首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
海底管道对海上油气田安全生产有着非常重要的作用,对东方1-1海管进行了连续6年的无人有缆遥控水下机器人(remote operatedvehicle,ROV)调查,根据调查数据,分析了海管悬跨的分布特征以及变化情况,按海管悬跨严重程度进行了风险等级分区。结果表明在受水动力影响最大的深水平坦区海管悬跨分布密集,并有逐年加剧趋势,安全风险较大。并对悬跨形成机理和极限悬跨长度进行了分析和阐述。介绍了沙袋支撑和局部抛石填埋悬跨治理方法的原理和优缺点,对比分析了治理效果情况,认为局部抛石治理方法效果优于沙袋治理。  相似文献   

2.
介绍了如何根据近年来海上走私的新特点,利用成熟的声纳探测和水下机器人技术,进行反走私水下取证系统设计的设计思想和技术方案,并对系统的组成、性能及工作原理和使用方法进行了阐述。  相似文献   

3.
The topic of this paper is the modeling, parameter identification, and analysis of the heave and pitch dynamics in a remote operated vehicle (ROV). The work presented here is motivated by an unusual dynamic behavior experienced on the Gaymarine Pluto-Gigas ROV: if the depth is regulated using a proportional controller, the ROV exhibits permanent oscillations at high forward speed. The purpose of this paper is to gain insight into ROV dynamics, so as to explain the reason for the oscillations. To this end, a dynamic gray-box model is developed and its uncertain parameters are identified from real data. The analysis of such a model shows that the nonlinear dynamics of the ROV contains a limit cycle. This discovery explains the observed oscillatory behavior. An interesting aspect of this limit-cycling behavior is that it is not due (as usual) to saturation effects of the actuators, but is intrinsic in the ROV dynamics.  相似文献   

4.
深海遥控潜水器多体系统非线性耦合动力特性模拟   总被引:1,自引:0,他引:1  
建立带缆遥控潜水器(TROV)系统空间运动模型,探讨支持船-吊缆-中际站-脐带缆-潜水器多体之间的强非线性耦合运动机理。潜器的运动考虑为六自由度,缆索分段的三维动态方程中采用了"凝集参数"模型与平均切向量非线性流体动力载荷处理技术,通过计算非均匀缆索的动张力和瞬态构型,预报导致脐带缆保护层及其内部光电传输芯线结构破坏的巨大瞬间突变载荷,对避免谐振,延长缆索寿命和最大限度地扩大ROV系统安全操作的范围,确保潜水器安全入坞和回收,节约试验费,避免作业事故都具有重要意义。  相似文献   

5.
This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle(ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm.The scaled model of ROV was constructed by 1:1.6.Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test.And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions.Rotation control motion was simulated to verify spatial model proposed.Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment,and accomplish some more challengeable and practical missions.  相似文献   

6.
In this paper, a hydrodynamic model is developed to simulate the six degrees of freedom motions of the underwater remotely operated vehicle (ROV) including the umbilical cable effect. The corresponding hydrodynamic forces on the underwater vehicle are obtained by the planar motion mechanism test technique. With the relevant hydrodynamic coefficients, the 4th-order Runge–Kutta numerical method is then adopted to solve the equations of motions of the ROV and the configuration of the umbilical cable. The multi-step shooting method is also suggested to solve the two-end boundary-value problem on the umbilical cable with respect to a set of first-order ordinary differential equation system. All operation simulations for the ROV including forward moving, ascending, descending, sideward moving and turning motions can be analyzed, either with or without umbilical cable effect. The current effect is also taken into consideration. The present results reveal that the umbilical cable indeed significantly affects the motion of the ROV and should not be neglected in the simulation.  相似文献   

7.
The effectiveness of subsea intervention has been found to be dependent upon the capability of an autonomous underwater vehicle's (AUV's) or remotely operated underwater vehicle's (ROV's) auto-positioning system. However, these vessel's dynamics vary considerably with operating condition, and are strongly coupled; they are expensive and difficult to derive, theoretically or through conventional testing, making the design of conventional autopilots difficult to achieve. Multi-input-multi-output self-tuning controllers offer a possible solution. Two such schemes are presented. The first is an implicit linear quadratic online, self-tuning controller, and the other uses a robust control law based on a first-order approximation of the open-loop dynamics and online recursive identification. The controllers' performance is evaluated by examining their behavior when controlling a comprehensive nonlinear simulation of an ROV and its navigation system. An interesting offshoot of this study is the application of recursive system identification techniques to the derivation of ROV models from data gathered from the trials; the potential advantages of this method are discussed  相似文献   

