首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
海底峡谷广泛发育于全球大陆边缘,在地形上表现为深切于大陆边缘的凹槽,是海陆边界处最为显著的地貌之一。海底峡谷是陆缘碎屑物质由陆至深海运移的重要通道,是研究区域源-汇体系、海平面升降、构造演化的重要场所,也是海底油气资源形成与储集的重要区域,是国内外在海洋领域研究的热点之一。针对海底峡谷的成因及演化过程,进行了系统性的研究与划分,首先介绍了国内外海底峡谷研究的关键成果,其次概述了两大世界典型峡谷区南海北部海底峡谷区和蒙特利海底峡谷区的区域构造及成因,最后依据海底峡谷形成演化的主控因素,将其成因分为3种类型:强侵蚀性、河流侵蚀型、构造作用及溯源侵蚀型。通过对峡谷成因演化的研究,有助于为海底峡谷的分类提供新的思路,为海底峡谷区域的资源勘探、古气候与构造演化模式方面提供新的突破点。  相似文献   

2.
基于最新的高分辨率多波束全覆盖测深数据、单道地震和多道地震剖面数据,对南海北部陆坡一统峡谷群9条峡谷的地形地貌及沉积特征进行了分析:峡谷群自陆坡向深海盆方向呈聚敛型,横断面主要呈"V"型,谷壁对称发育,坡度较陡;研究区海底地层受多条断裂控制,呈典型阶梯状发育,海底断陷、重力滑塌面和小型滑坡体等海底不稳定地质灾害高度发育,说明峡谷群海底环境处于极不稳定状态。在研究区海底峡谷群地貌演化过程中,西沙海槽区域沉降等新生代构造运动控制着峡谷群地貌格局的形成;来自北部陆架的充足沉积碎屑物质的输入往往伴随着高密度浊流、海底滑坡、坍塌等海底灾害的发生,控制着峡谷群的进一步发育;相对海平面变化直接改变了研究区的沉积环境,为陆源碎屑物质的搬运提供了更加直接的通道,这也是诱发陆坡海底失稳、塑造峡谷群地貌特征的重要因素之一。  相似文献   

3.
南海北部陆坡发育众多海底峡谷,其形成、发育、演化过程都存在较大差异。本文选取南海北部陆坡典型的珠江口外海底峡谷群、东沙海底峡谷、台湾浅滩南海底峡谷和澎湖海底峡谷进行研究,通过高分辨率多道地震数据和多波束测深数据,结合前人研究成果,对4条典型海底峡谷的形态特征、沉积充填特征及结构、形成发育过程及控制因素进行研究。结果表明,南海北部陆缘各个海底峡谷的形成受多个控制因素的影响,其影响程度及方式都有差别。构造活动、海平面变化及沉积物重力流与海底峡谷的演化密切相关,而陆地河流和局部构造因素也以不同方式影响着海底峡谷的发育。对于发育在主动大陆边缘的台湾岛东南侧的澎湖海底峡谷,其板块运动和岩浆活动活跃,其上发育的海底峡谷的控制因素以内营力地质作用为主。而具有被动大陆边缘属性的其他3条峡谷,由于构造运动较少或停止,其上发育的海底峡谷的控制因素以外营力地质作用为主。  相似文献   

4.
南海北部陆坡海底峡谷形成机制探讨   总被引:3,自引:0,他引:3  
通过对南海北部地震剖面的解释,并结合地貌以及区域地质特征等,对发育于南海北部陆坡区的珠江口外、台湾浅滩南以及澎湖海底峡谷的地貌和构造特征进行分析和对比,并对其形成机制进行探讨。研究结果显示,各海底峡谷具有相似的走向,并均具有转向的特征,但是其形成机制却各不相同,由此形成的地貌特征也各不同:珠江口外海底峡谷的形成与珠江带来的大量陆上沉积物的搬运相关,形成了喇叭型的水道;台湾浅滩南海底峡谷的形成受到NW向断裂构造的控制,这些断裂构造形成了薄弱带,经过沉积流的侵蚀而形成狭长的水道,当进入下陆坡后由于海山的阻隔作用而转为近EW向;澎湖海底峡谷带的上段主要是由陆坡沉积流的下向侵蚀、崩塌和滑移形成的,而其下段则主要具有沿马尼拉海沟北向延伸段发育的特征。  相似文献   

