首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An eco-hydrodynamic model was used to estimate the carrying capacity of pollutant loads and response of water quality to environmental change in Yeoja Bay, Korea. An energy-system model also was used to simulate the fluctuation in nutrients and organic matter in the bordering wetland. Most water quality factors showed a pulsed pattern, and the concentrations of nutrients and organic matter of seawater increased when input loads of nutrients increased due to freshwater discharge. The well-developed tidal zones and wetlands in the northern area of the bay were highly sensitive to input loads. Residence times of water, chemical oxygen demand (COD), and dissolved inorganic nitrogen (DIN) within the bay were estimated to be about 16 days, 43.2 days, and 50.2 days, respectively. Water quality reacted more sensitively to the effects of nitrogen and phosphorus input than to COD. A plan to reduce the present levels of COD and dissolved inorganic phosphorus (DIP) by 20–30% and DIN by at least 50% in pollutant loads is needed for satisfying the target water quality criteria. The natural removal rate of nutrients in wetlands by reeds was assessed to be approximately 10%.  相似文献   

2.
From August 2006 to August 2007, the concentrations of dissolved silica (Si(OH)4) were monitored in the surface water of Urasoko Bay and the mouth of the stream that runs into the bay. Urasoko Bay is located on the northern coast of Ishigaki Island, Okinawa, Japan, which is in a subtropical area of the North Pacific Ocean and is surrounded by a relatively poorly developed fringing reef. Added to these samples were freshwater from the upstream area and brackish water that exudes at the beach site, which were collected from April to June 2007. Rainwater samples were also collected during the study period. The concentration of Si(OH)4 generally decreased from upstream to the bay site, and, on clear days, Si(OH)4 data from all study sites (the bay, beach, stream mouth, and upstream) plotted against salinity fell on a single straight line. When the influence of rainwater was, the results were scattered below the straight line, which suggests dilution by rainwater with a much lower Si(OH)4 concentration. These findings show that offshore seawater, rainwater, and upstream freshwater regulate the concentration of Si(OH)4 in the surface water of Urasoko Bay.  相似文献   

3.
Distributions of salinity, dissolved total nitrogen (DTN) and dissolved oxygen (DO) were observed once a month throughout a year in Mikawa Bay, one of the most eutrophic bays in Japan. Supply of freshwater, DTN and DO from the land and precipitation was estimated. Hydrography, circulation and transformation of DTN and DO during the stratified period were investigated simultaneously by a two-layered box model analysis dividing the bay into five boxes. The two-layered circulation was confirmed. In the upper layer of the river mouth regions, a high production of particulate organic nitrogen (PON) due to the strong upwelling together with the river inflow was found. On the other hand, in the lower layer of the bay mouth region, a high deposition of PON due to weak upwelling and sometimes downwelling and a high decomposition of PON due to the inflow of DO abundant water were also found. The reason why the eutrophication is more severe in the eastern part than in the north-western part of the bay is discussed.  相似文献   

4.
根据2009年8月在乳山湾及其毗邻海域的综合调查,分析了该海域表层沉积物中有机碳、氮、磷含量及其组成形态的变化,初步探讨了影响底质理化参数变化的原因及对乳山湾外近岸底层低氧形成的影响.结果表明,乳山湾外近海为粉砂质岸滩,以细颗粒为主;底质中有机碳含量介于0.49% ~0.93%,平均值为0.69%;总氮含量介于382~1020 mg/kg,平均值为671 mg/kg;可溶性总氮含量介于23.0 ~ 60.0 mg/kg,平均值为44.0mg/kg,其中可溶性有机氮和氨氮分别占可溶性总氮的58.8%和38.8%;总磷含量介于138~769 mg/kg,平均值为356 mg/kg,有机磷是占有绝对优势的磷形态(62.5%).研究区域沉积物中总氮和湾内相当,有机碳、总磷含量普遍低于乳山湾内,但均明显高于南黄海区域,且呈还原性状态.调查区域内沉积物中相对较高的有机碳、氮、磷可能是在潮流作用下乳山湾与外海的物质交换所致,其耗氧过程是导致底层溶解氧亏损的重要原因,值得进一步关注.  相似文献   

