首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
适于模拟不规则水域波浪的缓坡方程两种数值模型比较   总被引:1,自引:1,他引:0  
本文分析比较了适于不规则水域波浪模拟的椭圆型缓坡方程两种数值模型。两种数值模型均采用有限体积法离散,分别基于四叉树网格和非结构化三角形网格建立。首先结合近岸缓坡地形上波浪传播的经典物理模型实验对两种数值模型分别进行了验证,并结合计算结果对比分析了两种模型的计算精度和效率。计算结果表明,两种数值模型均可有效地模拟近岸波浪的传播变形;相对非结构化三角形网格下的模型,基于四叉树网格建立的数值模型在数值离散和求解过程中无需引入形函数、不产生复杂的交叉项,离散简单,易于程序实现,且节约计算存储空间,计算效率高。  相似文献   

2.
非结构化网格下椭圆型缓坡方程的数值求解   总被引:4,自引:4,他引:0       下载免费PDF全文
魏美芳  唐军  沈永明 《海洋学报》2009,31(2):159-164
椭圆型缓坡方程是一种用线性波浪理论研究近岸波浪传播变形的有效波浪数学模型。非结构化网格下的有限容积法不仅对复杂边界的适应性好,还能保证迭代求解过程的守恒性。建立了非结构化网格下的椭圆型缓坡方程数值模型。在模型中采用非结构化网格下的有限容积法对椭圆型缓坡方程进行了数值离散,结合GPBiCG(m,n)算法求解离散方程。数值计算结果表明,该数值模型可有效地用于模拟近岸缓坡区域复杂边界下波浪的传播。  相似文献   

3.
非结构化网格下近岸波生流数值模拟   总被引:5,自引:2,他引:3  
唐军  魏美芳 《海洋学报》2010,32(6):41-46
波浪破碎产生的近岸流是近岸海域关键的水动力因素之一。基于近岸波浪的椭圆型缓坡方程和二维近岸波生流方程,建立了非结构化网格下近岸波浪破碎形成的近岸流数值模型。数值模型中,在空间上采用有限体积法进行数值离散,在时间上采用欧拉向前格式数值离散。数值计算结果表明,该数值模型可以有效地模拟近岸波浪破碎产生的近岸流。  相似文献   

4.
结合椭圆型缓坡方程模拟近岸波流场   总被引:6,自引:3,他引:6  
波浪向近岸传播的过程中,由波浪破碎效应所产生的近岸波流场是近岸海域关键的水动力学因素之一.结合近岸波浪场的椭圆型缓坡方程和近岸波流场数学模型对近岸波浪场及由斜向入射波浪破碎后所形成的近岸波流场进行了数值模拟.计算中考虑到波浪向近岸传播中由于波浪的折射、绕射、反射等效应使局部复杂区域波向不易确定,采用结合椭圆型缓坡方程所给出的波浪辐射应力公式来计算波浪产生的辐射应力,在此基础上耦合椭圆型缓坡方程和近岸波流场数学模型对近岸波流场进行数值模拟,从而使模型综合考虑了波浪的折射、绕射、反射等效应且避免了对波向角的直接求解,可以应用于相对较复杂区域的近岸波流场模拟.  相似文献   

5.
岛屿岛礁海域海浪能谱模型研究进展   总被引:2,自引:0,他引:2  
毛科峰  陈希  王亮 《海洋学报》2014,36(5):161-169
波浪能谱模型在岛屿岛礁海域的波浪预报研究和海洋工程中应用广泛,但存在模式计算格点无法充分体现岛屿岛礁的复杂地形特征和很难刻画波浪受到岛屿岛礁影响发生变形物理过程等两个关键问题。多重网格嵌套方案、岛屿次网格地形效应计算方案以及非结构网格、无网格、动态自适应四叉树网格等技术在体现岛屿岛礁复杂地形方面取得了较好的效果;将相位解析模型与波浪能谱模型优势互补是提高能谱模型对岛屿近岸波浪变形物理过程计算能力的一个有效方法。开展球坐标系下波作用密度谱方程的自适应四叉树网格求解方法研究,借鉴相位解析模型最新成果完善能谱模式的绕射、反射、底摩擦等物理过程,是提高岛屿岛礁海域海浪精细预报技术水平的前沿性、探索性研究方向。  相似文献   