8.
A prototype supervisory control system for a remotely operated vehicle (ROV) is described and several key elements demonstrated in simulation and in-water tests. This system is specifically designed to fill the needs of JASON, a new ROV under development that will perform scientific tasks on the seafloor to depths of 6000 m. JASON will operate from the ARGO towed imaging platform, which is currently operational. Supervisory control is a paradigm for combined human and computer control. Several key elements of the supervisory control system are presented. These include the closed-loop positioning system based on a high-resolution acoustic navigation system, a monitoring capability for assessing performance and detecting undesirable changes, and an interface that allows the human operator and the computer system to specify the desired vehicle trajectory jointly.  相似文献   

9.
A new fault-tolerant redundancy resolution scheme is presented that allows a single six degree of freedom (DOF) command to be distributed over a small remotely operated underwater vehicle–manipulator (ROVM) system. ROVM systems are composed of a remotely operated underwater vehicle (ROV) and serial manipulator. The combined system is often kinematically redundant for the six-DOF end-effector command, and such a ROVM system admits an infinite number of joint-space solutions for a commanded end-effector state. In the current work, the primary objective is to follow the desired end-effector velocities commanded by a human pilot. The primary objective is realized using the right Moore–Penrose pseudoinverse solution that minimizes the two-norm of the collective joint velocities. Secondary objectives considered are: avoiding manipulator joint limits, avoiding singularities and high joint velocities, keeping the end-effector in sight of the on-board camera, minimizing the ROV motion, and minimizing the drag-forces on the ROV. Each criterion is defined within the framework of the gradient projection method (GPM). The hierarchy for the secondary tasks is established by a low-level artificial pilot that determines a weighting factor for each criterion based on if–then-type fuzzy rules that reflect an expert human pilot's knowledge. The resulting weight schedule yields a self-motion (null-space motion) that emulates how a skilled operator would utilize the redundancy of the ROVM to achieve the secondary objectives. In addition, the proposed method has a fault-tolerant property that enforces joint-velocity limits and also redistributes the end-effector velocity command in the case of faulty joints. To demonstrate the efficacy of the proposed scheme, a numerical simulation case study is performed. The results illustrate that complex spatial end-effector manoeuvres that are otherwise not possible with a stationary ROV can be accomplished in real-time via the coordination of the ROV and the manipulator. The on-line nature of the proposed scheme makes it suitable for remote systems where the desired end-effector state is not known a priori.  相似文献   

10.
11.
Hsin-Hung Chen   《Ocean Engineering》2008,35(10):983-994
Parameter identification of a remotely operated vehicle (ROV) is often based on the dynamic responses collected by its onboard sensors. However, for commercial ROVs, the required data for identification may not be available due to the absence of suitable sensors or limitations in accessing onboard sensor data. Therefore, this study proposes a vision-based tracking system to measure the dynamic response of an ROV. The tracking system is independent of the ROV, and is able to localize an ROV to a high degree of precision by means of projective mapping. The validity of the proposed tracking system is demonstrated through identification of a commercial ROV. A simplified nonlinear ROV dynamic model with six degrees of freedom (DOF) is used for identification. Uncoupled motions, including surge, sway, and yaw, are obtained from the ROV dynamic model, and the corresponding experiments are carried out for each DOF. Hydrodynamic parameters are then estimated with numerical optimizations by comparing the measured ROV responses with the output of the mathematical model. The experimental results show that the vision-based tracking system can accurately measure the transient and steady-state responses of an ROV. Additionally, the simulations of the ROV dynamic model, with the optimal parameter estimates, give results in agreement with the measured data.  相似文献   