5.
Few phosphorus-depleted coastal ecosystems have been examined for their ability to hydrolyze phosphomonoesters. We examined seasonal (August 2006–April 2007) alkaline phosphatase activity in Florida Bay, a phosphorus-limited shallow estuary, using fluorescent substrate at low concentrations (≤2.0 μM). In situ dissolved inorganic and organic phosphorus levels and phosphomonoester concentrations were also determined. Water column alkaline phosphatase activity was partitioned into two particulate size fractions (>1.2 and 0.2–1.2 μm) and freely dissolved enzymes (<0.2 μm). Water column alkaline phosphatase activity was also compared to leaf and epiphyte activity of the dominant tropical seagrass Thalassia testudinum. Our results indicate: (1) potential alkaline phosphatase activity in Florida Bay is high compared to other marine ecosystems, resulting in rapid phosphomonoester turnover times (2 h). (2) Water column alkaline phosphatase activity dominates, and is split equally between particulate and dissolved fractions. (3) Alkaline phosphatase activity was highest during cyanobacterial blooms, but not when normalized to chl a. These results suggest that dissolved, heterotrophic and autotrophic alkaline phosphatase activity is stimulated by phytoplankton blooms. (4) The dissolved alkaline phosphatase activity is relatively constant, while the particulate activity is seasonally and spatially dynamic, typically associated with phytoplankton blooms. (5) Phosphomonoester concentrations throughout the bay are low, even though potential hydrolysis rates are high. We propose that bioavailable dissolved organic P is hydrolyzed by dissolved and microbial alkaline phosphatase enzymes in Florida Bay. High alkaline phosphatase activity in the bay is also promoted by long hydraulic residence times. This background activity is primarily driven by carbon and phosphorus limitation of microorganisms, and regeneration of enzymes associated with cell lysis. Pulses of inorganic phosphorus and labile organic phosphorus and nitrogen may stimulate autotrophs, particularly cyanobacteria, which in turn promote biological activity that increase alkaline phosphatase activity of both autotrophs and heterotrophs in the bay.  相似文献   

6.
文章利用2017年11月(秋季)和2018年4月(春季)对惠州考洲洋海域开展的两个航次水环境调查数据,分析了考洲洋海域表层溶解氧(DO)、化学需氧量(COD)、无机氮(DIN)、无机磷(DIP)和石油类(OIL)等典型水质因子的水平分布和季节变化情况。结果表明,秋季溶解氧、化学需氧量、石油类分别在盐洲岛以东附近海域、考洲洋湾顶海域和盐洲岛东南海域出现高值区,而无机氮在整个考洲洋无明显区域分布差异,无机磷含量呈现考洲洋内湾到湾口逐渐递减的趋势;春季化学需氧量、无机磷均在考洲洋湾顶出现高值区域,无机氮在盐洲岛以东附近海域出现高值区,而溶解氧和石油类无明显变化。从季节变化来看,秋季考洲洋海域溶解氧、化学需氧量和石油类平均含量均比春季高;无机氮、无机磷则相反,平均含量秋季低于春季。同时,文章还分别利用单因子和综合因子方法对海水有机污染状况进行评价并对其进行比较分析,结果表明,有机污染评价指数法可充分考虑多种水质因子,更适合对考洲洋水环境质量进行评价,得到较为客观的综合评价结果。  相似文献   