6.
非结构化网格下大范围波生流模拟和应用   总被引:1,自引:0,他引:1  
王平  张宁川 《海洋工程》2013,31(5):45-54
波浪破碎引起的沿岸流是近岸海域的关键水动力因素。利用基于缓坡方程得到的光程函数方程和波作用守恒方程建立了考虑绕射效应的大范围波浪传播模型,模型可以考虑流场的影响;将波浪模型计算得到的辐射应力、波浪紊动系数等参数添加到三维水动力模型中,得到大范围近岸波生流的计算模型。模型中流场和波浪可以共用计算网格,且可同步耦合计算;模型基于非结构化网格,可以拟合复杂岸线的变化。模型对波生沿岸流、环流和逆流进行了验证,同时对实际海域的波生流进行了计算,结果表明:该模型对近岸波浪破碎引起的波生流具有很好的精度和适用性,可用于实际工程的计算。  相似文献   

7.
建立基于四阶完全非线性Boussinesq水波方程的二维波浪传播数值模型。采用Kennedy等提出的涡粘方法模拟波浪破碎。在矩形网格上对控制方程进行离散,采用高精度的数值格式对离散方程进行数值求解。对规则波在具有三维特征地形上的传播过程进行了数值模拟,通过数值模拟结果与实验结果的对比,对所建立的波浪传播模型进行了验证。同时,为了考察非线性对波浪传播的影响,给出和上述模型具有同阶色散性、变浅作用性能但仅具有二阶完全非线性特征的波浪模型的数值结果。通过对比两个模型的数值结果以及实验数据,讨论非线性在波浪传播过程中的作用。研究结果表明,所建立的Boussinesq水波方程在深水范围内不但具有较精确的色散性和变浅作用性能,而且具有四阶完全非线性特征,适合模拟波浪在近岸水域的非线性运动。  相似文献   

8.
长兴岛海区波流相互作用数值模拟研究   总被引:1,自引:0,他引:1  
王彪  沈永明  王亮 《海洋工程》2012,30(3):87-96
波和流是近岸海区的主要动力因素。应用二维潮流数学模型和最新第三代近岸海浪模式SWAN,建立了非结构网格下二维情况近岸波流耦合作用数学模型。时间离散采用欧拉向前格式,空间离散采用有限体积法显式格式。通过将波浪场及潮流场进行迭代耦合计算,实现了对波流共同作用下波浪场和潮流场的数值模拟。将模型应用于矩形海湾实验和李孟国数模实验等理想地形以及大连长兴岛海区实际复杂地形算例,并用现场实测资料对计算结果进行验证,结果表明:耦合结果与实测结果吻合良好,并且要优于未耦合的结果。  相似文献   

9.
任意曲线边界条件下缓变水深水域波浪传播的数值模拟   总被引:3,自引:0,他引:3  
缓坡方程被广泛地应用于描述波浪的传播变形计算,目前一般采用矩形网格求解.将计算域剖分为任意四边形网格,以格林公式为基础,在变量沿单元边界线性变化的假定下,对双曲型的波能守恒方程、波数矢无旋性方程进行离散,同时通过等参单元变换推求节点偏导数值以离散椭圆型光程函数方程,从而建立了任意曲线边界条件下缓变水深水域波浪传播的数值模拟模型.将模型应用于平行直线型等深线地形,并将计算域剖分为不规则四边形网格,对不同入射角、底坡、波高等多种组合情况比较了数值解与解析解,结果表明两者一致.应用于复杂边界的实例,数值模拟结果与物模实验值基本吻合.  相似文献   

10.
近岸波浪在刚性植被区域传播的数值模型   总被引:2,自引:0,他引:2  
基于扩展型Boussinesq水波方程,建立了波浪在刚性植被覆盖的近岸海域传播的数值模型。通过在动量方程源项中引入拖曳阻力项考虑植被对波浪的衰减作用。控制方程采用有限差分和有限体积混合格式求解,模型稳定性强,具备间断捕捉能力,能有效模拟近岸区域波浪的传播变形、破碎和处理海岸动边界问题。利用所建立模型对典型物理模型实验进行模拟,计算结果与实验结果吻合良好,表明模型可用于波浪在刚性植被覆盖海域的数值计算。  相似文献   

