首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
海洋锋是重要的海洋现象,具有重要的研究意义。尽管台湾以东与黑潮之间表层无明显的锋区,但在水下却常年存在较强的海洋锋,这一现象的研究至今尚少见,本研究采用再分析手段,系统分析了温度锋时空变化规律及其形成变化机制。  相似文献   

2.
黄海南部及东海海洋锋的特征   总被引:1,自引:0,他引:1  
一、引言"锋"是引用气象学的术语.但是,要想给海洋锋下一个简明扼要的定义,还是比较难的.然而,在实践中通过一些共有的特性来认识海洋锋的性质,还是比较容易的.前人通常把海洋锋视为毗邻的不同性质水团水平方向上的边界,或称界面.日本学者宇田道隆称为"流隔或潮隔".还有一些学者认为是两支流系的相接触线.严格地说,不论是界面或相接触线,都具有一定的宽度,整个宽度称为锋区.锋区具有激烈的水平和垂直方向的对流和混合,且有辐合现象,水体稳定度减少.在整个海洋生物的食物链中,锋区具有较高的生产力.因此,海洋锋为当代渔场海洋学和海洋动力学研究的重要  相似文献   

3.
黄海西部春季海洋锋及其与渔业的关系   总被引:4,自引:0,他引:4  
海洋锋是海洋中水体性质发生急剧变化的地带。在海洋锋附近,各水文要素梯度加大,水体的稳定度减少、扰动和对流增强,并出现食物有机体聚集和生物生产力增大等现象。由于海洋锋通常是不同水团的边界,我国渔民称之为流隔,日本学者则称之为潮境。海洋锋与  相似文献   

4.
渤海、黄海、东海AVHRR海表温度场的季节变化特征   总被引:28,自引:9,他引:28  
海表温度场表征了海洋热力、动力过程和海洋与大气相互作用的综合结果.它不仅是研究海面水汽和热量交换的一个重要物理参数,也为海洋环流、水团、海洋锋、上升流和海水混合等海洋学课题的研究提供一种直观的指示量.20世纪60年代以来,我国海洋工作者在历次海上观测和台站资料的基础上,对渤海、黄海、东海表层温度的空间分布和变化进行了较为详细的分析研究[1~4],并绘制了系列的水温气候图集.这些研究成果对认识黄海、东海海域的平均海表温度场的分布、变化以及相关物理海洋现象的研究起到了重要的作用.  相似文献   

5.
海洋锋深刻反映着海洋环境要素的变化,研究海洋锋对渔业和水下声学的应用有着重要的参考价值。WOA13是一种平均格点化数据,对于研究海洋锋季节变化特征有着很好的优势。文中利用WOA13季节平均温度数据,选取0.25经纬度网格数据,对南极洲亚极地锋进行了季节变化特征研究。以绝对梯度的最大值连线画出锋线具体位置,对比不同季节断面T-D分布图的差异,得到了亚极地锋的锋面结构、强度等季节变化信息。  相似文献   

6.
《海洋预报》2021,38(4)
根据海洋要素梯度统计结果、区域环境特征、实际业务需求及海洋锋影响等,研究了海洋锋诊断阈值和分级,定义了海洋锋各个特征信息,制作了西北太平洋海洋锋二维、三维特征信息产品和声传播损失信息产品。  相似文献   

7.
刘建斌  张永刚 《海洋通报》2016,35(3):340-350
本格拉上升流区域作为大西洋东边界上升流区域,对于区域乃至全球气候均有重要影响;同时上升流区域处于非洲南部与拉丁美洲相近,战略地位重要。海洋锋作为海洋中尺度现象对海汽相互作用、生物多样性,水下声传播等均有较大影响。因此,对本格拉上升流锋时空分布、锋强度季节变化具有较高的科研、经济和军事价值。通过WOA13季节平均数据对上升流锋区三维空间分布特点,锋强度分布季节变化等方面进行了分析。分析结果表明:本格拉上升流锋锋轴线随深度增加逐渐偏离海岸,锋轴线位置随季节改变摆动幅度不大;本格拉上升流锋强度分布具有明显的南北差异,呈现南强北弱的特点,且在浅层温度锋强度有较大季节差异,锋强度垂直方向上最大值位于30~90 m水层内。  相似文献   