7.
The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological environment has greatly changed with frequent harmful algal blooms. A monthly survey of water content, organic matter (TOM), and various forms of nitrogen and phosphorous in sediment from July 2002 to July 2003 in the bay was conducted. The results showed that the water content was correlated significantly with TOM and various forms of nitrogen and phosphorus and can be used as proxy for quick and rough estimate of these factors in the future surveys. TOM was also correlated significantly with various forms of nitrogen and phosphorus, indicating that it was one of the key factors affecting the concentrations and distributions of nitrogen and phosphorus in the investigated waters. Average total Kjeldhal nitrogen (TkN) content was( 1 113.1 ± 382.5)μg/g and average total phosphorus (TP) content was(567.2± 223.3)μg/g, and both were much higher than those of similar estuaries in China and elsewhere. Average nitrogen and phosphorus tended to be higher inside than outside the bay, higher at aquaculture than non-aquaculture areas, and higher at fish-cage culture than oyster culture areas, suggesting that large-scale mariculture inside the bay played an important role in the eutrophication of the Zhelin Bay. Various forms of nitrogen and phosphorus concentrations were higher during the warm season (July--September), which was due to the increased decomposition and concentration of organic matter resulted from the fast growth and high mortality of the cultured species. Compared with July 2002, TkN and TP contents were much higher in July 2003, in consonance with the eutrophication of the Zhelin Bay. Because exchangeable phosphorus (Ex-P), iron-bounded phos- phorus (Fe-P) and organic phosphorus (OP) combined accounted for 34.3% of the TP and authigenic phosphorus (Au-P  相似文献   

8.
为了解胶州湾水体和表层沉积物营养环境状况及其主要影响因素,于2019年8月在胶州湾30个站位点采集了海水和表层沉积物样品,并于2021年5月在胶州湾沿岸采集了18个站位点的水样,对水体溶解无机态营养盐浓度和组成以及表层沉积物中总有机碳、总氮、总磷及生物硅含量和碳、氮稳定同位素(δ13C、δ15N)进行了分析。结果表明,胶州湾内水体和沿岸水体中溶解无机氮、溶解无机磷和溶解硅酸盐浓度空间分布相近,高值均位于湾东北部,主要受到河流输入和沿岸污水排放的影响,低值主要出现在湾中部和湾口处。结合近30年来的历史数据分析发现,胶州湾夏季营养盐浓度在1990?2008年期间呈持续上升的趋势,政府实施的污染物总量控制措施以及河流径流量下降使得2006年以来营养盐浓度呈现下降的趋势,该变化在空间上主要体现为大沽河氮、磷输入量的减少及其对应的湾西部营养盐高值的消失。胶州湾氮、磷营养盐输入的不平衡使得“磷限制”在2000年后逐渐加剧。胶州湾表层沉积物中总有机碳、总氮、总磷含量高值均集中于东北部和东部沿岸,结合生物硅和水体营养盐含量分析显示,这主要是河流与排污输入及其带来的高初级生产力造成的,沉积物生源要素与水体营养盐在空间分布上存在较好的耦合关系。沉积物粒度较粗对有机质保存的不利影响以及湾口较强的水动力作用共同导致了湾西部、中部以及湾口的生源要素含量较低。δ13C以及二端元混合模型显示,胶州湾表层沉积物有机质来源总体以海源为主,平均占比为64%,东部沿岸受陆源输入影响较明显。δ15N的空间分布显示,胶州湾表层沉积物中氮元素受到了海水养殖与污水排放的共同影响。水体和沉积物营养环境现状共同表明,对东北部河流和沿岸污水排放的控制是后期胶州湾污染治理的关键。  相似文献   

9.
Biologically important nutrient concentrations in Dokai Bay have declined as a result of reductions in anthropogenic inputs of total nitrogen and total phosphorus. A decrease in nutrient concentrations affects phytoplankton growth, thereby changing the biochemical characteristics of autochthonous particulate matter. We therefore investigated changes in the C/N/P molar ratio of suspended particulate matter (SPM) in the summer, when phytoplankton growth is vigorous, before environmental quality standards (EQSs) were attained (1995–1998) and afterward (2006–2009). We found that the ratio of particulate organic nitrogen (PON) to particulate phosphorus (PP) changed in conjunction with changes in the ratio of dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIP) that resulted from reductions in nutrient loading. Furthermore, we suggest that because the DIP concentration in seawater was high before EQSs were attained, inorganic phosphorus was possibly adsorbed onto SPM. After the attainment of EQSs, however, the DIP concentration fell, and PON/PP was high. Phosphorus limitation of phytoplankton growth in the mouth of the bay may explain the high PON/PP ratios after EQS attainment.  相似文献   