5.
海底峡谷是大陆边缘最重要的地貌形态之一,是沉积物和陆源有机质向深海搬运的主要通道,在深海重力流沉积、全球碳循环、生物多样性、油气-水合物资源勘探及海底工程设施安全运营等方面的研究中具有重要意义。大量研究发现,海底峡谷常发育于构造活动较强烈的地区,其形成和演化与构造变形之间存在密切的关联。在文献调研基础上,着重就构造活动对海底峡谷地貌的控制作用进行综述。总结了5种与构造变形有关的海底峡谷平面分布端元模式,分别为限制型、转向型、偏转型、阻挡型及横向切穿型海底峡谷。分析了局部坡度变化对峡谷内部地貌特征的影响:构造变形引起的局部地形坡度增大会导致海底峡谷内部侵蚀作用的加剧与裂点的形成;局部地形坡度减小容易引起天然堤和决口扇的形成;坡度的变化还会引起峡谷弯曲度的动态响应。  相似文献   

6.
海底峡谷作为海洋中油气勘探的重要指示器和富集场所,研究其复杂的水动力系统变得十分重要。海底峡谷中水动力系统包括了重力流、浊流、潮汐/内潮汐、内波、底层流、上升流和高密度陆架瀑布流(Dense Shelf Water Cascading)等要素,与峡谷外有明显的不同。首次从海底峡谷水动力系统的综合概况出发,研究了水动力作用对峡谷的侵蚀、沉积物的搬运与沉积以及特殊生态系统的塑造,总结分析了峡谷中水动力系统的主要研究手段。结果表明,海底峡谷中的水动力作用由于成因不同,各自的表现特征也不一样;重力流、内潮汐、上升流等水动力作用对峡谷的形态地貌、物质搬运以及生态系统的影响较为显著;对于常用的4种水动力系统的研究方法而言,其研究背景各不相同,且存在一定的局限性。本文为我国海底峡谷水动力系统的研究起到了一定的指导作用。  相似文献   

7.
三沙海底峡谷是连接西沙碳酸盐台地与南海西北次海盆的深水海底峡谷,起源于永兴岛和东岛之间的浅水区域,输送了大量碳酸盐碎屑到西北次海盆。三沙海底峡谷是迄今为止发现的南海最大碳酸盐型海底峡谷。海底峡谷的横断面呈现V、U字形,可以分为峡谷外侧、斜坡和谷底3个部分。峡谷外侧平缓、两侧斜坡陡峭、谷底平缓。沿着峡谷走向,可以分为上游、中游和下游3部分。上游部分坡度较陡、坡度变化较大,环礁周边的水道和海底滑坡体系是源区的碎屑物质搬运通道;中-下游部分坡度平缓、坡度变化小,主要以碎屑物质的搬运为主,汇入两侧斜坡上的侵蚀、坍塌形成的碎屑,在西北次海盆形成了喇叭状的入海盆口。通过三沙海底峡谷的研究,有助于揭示岛礁与海盆之间的沉积物输送、海底不稳定性等基础科学问题,为碳酸盐岩油气储层预测、岛礁生态旅游开发提供理论基础。  相似文献   