11.
In this paper, the water waves and wave-induced longshore currents in Obaky coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave propagated to a coastal zone from different directions.  相似文献   

12.
This paper presents a refined parabolic approximation model of the mild slope equation to simu-late the combination of water wave refraction and diffraction in the large coastal region.The bottom frictionand weakly nonlinear term are included in the model.The difference equation is established with the Crank-Nicolson scheme.The numerical test shows that some numerical prediction results will be inaccurate in com-plicated topography without considering weak nonlinearity;the bottom friction will make wave height damp-ing and it can not be neglected for calculation of wave field in large areas.  相似文献   

13.
A continuously stratified, linear two mode numerical model has been developed. The model incorporates a free surface and finite amplitude topography.The vertical dependence in the equations is removed by applying a Galerkin procedure which uses the normal modes as test functions. The vertical structure is therefore determined by the normal modes.In order to find a suitable efficient numerical scheme to solve the equations a fairly general phase and stability analysis is carried out for the one dimensional gravity wave equations. The A.D.I. scheme was found to be the most suitable scheme.The model is applied to coastal upwelling. A number of two dimensional (x, z) experiments have been carried out. The advantage of the two mode model above the two layer models is that considerable detail of the vertical structure is readily obtained and that no difficulties with the intersection of interfaces with the topography or the seasurface are present. A three dimensional (x, y, z) test run was done for a region along the south western coast of Africa. The results of this experiment are discussed.  相似文献   

14.
Coastal groundwater systems can have a considerable impact on sediment transport and foreshore evolution in the surf and swash zones. Process-based modeling of wave motion on a permeable beach taking into account wave-aquifer interactions was conducted to investigate the effects of the unconfined coastal aquifer on beach profile evolution, and wave shoaling on the water table. The simulation first dealt with wave breaking and wave runup/rundown in the surf and swash zones. Nearshore hydrodynamics and wave propagation in the cross-shore direction were simulated by solving numerically the two-dimensional Navier–Stokes equations with a k–ε turbulence closure model and the Volume-Of-Fluid technique. The hydrodynamic model was coupled to a groundwater flow model based on SEAWAT-2000, the latter describing groundwater flow in the unconfined coastal aquifer. The combined model enables the simulation of wave-induced water table fluctuations and the effects of infiltration/exfiltration on nearshore sediment transport. Numerical results of the coupled ocean/aquifer simulations were found to compare well with experimental measurements. Wave breaking and infiltration/exfiltration increase the hydraulic gradient across the beachface and enhance groundwater circulation inside the porous medium. The large hydraulic head gradient in the surf zone leads to infiltration across the beachface before the breaking point, with exfiltration taking place below the breaking point. In the swash zone, infiltration occurs at the upper part of the beach and exfiltration at the lower part. The simulations confirm that beaches with a low water table tend to be accreted while those with a high water table tend to be eroded.  相似文献   

15.
《Coastal Engineering》2004,51(7):557-579
In this paper, a Reynolds Averaged Navier–Stokes (RANS) model was developed to simulate the vortex generation and dissipation caused by progressive waves passing over impermeable submerged double breakwaters. The dynamics of the turbulence are described by introducing a kɛ model with Boussinesq closure. The Height Function (HF) is implemented to define the free-surface configuration. The governing equations are discretized by means of a finite volume method based on a staggered grid system with variable width and height. The feasibility of the numerical model was verified through a series of comparisons of numerical results with the existing analytical solutions and the experimental data. The good agreements demonstrate the satisfactory performance of the developed numerical model. The flow separation mechanism both near the upstream and the downstream edges of the obstacles demonstrates the physical and expected nature of development of the flow. The present model provides an accurate and efficient tool for the simulation of flow field and wave transformation near coastal structures without breaking.  相似文献   

16.
—A numerical model for wave diffraction-refraction in water of varying current and topogra-phy is proposed,and time-dependent wave mild-slope equation with a dissipation term and correspondingequivalent governing equations are presented.Two different expressions of parabolic approximations forthe case of the absence of current are also given and analyzed.The influence of current on the results ofsimulation of waves is discussed.Some examples show that the present model is better than others in simu-lating wave transformation in large water areas.And they also show that the influence of current shouldbe taken into account,on numerical modeling of wave propagation in water of strong current and coastalareas,otherwise the modeling results will be largely distorted.  相似文献   