10.
The phosphorus cycle is studied during 2013–2014 in the Sanggou Bay(SGB), which is a typical aquaculture area in northern China. The forms of measured phosphorus include dissolved inorganic phosphorus(DIP), dissolved organic phosphorus(DOP), particulate inorganic phosphorus(PIP), and particulate organic phosphorus(POP).DIP and PIP are the major forms of total dissolved phosphorus(TDP) and total particulate phosphorus(TPP),representing 51%–75% and 53%–80%, respectively. The concentrations and distributions of phosphorus forms vary among seasons relative to aquaculture cycles, fluvial input, and hydrodynamic conditions. In autumn the concentration of DIP is significantly higher than in other seasons(P0.01), and higher concentrations are found in the west of the bay. In winter and spring the phosphorus concentrations are higher in the east of the bay than in the west. In summer, the distributions of phosphorus forms are uniform. A preliminary phosphorus budget is developed, and shows that SGB is a net sink of phosphorus. A total of 1.80×10~7 mol/a phosphorus is transported into the bay. The Yellow Sea is the major source of net input of phosphorus(61%), followed by submarine groundwater discharge(SGD)(27%), river input(11%), and atmospheric deposition(1%). The main phosphorus sink is the harvest of seaweeds(Saccharina japonica and Gracilaria lemaneiformis), bivalves(Chlamys farreri),and oysters(Crassostrea gigas), accounting for a total of 1.12×10~7 mol/a. Burial of phosphorus in sediment is another important sink, accounting for 7.00×10~6 mol/a. Biodeposition by bivalves is the major source of phosphorus in sediment, accounting for 54% of the total.  相似文献   

11.
杭州湾营养盐时空分布特征及其影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
文章基于2015年1—12月杭州湾海域12个航次的调查资料,对杭州湾海域营养盐溶解无机氮(DIN)和活性磷酸盐(PO_4~(3-))的月度时空分布特征及其影响进行了探讨。结果表明,杭州湾表层海水DIN和PO_4~(3-)含量空间分布月际间变化明显,其变化受湾内、沿岸径流输入和长江冲淡水影响显著。杭州湾海域12个月DIN含量均超第四类海水水质标准,硝酸盐氮(NO_3~-)占DIN的94%及以上。N/P值处于较高水平,内湾(IB)和外湾(OB)的N/P值季节性变化幅度比中湾(CB)大,海湾生态系统对磷的变化敏感。营养盐-盐度对研究区域的水体混合状况有明显的指示作用,杭州湾营养盐的分布主要受物理混合作用所控制,浮游生物活动对营养盐分布的影响相对较小。  相似文献   

12.
大亚湾水域营养盐的分布变化   总被引:13,自引:0,他引:13  
本文通过对大亚湾水域溶解氧,氮、磷、化学耗氧量、盐度、PH等环境因子的调查,对该水域溶解氧的含量分布和季节变化进行了分析,同时,对湾内NO3-N、NO2-N、NH4-N及PO4-P的时空分布以及季节变化规律进行了讨论,并以氧的饱和度、PH、化学耗氧量、无机氮等单项指标和综合指标研究了该水域的富营养状况。  相似文献   

13.
Cycling of phosphorus in the Jiaozhou Bay   总被引:2,自引:1,他引:1  
Dissolved inorganic phosphorus (DIP ),dissolved organic phosphorus (DOP ),particulate inorganic phosphorus (P IP ) and particulate organic phosphorus (P OP ) in the Jiaozhou Bay (JZB) and its adjacent major rivers were analyzed during 2001–2003.DIP was the major form of dissolved phosphorus in JZB,representing 62%–83% of the total dissolved phosphorus (T DP ),and the P IP concentration generally exceeded the P OP concentration.The concentrations of phosphorus were higher in the north than in the south of th...  相似文献   

