaker,Larimichthys polyactis.Otoliths were collected from fish at five locations across the Yellow Sea and the Bohai Sea representing most of their distributional range and fisheries areas.The significant differences in the isotopic signatures showed that the five locations could be chemically distinguished and clearly separated,indicating stock subdivision.Correlation of δ~(18)O and δ~(13)C values suggested that population of L.polyactis could be divided into the Bohai Sea group,the southern Yellow Sea group and the central Yellow Sea group.Discriminant analysis of δ~(18)O and δ~(13)C values demonstrated a high significant difference with 85.7% classification accuracy.The spatial separation of L.polyactis indicated a complex stock structure across the Yellow Sea and the Bohai Sea.These results indicate that optimal fisheries management may require a comprehensive consideration on the current spatial arrangements.This study has provided further evidence that measurement of the stable isotopes ratios in otolith can be a valuable tool in the delineation of fishery management units.  相似文献   

16.
The vertical structure of the M2 tidal current in the Yellow Sea is analyzed from data acquired using an acoustic Doppler current profiler. The observed vertical profiles of the M2 tidal current are decomposed into two rotating components of counter-clockwise and clockwise, and restructured using a simple one-point model with a constant vertical eddy viscosity. The analyzed results show that the internal fictional effect dominates the vertical structure of the tidal current in the bottom boundary layer. In the Yellow Sea, the effect of the bottom friction reduces the current speed by about 20–40% and induces the bottom phase advance by about 15–50 minutes. In the shallower coastal regions, the effects of bottom topography are more prominent on the vertical structure of tidal currents. The vertical profile of the tidal current in summer, when the water column is strongly stratified, is disturbed near the pycnocline layer. The stratification significantly influences the vertical shear and distinct seasonal variation of the tidal current.  相似文献   

17.
The Arctic Ocean is connected to the Pacific by the Bering Sea and the Bering Strait. During the 4th Chinese National Arctic Research Expedition, measurements of carbon tetrachloride (CCl4) were used to estimate ventilation time-scales and anthropogenic CO2 (Cant) concentrations in the Arctic Ocean and Bering Sea based on the transit time distribution method. The profile distribution showed that there was a high-CCl4 tongue entering through the Canada Basin in the intermediate layer (27.6?<?σθ?<?28), at latitudes between 78 and 85°N, which may be related to the inflow of Atlantic water. Between stations B09 and B10, upwelling appeared to occur near the continental slope in the Bering Sea. The ventilation time scales (mean ages) for deep and bottom water in the Arctic Ocean (~?230–380 years) were shorter than in the Bering Sea (~?430–970 years). Higher mean ages show that ventilation processes are weaker in the intermediate water of the Bering Sea than in the Arctic Ocean. The mean Cant column inventory in the upper 4000 m was higher (60–82 mol m?2) in the Arctic Ocean compared to the Bering Sea (35–48 mol m?2).  相似文献   

18.
青岛外海夏季水母路径溯源研究   总被引:6,自引:4,他引:2  
张海彦  赵亮  魏皓 《海洋与湖沼》2012,43(3):662-668
2011年夏季,青岛外海发现大量大型水母,如沙海蜇、海月水母和白色霞水母等,而在冬、春季未在当地海区发现其幼体。本文采用拉格朗日方法,以粒子代表水母,不考虑水母自身运动,进行反向追踪,追溯其运动路径及可能源地。不同追踪实验结果显示,在不同时间不同深度处释放的粒子路径不同。在海面处释放的粒子分别可以追溯到海州湾、江苏沿岸及长江口附近的海域,其中8月1日和8月15日在海面释放的粒子最远可以追溯至长江口外海域;2m层上释放的粒子最远也可到达长江口附近,而10m层以深释放的粒子基本分布在35°N以北。由于反向追踪只考虑海流的影响,追踪过程可逆,因此,从运动路径来看,青岛外海的部分水母可能来源于海州湾、江苏沿岸及长江口附近海域。从水母种类分布特征来看,海州湾、江苏沿岸及长江口附近海域在有粒子分布时期的水母种类与7、8月份青岛外海部分水母种类一致,为寻找青岛外海夏季水母的潜在的来源地提供了依据。  相似文献   

19.
The distribution of chaetognaths was investigated at 10 stations in the southern part of Korean waters (line S), at six stations in the eastern part of Korean waters (line E) and at 8 stations in the western part of Korean waters (line W). Ten species were present at the stations at line S and Flaccisagitta enflata and Zonosagitta bedoti were dominant among these species. Mean densities at line S ranged from 7 inds.m-3 to 27 inds.m-3. Five chaetognath species were found at the stations at line E and Zonosagitta nagae and Parasagitta elegans were the most abundant. Mean densities ranged from 1 to 10 inds.m-3. Four chaetognath species were present at line W and Aidanosagitta crassa and chaetognath juveniles were dominant in this line. Mean densities ranged from 21 to 199 inds.m-3. The density of chaetognaths was highest at line W while the diversity of chaetognaths was highest at line S. Individuals of chaetognaths were divided into two groups, a group of line E and a mixed group of lines W and E. This study suggests that F. enflata is a warm water species; Z. nagae is a mixed water species; P. elegans is a cold water species; and A. crassa is a less saline water species. The mtCOI of F. enflata, which was a dominant species in the sampling area, was analyzed. F. enflata that are present in waters around Korean were genetically divided into two groups, which may be influenced by various oceanic factors.  相似文献   

20.
The paper presents the results of an analysis of hydrological data obtained on cruise 89 of the R/V Professor Vodyanitskii from September 30 through October 19, 2016, in the central area of the northern Black Sea. Currents were measured using a lowered acoustic Doppler current profiler (LADCP) to a depth of 350 m. Examples of the current velocity profiles and conditional density at individual stations are presented. The averaged characteristics of the vertical current structure in the seasonal and permanent pycnoclines are discussed. The isopycnally averaged kinetic energy (KE) demonstrates an almost linear dependence on the conditional density (σθ). In the seasonal pycnocline, EK = 0.2–0.013σθ; in the permanent pycnocline, EK = 0.12–0.007σθ. An interpretation is given for the variability of the kinetic energy with depth. It is shown that the maxima of the averaged vertical shear profile correspond to the occurrence depth of the seasonal and permanent pycnoclines. The mean Richardson number has a value of ~10 in the upper sea layer and decreases with depth, assuming a value of ~3 at the 300 m horizon. The estimate for the vertical turbulent diffusion coefficient from the simplified model shows its increase with depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号