17.
破碎波对近海海岸地形以及海岸建筑物影响强烈,通过物理模型实验对孤立波、规则波作用下破碎带的床面形态以及孔隙水压力进行分析。破碎波冲击海床,破碎处床面上形成沙坝和沙坑,与规则波相比,孤立波破碎时对床面的冲刷更加剧烈,床面形成的沙坝和沙坑尺度更大,且土体内孔隙水压力幅值也较大。同时研究了波面变化对孔隙水压力的影响,发现波面变化历时曲线与孔隙水压力历时曲线相似,与孔隙水压力梯度历时曲线更为相似,说明波面变化更能反映海床内部孔隙水压力梯度的变化。通过探讨波浪与海床之间相互耦合作用,发现破碎带地形变化使得波浪出现不同破碎类型,分析得出卷破波比崩破波作用下孔隙水压力幅值大。  相似文献   

18.
Vegetation canopies control mean and turbulent flow structure as well as surface wave processes in coastal regions. A non-hydrostatic RANS model based on NHWAVE (Ma et al., 2012) is developed to study turbulent mixing, surface wave attenuation and nearshore circulation induced by vegetation. A nonlinear k  ϵ model accounting for vegetation-induced turbulence production is implemented to study turbulent flow within the vegetation field. The model is calibrated and validated using experimental data from vegetated open channel flow, as well as nonbreaking and breaking random wave propagation in vegetation fields. It is found that the drag-related coefficients in the k  ϵ model Cfk and C can greatly affect turbulent flow structure, but seldom change the wave attenuation rate. The bulk drag coefficient CD is the major parameter controlling surface wave damping by vegetation canopies. Using the empirical formula of Mendez and Losada (2004), the present model provides accurate predictions of vegetation-induced wave energy dissipation. Wave propagation through a finite patch of vegetation in the surf zone is investigated as well. It is found that the presence of a finite patch of vegetation may generate strong pressure-driven nearshore currents, with an onshore mean flow in the unvegetated zone and an offshore return flow in the vegetated zone.  相似文献   

19.
The most severe shoreline retreat (over 20 m/year) along the Danube Delta coast has been recorded in the coastal stretch confined by the Sulina branch (north) and Sahalin spit island (south). This erosive trend is caused by the natural evolution of some stretches of the Danube Delta coast, but strongly enhanced by the human activities. Human interventions result in the dramatic decrease in quantity of sediments reaching the coast and in the disruption of natural sediment circulation in the coastal area. EUROSION FP5 Project developed four concepts to be used in coastal studies: coastal sediment cell, coastal resilience, favourable sediment status and strategic sediment reservoir. The main objectives of this study regard the application of the CONSCIENCE methodology and test of the concepts in order to identify and understand the main threats for Sulina - Sahalin littoral cell, especially the coastal erosion one, as well as to provide a sound working methodology for coastal managers to deal with these threats. The sediment budget computed in previous studies, as well as the field observations, indicate a lack of sediments for the littoral cell (unfavourable sediment status). In order to asses the vulnerability of the coast to short term extreme events (especially storms), simulations of water level changes were performed and calibrated with the field observations. A processes based numerical model was used to simulate the storm induced water level variations and the main input data were the bathymetry of the active beach, wind direction and speed (storm scenarios) and the characteristics of water and air. The results show large water level increases for the central part of the study zone, especially for northern wind directions.The main solution proposed to deal the problems arising from a sediment-starved coast, vulnerable to the extreme events, is artificial nourishment. Two strategic sediment reservoirs were identified, both of them at the northern boundary of the cell: the sediments dredged periodically from Sulina mouth and the sediments accumulated in Musura Bay, just north of Sulina jetties. The transfer of these sediments towards the central part of the littoral cell Sulina - Sahalin would decrease the erosion rates to a natural level and restore the natural coastal resilience. The methodology developed in CONSCIENCE Framework and applied to Danube Delta coastal zone provided good results when problems and solutions for the coastal zone were to be identified and tested. This methodology and its related results can be applied by the local coastal managers to Sulina - Sahalin littoral cell, while this experience can be extended to other similar environments facing the same problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号