8.
开展西沙海域碳酸盐台地识别及模式总结,不仅具有油气勘探指导意义,而且能丰富碳酸盐岩沉积学理论。基于高分辨率三维、区域二维地震资料,利用古地貌分析,结合碳酸盐岩沉积学类比,确定了南海西北深水区碳酸盐台地类型及展布,分析了其演化过程。认为南海西北深水区中中新世开始发育碳酸盐台地,据构造背景(Ⅰ级)、地理位置(Ⅱ级)将其划分为离岸碳酸盐台地(中中新世)和孤立碳酸盐台地(晚中新世)两大类,据镶边性(III级)和坡度(IV)进一步细分为:离岸台地镶边岛架、离岸台地缓坡、离岸台地陡坡,孤立台地镶边岛架、孤立台地缓坡、孤立台地陡坡等亚类。南海西北部台地经历了由西向东的迁移过程。古地貌和海平面变化是该地区碳酸盐台地生长、持续、消亡的两大主控因素,陆坡隆起控制碳酸盐台地发育范围、规模和迁移方向;凸起控制碳酸盐台地类型、相带和迁移速度;半地堑作为外源容纳空间和输出通道而保证了碳酸盐台地发育的"水清"环境;台地边缘形态决定碳酸盐台地高能相带的分布、类型和规模。海平面上升导致碳酸盐台地由西向东退积,台地面积减小,环礁发育程度趋向成熟。  相似文献   

9.
海底峡谷是陆源物质向深海运移的重要通道。对于远离陆地的海底峡谷,通常认为浊流是物质搬运的主要营力。受限于探测精度和复杂作业环境影响,使用常规地球物理资料对深水海底峡谷尤其是对谷底沉积体的形态和结构特征的刻画不够精细。基于水下自主航行器(AUV,Autonomous Underwater Vehicle)采集的高分辨率多波束、旁扫声呐和浅地层剖面资料,对神狐峡谷群中的一条峡谷的谷底表面及部分浅部地层的沉积特征进行了分析。结果表明,峡谷谷底浅部地层并不像它平滑的表面那么简单,而是由大量内部杂乱弱反射、厚度在8.4 m及以下的块体搬运沉积体组成。峡谷中下游块体搬运沉积体大都沿峡谷走向整体呈条带状展布,不是直接来源于相邻的峡谷脊部。研究认为在特定沉积环境下(例如高海平面时期),陆坡限定性峡谷谷底的块体搬运沉积过程的重复进行是峡谷谷底物质输运的重要途径,与浊流共同雕刻了峡谷的地形地貌。基于AUV的地球物理探测技术将是研究海底浅表层沉积过程和保障海底工程施工的重要手段。  相似文献   

10.
海底峡谷在全球陆缘广泛分布,是浅海沉积物向深海运移的主要通道,对于理解深海浊流触发机制、深海沉积物的搬运模式、深海扇的发育历史和深海油气资源勘探等均具有重要意义。本文基于高分辨率高精度的多波束测深数据,首次对南海东北部海底峡谷体系进行了研究,精细刻画了高屏海底峡谷、澎湖海底峡谷、台湾浅滩南海底峡谷和东沙海底峡谷等4条大型海底峡谷的地貌特征并分析其发育控制因素。海底坡度、构造运动、海山与海丘是影响南海东北部峡谷群走向与特征的重要因素,其中,海底坡度对于峡谷上游多分支与“V”字特征有显著的控制作用;构造运动是控制高屏海底峡谷走向的因素,澎湖海底峡谷的走向则与菲律宾海板块与欧亚板块碰撞有关,东沙海底峡谷的走向则与东沙运动相关,台湾浅滩南海底峡谷上段受NW向断裂构造的控制;海山的阻挡作用造成峡谷局部走向和特征改变。海底峡谷群输送大量陆源沉积物到深海盆并形成大面积的沉积物波,海山和沉积物波的发育导致东沙海底峡谷下段“回春”和转向。  相似文献   