14.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

15.
基于对胶州湾表层沉积物中总可水解氨基酸(THAA)的含量、组成、构型及分布特征的系统研究,通过氨基酸碳氮归一化产率(THAA-C%,THAA-N%)、降解因子DI、反应活性指数RI以及D型氨基酸占比(D-AA%,摩尔百分比)等指标结合碳氮比(TOC/TN)、碳稳定同位素(δ13C)探析了胶州湾沉积物中有机质的来源与降解状态,利用细菌源有机质及胞外肽酶活性(EEA)探讨了微生物在有机质迁移转化过程中的作用与贡献。结果表明,胶州湾表层沉积物中氨基酸平均含量为(7.60±3.64)μmol/g,在陆源与海源混合影响下,其水平分布呈现湾内高于湾外、湾内东部高于西部的特点,表明湾内东部陆源输入对沉积物THAA具有较高贡献。THAA-C%、THAA-N%、DI、RI以及D-AA%等指示因子均显示胶州湾表层沉积物中有机质的降解程度呈现湾外高于湾内、湾内东部高于西部的变化趋势,有机质来源、微生物活性与上覆水水深共同影响了有机质的降解程度。胶州湾表层沉积物中细菌源有机碳的贡献率为(29.35±18.73)%,其水平分布显示出湾内西部与湾外相近且高于湾内东部的特点。细菌胞外肽酶活性(EEA)平均为(0.81±1.31)nmol/(g·h)(以MCA计),整体分布趋势与细菌贡献率相反,呈现湾内东部高于湾内西部和湾外的特性。沉积物中有机质的不同海源、陆源占比决定了有机质的可降解性,而有机质的降解程度进一步影响了细菌源有机质的贡献与胞外肽酶活性。  相似文献   

16.
The source and significance of two nutrients, nitrogen and phosphorous, were investigated by a modified dilution method performed on seawater samples from the Jiaozhou Bay, in autumn 2004. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the internal and external nutrient pools, as well as nutrient supplied through remineralization by microzooplankton. The results indicated that the phytoplankton net growth rate increased in turn from inside the bay, to outside the bay, to in the Xiaogang Harbor. The phytoplankton maximum growth rates and microzooplankton grazing mortality rates were 1.14 and 0.92 d-1 outside the bay, 0.42 and 0.32 d-1 inside the bay and 0.98 and 0.62 d-1 in the harbor respectively. Outside the bay, the remineralized nitrogen (Kr=24.49) had heavy influence on the growth of the phytoplankton. Inside the bay, the remineralized phosphorus(Kr=3.49) strongly affected the phytoplankton growth. In the harbor, the remineralized phosphorus (Kr=3.73) was in larger demand by phytoplankton growth. The results demonstrated that the different nutrients pools supplied for phytoplankton growth were greatly in accordance with the phytoplankton community structure, microzooplankton grazing mortality rates and environmental conditions. It is revealed that nutrient remineralization is much more important for the phytoplankton growth in the Jiaozhou Bay than previously believed.  相似文献   

17.
At four stations in Tokyo Bay, pore water profiles of dissolved organic carbon (DOC), nitrogen (DON), phosphorus (DOP), and inorganic nutrients were determined at 3-month intervals over 6 years. Concentrations of dissolved organic matter (DOM) and nutrients were significantly higher in pore waters than in the overlying waters. Pore water DOC, DON, and DOP concentrations in the upper most sediment layer (0–1 cm) ranged from 246 to 888 μM, from 14.6 to 75.9 μM, and from 0.02 to 9.83 μM, respectively. Concentrations of DOM and nutrients in pore waters occasionally showed clear seasonal trends and were highest in the summer and lowest in the winter. The seasonal trends in the pore water DOM concentrations were coupled with trends in the overlying water temperature and dissolved oxygen concentration. Benthic effluxes of DON and DOP were low compared with those of inorganic nutrients, accounting for only 1.0 and 1.5 % of the total benthic effluxes of nitrogen and phosphorus, respectively; thus benthic DOM fluxes were quantitatively insignificant to the inorganic nutrient fluxes in Tokyo Bay. The DOM fluxes represented about 7, 3, and 10 % of the riverine discharge of DOC, DON, and DOP to Tokyo Bay, respectively.  相似文献   

18.
胶州湾营养盐结构变化的研究   总被引:40,自引:5,他引:40  
于1985年8月-1986年12月和1991年5月-1993年11地胶州湾表层海水营养盐的调查,根据Justic等建立的浮游植物生长的化学计量及可能营养盐限制因素标准,并结合海洋硅藻正常所需的Si,N,P之间的原子比,用数学统计的方法研究了胶放湾表层海不营养盐结构,结果表明,含有丰富溶我机氮和磷的胶州湾,Si:P的值有显著的下降,同时Si:DIN和DIN:P的值也表现出下降的趋势,使胶州湾水域营养  相似文献   