8.
基于WOA东北亚海1/10°温盐统计数据产品、海洋水文图集和历史海洋调查相关研究成果,系统研究了东北亚海温度盐度结构主要特征;春季和夏季,黄海东西沿岸存在温度低值中心;描述和定义了黑潮右侧次表层伸向西南方向的"黑潮逆流冷舌";研究了东北亚海主要流系和部分海洋中尺度现象(海洋涡旋、海洋锋、上升流、长江冲淡水等)引起的温度盐度结构特征。日本海40°N附近海洋温度锋一年四季都比较强,中国东海海面温度锋在冬季和春季比较强。台湾东北冷涡和日本以南超级暖涡附近是温度极值中心。该研究成果为东北亚海海洋水文环境保障提供技术支撑。  相似文献   

9.
海洋锋是特性明显不同的两种或几种水体之间的水平分布高梯度带。海洋锋对海战场环境存在重要影响。文中基于高性能计算机平台,采用海洋动力模式和先进的数据同化技术制作的海洋数值再分析产品(China Ocean Reanalysis,CORA),研究了东中国海温度锋和盐度锋分别在表层和50 m层深度上的季节变化特征。通过分析发现温度锋在冬季主要分布在东海及台湾海峡,在夏季主要分布在渤海及黄海;春秋两季的变化介于冬夏两季之间;东海黑潮区四季皆存在温度锋。盐度锋主要存在于黄河和长江等径流入海区附近。温度锋和盐度锋的季节变化主要受气象条件、河流入海和近岸升降流季节变化的共同影响。  相似文献   

10.
海洋锋区中存在温度等海洋环境参数的跃变,影响声波在海洋中的传播,从而影响各种水声设备的使用,确定海洋锋的高精度位置在渔业和军事方面具有重要的应用价值,但目前大多数海洋锋检测技术难以实现全天时全天候高精度的海洋锋位置检测。文中简要介绍了利用遥感数据检测海洋锋的主要方法,理论分析了基于合成孔径雷达(SAR)图像的海洋锋检测方法的可行性。利用ENVISAT卫星搭载的合成孔径雷达(ASAR)图像,对海南岛东部海洋锋进行了检测,检测结果表明基于SAR的海洋锋检测方法能很好地保留锋线细节信息。对比红外融合SST数据海洋锋检测结果,证明了该方法的有效性。最后总结出基于SAR图像的检测方法的优势,该方法为现有基于红外SST数据的海洋锋检测方法提供了参考补充。  相似文献   

11.
The hydrographic surveys in an area immediately northeast of Taiwan showed that the Kuroshio surface water intruded onto the shelf in the spring and there was a thick mixed layer and weak vertical stratification in the Kuroshio at the time. During the summer season, a strong thermocline was developed in the Kuroshio and the flow shifted offshore from Taiwan in front of the continental shelf break of the East China Sea. A numerical model is used to examine the effect of this seasonal thermocline on the flow pattern of the survey area. We find that the surface strength of the disturbance above the Su-Ao ridge is closely related to the occurrence of the on-shelf intrusion of Kuroshio. The presence of a seasonal thermocline in the Kuroshio can greatly diminish this disturbance in the surface level.  相似文献   

12.
The Kuroshio is the major ocean current conveying heat and water mass in the Pacific Ocean. The impact of the Kuroshio on regional wind and wave distributions has been studied with spaceborne-altimeter measurements in the Yellow and East China Seas. In this region the Kuroshio trajectory is relatively stationary and the monsoon patterns dominate, making it an ideal natural laboratory for large scale air-sea-current interaction research. Major findings from this study include: (a) The Kuroshio exerts significant influence on the wind and wave distributions over a swath about 800-km wide along its path. (b) Seasonal average wind speeds reach a maximum near the Kuroshio axis. The magnitude of enhancement ranges between 20 and 50 percent. (c) The distribution of the surface wave heights displays similar spatial patterns to the wind-speed distribution. The Kuroshio effects on wave heights are further complicated by the hydrodynamic modulation of wave-current interaction and the influence of thermal stratification on wind-wave generation. (d) Kuroshio effects are most prominent in the first and last quarters of the year, and least prominent in the third quarter.  相似文献   