11.
The Pearl River Canyon system is a typical canyon system on the northern continental slope of the South China Sea, which has significant implications for hydrocarbon exploration. Through swath bathymetry in the canyon area combined with different types of seismic data, we have studied the morphotectonics and controlling factors of the canyon by analyzing its morphology and sedimentary structure, as well as the main features of the continental slope around the canyon. Results show that the Pearl River Canyon can be separated into three segments with different orientations. The upper reach is NW-oriented with a shallowly incised course, whereas the middle and lower reaches, that are located mainly in the Baiyun Sag, have a broad U-shape and have experienced consistent deposition. Seventeen deeply-cut canyons have developed in the slope north of the Baiyun Sag, playing an important role in the sedimentary processes of the middle and lower reaches of the Pearl River Canyon. These canyons display both asymmetrical V- and U-shapes along their lengths. Numerous buried channels can be identified below the modern canyons with unidirectionally migrating stacking patterns, suggesting that the canyons have experienced a cyclic evolution with several cut and fill phases of varying magnitude. These long established canyons, rather than the upper reach of the Pearl River Canyon, are the main conduits for the transport of terrigenous materials to the lower slope and abyssal basin during lowstand stage, and have contributed to the formation of vertically stacked deep-water fans in the middle reach. Canyon morphology is interpreted as a result of erosive sediment flows. The Pearl River Canyon and the 17 canyons in the slope area north of the Baiyun Sag probably have developed since the Miocene. Cenozoic tectonics, sea level change and sediment supply jointly control the morphology and sedimentary structure. The middle and lower reaches of the Pearl River Canyon developed on the paleo-terrain of the Baiyun Sag, which has been a persistently rapid depositional environment, receiving most of the materials transported via the canyons.  相似文献   

12.
High-resolution multichannel seismic data enables the discovery of a previous, undocumented submarine canyon(Huaguang Canyon) in the Qiongdongnan Basin, northwest South China Sea. The Huaguang Canyon with a NW orientation is 140 km in length, and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach. The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the central canyon. This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(~10.5 Ma). The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections, indicating that this ancient submarine canyon was filled with coarse-grained sediments. The sediment was principally scourced from the Xisha carbonate platform. In contrast to other buried large-scale submarine canyons(central canyon and Zhongjian Canyon) in the Qiongdongnan Basin, the Huaguang Canyon displays later formation time, smaller width and length, and single sediment supply. The coarse-grained deposits within Huaguang Canyon provide a good environment for reserving oil and gas, and the muddy fillings in Huaguang Canyon have been identified as regional caps. Therefore, Huaguang Canyon is potential area for future hydrocarbon exploration in the northwest South China Sea. Our results may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.  相似文献   

13.
High-resolution multichannel seismic data enables the discovery of a previous, undocumented submarine canyon(Huaguang Canyon) in the Qiongdongnan Basin, northwestern South China Sea. The Huaguang Canyon with a NW orientation is 140 km in length, and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach. The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the Central Canyon. This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(around 10.5 Ma). The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections, indicating that this ancient submarine canyon was filled with coarse-grained sediments. The sediment was principally scourced from the Xisha carbonate platform. In contrast to other buried large-scale submarine canyons(Central Canyon and Zhongjian Canyon) in the Qiongdongnan Basin, the Huaguang Canyon displays later formation time,smaller width and length, and single sediment supply. The coarse-grained deposits within the Huaguang Canyon provide a good environment for reserving oil and gas, and the muddy fillings in the Huaguang Canyon have been identified as regional caps. Therefore, the Huaguang Canyon is a potential area for future hydrocarbon exploration in the northwestern South China Sea. The result of this paper may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.  相似文献   