19.
为探讨浒苔绿潮消亡腐败过程中的营养盐释放规律以及浒苔绿潮聚积腐烂对海水水质的影响,在室外模拟近岸浒苔绿潮聚积腐烂过程,并于2018年6月在浒苔绿潮靠岸前开始对主要浒苔绿潮聚积地(鳌山湾、鳌山湾口的海参池、石老人海域)进行观测,实时记录浒苔腐烂状况及对周边环境的影响。模拟实验结果表明:各形态氮、磷营养盐在浒苔腐烂分解过程中升高明显,且以溶解有机态、颗粒态为主。其中生物量为5 g/L实验组溶解有机氮(Dissolved Organic Nitrogen,DON)、颗粒态氮(Particulate Nitrogen,PN)、溶解有机磷(Dissolved Organic Phosphorus,DOP)、颗粒态磷(Particulate Phosphorus,PP)的浓度在浒苔腐烂分解过程中达本底浓度的5~10倍以上。现场调查结果显示,随着浒苔绿潮在青岛近岸聚积,各调查站点的溶解无机氮(Dissolved Inorganic Nitrogen,DIN)、DON、DOP受浒苔绿潮吸收影响均降至最低值,后随着浒苔绿潮腐烂逐渐上升,水质恶化。其中鳌山湾受浒苔绿潮腐烂影响最为严重,在调查期间水体甚至劣于二类水质。PN、PP为调查区内营养盐的主要赋存形式,其中鳌山湾海域PP变化最为明显,随着浒苔绿潮聚积腐烂达到最高值(2.02 μmol/L)。相比于鳌山湾,石老人海域海水交换能力强且在浒苔绿潮靠岸后进行了及时拦截打捞,受浒苔绿潮消亡腐烂影响较小。浒苔绿潮靠岸聚积腐烂,使海域内营养盐含量与结构明显变化,影响海域浮游植物群落结构的稳定,可能引发赤潮等次生生态灾害。因此需要及时清理聚积在青岛近岸的浒苔,避免其腐烂对周边环境造成影响。  相似文献   

20.
胶州湾的生态环境演变与营养盐变化的关系   总被引:1,自引:0,他引:1  
作为我国人为影响海洋研究与海洋学基础研究的典型海域,胶州湾历经90年的科学调查和研究,获得了系统的对胶州湾海洋学的认识。本文总结归纳了近年来胶州湾的生态环境变化状况、营养物质输入以及百年来生态环境演变的主要结果和结论。近年来,胶州湾海水呈现“高氮-低磷-低硅富营养化”状况较明显,浮游生物生物量有增加的趋势,输入到胶州湾营养物质的量巨大,总溶解态氮的年输入通量为6 945.4 t/a,其中无机氮、有机氮分别为4 453.1 t/a,2 492.3 t/a。点源和河流是总溶解态氮的主要输入方式,分别占无机氮输入通量的39%和20%,有机氮输入通量的31%和41%。总溶解态磷的年输入通量为160.6 t/a,其中无机磷的输入略高于有机磷,二者分别为88.0 t/a,72.6 t/a。河流和点源是无机磷的主要输入方式,分别占无机磷输入通量的40%和30%,而对于有机磷而言,河流是其主要的输入方式,可占其输入通量的51%,而地下水和点源也分别占输入通量的24%和15%,这些大量输入的营养物质对胶州湾生态环境变化起了关键作用。胶州湾百年来经历了三个阶段的演变,20世纪70年代以前,胶州湾受人为影响很小,其化学要素水平基本呈现“背景值”且比较稳定,从20世纪80年代起,胶州湾明显受到人为活动的影响,其沉积物中的化学组分持续增加,直到20世纪90年代中到2000年达到高峰,2000年后,由于环保治理措施的加强,沉积物中的化学组分呈明显降低趋势,基本稳定在较低的水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号