13.
A spread of warm water from the first crest of the Kuroshio Extension is periodically enhanced by northward warm water intrusions from the main current. The water type in the spread area was previously found to be the same as that in the Kuroshio front at depth. In looking for the possible mechanism responsible for the northward warm water intrusions, a dynamic analysis in the Kuroshio front was carried out by using CTD, ADCP, AVHRR and ARGOS buoy data, obtained in 1996 by the R.V. Hakuho Maru. Downstream, cross-stream and vertical velocities in the Kuroshio Extension were found by using a "stream coordinate system". The velocity field in the Kuroshio front at the first crest showed a double structure with two surface velocity maxima. In the inner part of the front, relatively high cross-stream (northward) and vertical (upward) velocities were found. Thus, this study suggests that while water particles flow downstream along the first stationary meander of the Kuroshio Extension, they also experience lateral and vertical movements which allow the deeper water from an upstream location to rise to the surface layer, and in certain locations to deflect northward. By assuming isopycnal movement and conservation of potential vorticity, it was found that in those locations where anticyclonic curvature of the meander increases, warm water is more likely to deflect northward. High ageostrophic components observed in the first 300 m of the water column are probably related to the relatively high cross-stream and vertical velocities in the inner part of the front.  相似文献   

14.
本文利用近十年来获得的NOAA卫星红外影像,较为系统地分析了东海海洋锋(黑潮锋、对马暖流锋和浙江沿岸锋)的波动谱特征以及形态的演变。同时还利用浮标测流结果分析了锋面波动中的流态。分析结果表明:东海黑潮锋通常存在4~5个折叠波形,其波长平均约200km,波动随黑潮流向东北方向传播,速度约16cm/s。浙江沿岸锋的波动多呈锯齿形,其波长较短,波数多。在浙江沿岸锋波动发展过程中,其波长从开始的20~40km发展成30~60km,它们约以18cm/s的速度向东北方向传播。东海海洋锋波动演变形态复杂,其中黑潮锋的波动可能演变成锋面涡旋、暖丝和暖环。  相似文献   

15.
This study investigates atmospheric responses to the directions of surface wind over the Kuroshio front in the East China Sea, using wintertime satellite-derived data sets. Composite maps of sea surface temperature, wind speed, precipitation, turbulent heat flux, surface wind divergence, and the curl of wind vectors above the atmospheric boundary layer are depicted based on the classification of intense northeasterly (along the front) and northwesterly (across the front) winds over the East China Sea. When northeasterly winds prevail, considerable precipitation occurs on the offshore side of the Kuroshio front, in contrast to periods when northwesterly winds prevail. First, the northeasterly winds strengthen above the front because of the downward transfer of momentum from the fast-moving air at higher levels and/or an adjustment of sea level pressure over the oceanic front, although the process by which the influence of the Kuroshio penetrates beyond the marine atmospheric boundary layer remains unclear. Second, a cyclonic vortex forms above the marine atmospheric boundary layer (at 850-hPa height) on the offshore side of the front, and thereafter, surface wind convergence via Ekman suction (hence, enhanced precipitation) occurs over the East China Sea shelf breaks. The northeasterly winds blow over the East China Sea when the Aleutian Low retreats to the east and when high sea level pressure covers the northern Sea of Japan.  相似文献   

16.
Distribution of the sea surface temperature (SST) across the Kuroshio has been measured in the Tokara Strait by the Kagoshima Prefectural Experimental Fishery Station, using a thermometer installed on boardEmerald-Amami, a ferry that operates regularly between Kagoshima and Naha. The data from 1 October 1978 to 30 September 1981 were analyzed in this paper.A sharp temperature front is usually formed at the northern edge of the current zone of the Kuroshio, and its position is very variable and moves north and south between Satamisaki and Nakanoshima. The northward migration of the front can easily be traced, but the southward migration is obscure in many cases. Some of the southward migrations seem to be understood as arising from the alternate appearance of two different fronts, namely a weakening of the northern front and a strengthening of the southern front, which are associated with the double structure of the Kuroshio front. The temperature contrast across the Kuroshio front is very weak in August through October, and the phase of its seasonal variation lags a few months behind that of temperature itself. Transitions between the states with and without temperature contrast occur suddenly, though the transition times differ year by year. Periodical fluctuations with a period of several tens of days are often observed in the migration region of the Kuroshio front. The fluctuations sometimes look very periodical within limited time periods, but the fluctuations are very changeable in nature from year to year.The results show that continuous observation of the SST distribution across the Tokara Strait yields a good tool for monitoring fluctuations of the Kuroshio path and the occurrence of the Ohsumi Branch Current, at least in the season when a large horizontal temperature contrast exists.  相似文献   