14.
Submarine canyons have been the subject of intense studies in recent years because of their close link to deepwater systems. The Central Canyon is a large unusual submarine canyon in the northwestern margin of the South China Sea, has a total length of about 425 km and is oriented sub-parallel to the continental slope. Using integrated 2D/3D seismic, well log, core, and biostratigraphy data, the current study documents the stratigraphic framework, internal architecture, depositional processes, and controlling factors of the segment of the Central Canyon located in the Qiongdongnan Basin.The integrated analysis shows that the canyon fill consists of four 3rd-order sequences, SQ4, SQ3, SQ2, and SQ1. Each of them is bounded by regionally important erosional surfaces (3rd-order sequence boundaries). Within each 3rd-order sequence there is maximum regressive surface separating a regressive systems tract in the lower part and a transgressive systems tract in the upper part. Nine facies are identified and are further grouped into five depositional units, DU1 through DU5.The canyon evolved through four cut-and-fill stages, with a change from predominantly axial cut-and-fill to primarily side cut-and-fill. Axial cut-and-fill dominated during the first stage, and the slope-subparallel paleo Xisha Trough was intensely eroded by large-scale axial gravity flows. During the second cut-and-fill stage, the Central Canyon experienced both axial and side cut-and-fill. The third stage was dominated by side cut-and-fill. The canyon was eroded and fed by slope channels that transported sandy sediments from the shelf to the north during regression, and was covered by side-derived muddy MTCs during transgression. The last stage was also dominated by side cut-and-fill. The canyon, however, was filled predominantly by side-derived muddy MTCs.Evolution and depositional processes in the Central Canyon were likely controlled by slope-subparallel negative-relief induced by paleo-seafloor morphology, structural inversion of the Red River Fault and the slope-subparallel basement faults. Additionally, Coriolis force, sea-level fluctuations, high sedimentation rate, and rapid progradation of the slope also controlled and influenced the depositional processes, and internal architectures of the canyon.  相似文献   

15.
This study examines the influence of a submarine canyon on the dispersal of sediments discharged by a nearby river and on the sediment movement on the inner shelf. The study area includes the head region of the Kao-ping Submarine Canyon whose landward terminus is located approximately 1 km seaward from the mouth of the Kao-ping River in southern Taiwan. Within the study area 143 surficial sediment samples were taken from the seafloor. Six hydrographic surveys along the axis of the submarine canyon were also conducted over the span of 1 yr. Three different approaches were used in the analysis of grain-size distribution pattern. They include (1) a combination of ‘filtering’ and the empirical orthogonal (eigen) function (EOF) analysis technique, (2) the McLaren Model, and (3) the ‘transport vector’ technique. The results of the three methods not only agree with one another, they also complement one another. This study reveals that the Kao-ping Submarine Canyon is relatively a stratified and statically stable environment. The hydrographic characteristics of the canyon display seasonal variability controlled primarily by the temperature field and the effluent of the Kao-ping River. The hydrographic condition and the bottom topography in the canyon suggest the propagation of internal tides during the flood season (summer) of the Kao-ping River. The submarine canyon acts as a trap and conduit for mud exchange between the Kao-ping River and offshore. Near the head of the canyon there is a region of sediment transport convergence. This region is also characterized by high mud abundance on the seafloor that coincides with the presence of high suspended sediment concentration (SSC) spots in the bottom nepheloid layer. Outside the submarine canyon on the shelf where the evidence of wave reworking is strong, the northwestward alongshore transport dominates over the southeastward transport, which is a common theme on the west coast in southern Taiwan.  相似文献   