17.
Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai./Yellow Sea and East China Sea (HES) were examined using the data collected from four airborne expendable bathythermograph surveys with horizontal approxmately 35 km and vertical 1 m(from the surface to 400 m deep) spacings. Since the fronts are strongly affected by HES current system, the synoptic thermal features in/around them represent the interaction of currents with surrounding water masses. These features can not be obtained from climatological data. The identified thermal features are listed as follows : ( 1 ) multiple boundaries of cold water, asymmetric thermocline intrusion, locally-split front by homogeneous water of approxmately 18 ℃, and mergence of the front by the Taiwan Warm Current in/around summertime southern Cheju - Changjiang/Yangtze front and Tsushima front; (2) springtime frontal eddy-like feature around Tsushima front; (3) year-round cyclonic meandering and summertime temperature-inversion at the bottom of the surface mixed layer in Cheju - Tsushima front; and (4) multistructure of Kuroshio front. In the Kuroshio front the mean variance of vertical temperature gradient is an order of degree smaller than that in other HES fronts. The southern Cheju- Changjiang front and Cheju -Tsushima front are connected with each other in the summer with comparable cross-frontal temperature gradient. However, cross-frontal heat flux and lateral eddy diffusivity are stronger in the southern Cheju - Changjiang front. The cross-frontal heat exchange is the largest in the mixing zone between the modified Huanghai Sea bottom cold water and the Tsushima Warm Current, which is attributable to enhanced thermocline intrusions.  相似文献   

18.
To investigate the fluctuation of the Kuroshio front, moored current meters were deployed near the shelf break and on the continental slope in the East China Sea, northwest of Okinawa Island, during a period from 25 June to 22 July 1984. Two mooring arrays were deployed on the slope of about 800 m water depth (under the Kuroshio), about 30 km apart along the path of the Kuroshio. Another two arrays were set near the shelf break of about 300 m water depth. The fluctuation of current on the slope is found to have a predominant period of 11–14 days and a were length of 300–350 km, propagating toward the downstream direction of the Kuroshio with a phase velocity of about 30 cm sec?1. When the Kuroshio front approaches the shelf break and the crest of the meander covers the mooring site, the current direction moves toward the downstream direction of the Kuroshio and the water temperature increases. On the other hand, when the trough of the meander covers the mooring site, the current direction changes off-shoreward across the Kuroshio or in the upstream direction of the Kuroshio, and the water temperature decreases. Three-dimensional distributions of water temperature and salinity around the mooring site were observed with a CTD twice at 5.5 days intervals, which indicate the meanders of the front is about 180° out of phase. This coincides with a period of 11–14 days obtained with the moored current meters. Wave lengths of the dominant meander of the front in the satellite thermal images were about 350 km and 100–200 km, which also coincides with results obtained with the moored current meters.  相似文献   

19.
海洋锋是典型的海洋中尺度现象之一。目前卫星遥感主要利用海表温度数据分析海洋锋,但由于西北太平洋海域夏季海表温度的趋同特性,不能进行有效的锋面监测;而不同水团所具有的生物光学特性往往是不同的,且不具有太阳辐射引起的显著性季节变化,因此海色资料也成为检测海洋锋的有效数据源。文中以东海黑潮为例,详细说明了基于叶绿素a浓度融合数据,采用梯度法进行海洋锋面检测的过程,通过比较不同季节不同梯度阈值得到的东海黑潮锋结果,从保持锋面的完整性及对零碎锋区的剔除效应方面,选取了不同季节较优的梯度阈值。总体来说,文中检测出的东海黑潮区域海色锋与海流黑潮强流区较吻合,12月至4月东海黑潮海色锋检测结果不如海温锋,而5-11月东海黑潮海色锋检测结果优于海温锋,特别是台湾以东黑潮区域,不论什么季节海温锋都没有体现,而海色锋始终很明显。利用文中提出的海洋锋检测算法、分析方法及选择的梯度阈值可以有效地检测东海黑潮区域的海洋锋面,结合海色锋和海温锋,可以监测分析东海黑潮强流区的时空变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号