16.
SeaMARC II sidescan (imagery and bathymetry) and seismic data reveal the morphology, sedimentary processes, and structural controls on submarine canyon development in the central Izu-Bonin forearc, south of Japan. Canyons extend up to 150 km across the forearc from the trench-slope break to the active volcanic arc. The canyons are most deeply incised (1200–1700 m) into the gentle gradients (1–2°) upslope on the outer arc high (OAH) and lose bathymetric expression on the steep (6–18°) inner trench-slope. The drainage patterns indicate that canyons are formed by both headward erosion and downcutting. Headward erosion proceeds on two scales. Initially, pervasive small-scale mass wasting creates curvilinear channels and pinnate drainage patterns. Large-scale slumping, evidenced by abundant crescent-shaped scarps along the walls and tributaries of Aoga Shima Canyon, occurs only after a channel is present, and provides a mechanism for canyon branching. The largest slump has removed >16 km3 of sediment from an 85 km2 area of seafloor bounded by scarps more than 200 m high and may be in the initial stages of forming a new canyon branch. The northern branch of Aoga Shima Canyon has eroded upslope to the flanks of the arc volcanoes allowing direct tapping of this volcaniclastic sediment source. Headward erosion of the southern branch is not as advanced but the canyon may capture sediments supplied by unconfined (non-channelized) mass flows.Oligocene forearc sedimentary processes were dominated by unconfined mass flows that created sub-parallel and continuous sedimentary sequences. Pervasive channel cut-and-fill is limited to the Neogene forearc sedimentary sequences which are characterized by migrating and unconformable seismic sequences. Extensive canyon formation permitting sediment bypassing of the forearc by canyon-confined mass flows began in the early Miocene after the basin was filled to the spill points of the OAH. Structural lows in the OAH determined the initial locus of canyon formation, and outcropping basement rocks have prevented canyon incision on the lower slope. A major jog in the canyon axis, linear tributaries, and a prominent sidescan lineament all trend NW-NNW, reflecting OAH basement influence on canyon morphology. This erosional fabric may reflect joint/fracture patterns in the sedimentary strata that follow the basement trends. Once the canyons have eroded down to more erosion-resistant levels, channel downcutting slows relative to lateral erosion of the canyon walls. This accounts for the change from a narrow canyon axis in the thickly sedimented forearc basin to a wider, more rugged canyon morphology near the OAH. About 9500 km3 of sediment has been eroded from the central, 200 km long, segment of the Izu-Bonin forearc by the formation of Aoga Shima, Myojin Sho and Sumisu Jima canyons. The volume of sediment presently residing in the adjacent trench, accretionary wedge, and lower slope terrace basin accounts for <25% of that eroded from the canyons alone. This implies that a large volume (>3500 km3 per 100 km of trench, ignoring sediments input via forearc bypassing) has been subducted beneath the toe of the trench slope and the small accretionary prism. Unless this sediment has been underplated beneath the forearc, it has recycled arc material into the mantle, possibly influencing the composition of arc volcanism.  相似文献   

17.
Based on the interpretation of high resolution 2D/3D seismic data,sedimentary filling characteristics and fullfilled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied.The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma(T40),at which the canyon began to develop due to the scouring of turbidity currents from west to east.During the period of 11.6–8.2 Ma(T40–T31),strong downcutting by gravity flow occurred,which led to the formation of the canyon.The canyon fillings began to form since 8.2 Ma(T31) and were dominated by turbidite deposits,which constituted of lateral migration and vertical superposition of turbidity channels during the time of8.2–5.5 Ma.The interbeds of turbidity currents deposits and mass transport deposits(MTDs) were developed in the period of 5.5–3.8 Ma(T30–T28).After then,the canyon fillings were primarily made up of large scale MTDs,interrupted by small scale turbidity channels and thin pelagic mudstones.The Central Canyon can be divided into three types according to the main controlling factors,geomorphology-controlled,fault-controlled and intrusionmodified canyons.Among them,the geomorphology-controlled canyon is developed at the Ledong,Lingshui,Songnan and western Baodao Depressions,situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt.The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression.Intrusion-modified canyon is only occurred in the Songnan Low Uplift,which is still mainly controlled by geomorphology,the intrusion just modified seabed morphology.The full-filled time of the Central Canyon differs from west to east,displaying a tendency of being successively late eastward.The geomorphology-controlled canyon was completely filled before3.8 Ma(T28),but that in intrusion-modified canyon was delayed to 2.4 Ma(T27) because of the uplifted southern canyon wall.To the Changchang Depression,the complete filling time was successively late eastward,and the canyon in eastern Changchang Depression is still not fully filled up to today.Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities.Due to sufficient supply of turbidity currents and MTDs from west and north respectively,western segment of the Central Canyon is entirely filled up earlier.Owing to slower sediment supply rate,together with differential subsidence by deep-seated faults,the full-filled time of the canyon is put off eastwards gradually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号