12.
2017年我国"蛟龙"号载人潜水器完成了为期5年的试验性应用,期间累计下潜100余次,形成和建立了科学完善的应用保障体系和专业的应用人才队伍。以"蛟龙"号试验性应用中运行与保障的实践经验为基础,针对其中设备与备品备件管理、运行作业管理、拆检总装管理、数据资料查询与利用等方面的重要需求,设计开发了一套"蛟龙"号载人潜水器运行与保障信息管理系统,通过信息化平台实现设备资源、作业成果以及经验积累传承之间的高效衔接与复用,最大限度地降低装备运行成本、提高作业效率、保障海上作业安全。文章提出的载人潜水器运维体系能够为我国其他行业或部门的载人潜水器、远程缆控机器人(ROV)、水下自治机器人(AUV)等重大海洋装备的运行与保障提供有益参考借鉴。  相似文献   

13.
A novel self-contained navigation system has been devised for underwater vehicles operating in and around offshore installations. This system matches data from a sector-scanning sonar device to a computer model of the installation. The paper begins by highlighting the existing approaches to subsea navigation before outlining the main features of the proposed system. It then concentrates on a key component of this system which is a method for calculating the position and heading of an underwater vehicle navigating in the vincinity of tubular steel structures. An iterative solution method is presented which incorporates six degree of freedom vehicle motions and this is verified in a series of laboratory experiments with various arrangements of structural members and using a commercial sonar device. The key features, applications and performance of this method are discussed. The main conclusion is that the proposed method for calculating the position and heading of an underwater vehicle contributes towards achieving an accurate and reliable subsea navigation capability.  相似文献   

14.
In July 1999, we conducted a side-scan sonar survey in the southeastern Mediterranean Sea, between 300- and 800-m water depths approximately 30 nautical miles from the Sinai Peninsula and Gaza Strip. Examination of the sonar imagery revealed numerous acoustic targets, each on the order of a few meters and surrounded by small depressions. Subsequent visual inspection of two of these targets by a remotely operated vehicle (ROV) revealed they were cold hydrocarbon seeps through which small bubbles of gas and shimmering fluids were emitted. Surrounding each cold seep were benthic communities of organisms. The ROV was used to gather video and still-camera imagery, map the surrounding microbathymetry, and collect samples of the seep structure and associated organisms. A sub-bottom profiler, which was attached to the ROV, was used to image the submerged structure of the second seep site. Further examination and analysis revealed that the seeps comprise hard deposits of calcium carbonate, and that the organisms are clams and polychaetes which are probably chemosymbiotic. The origin of the seep gas is hypothesized to be the natural decay of organic matter in the sapropel sediment, leading to the production of methane. Circulating fluids, which carry the dissolved gas through preferential pathways along small faults or bedding planes, percolate through the seafloor, precipitate calcium carbonate, release gas, and support the benthic organisms.  相似文献   

15.
介绍一种新研制的用于近海海洋环境检测的轻型机器人,该机器人由智能检测控制台、水下检测器和控制电缆三部分构成;水下检测器由6个独立密封舱室和尾翼组成,具有一个主推进器和两个侧向推进器。特点是采用了潜艇式ROV结构,大幅降低了成本,适度增大了负载,可以满足一般工程检测的需要。通过在控制台上发出指令,可控制ROV完成前进、后退,上浮、下沉、左右转弯等动作;可以实现一定流速下的动力悬停,可以使ROV保持一定的倾角,以配合实现检测作业。该水下机器人可以检测腐蚀电位、温度、深度等最多16个参数,设计深度为40m。  相似文献   

16.
许文锋 《台湾海峡》2009,28(1):102-106
由于海底隧道的特殊性,其防排水技术与一般陆地隧道有着显著区别,本文介绍了厦门翔安海底隧道的防排水方案设计情况,对方案实施效果进行了评估.得出了海底隧道防排水应结合围岩与支护的自防水功能采取以堵为主的原则,并针对海底隧道防排水方案实施中的问题,提出了对初期支护背后注浆是重点,改进注浆材料等建议.从而论述了防排水技术是海底隧道工程建设的核心问题.  相似文献   

17.
Subtidal habitats have not yet been accounted for in habitat maps of South African estuaries. In this study, a novel method for mapping subtidal estuarine habitats, using a remotely operated underwater vehicle (ROV) piloted from a boat, was developed and tested in the Knysna Estuary. Video footage was recorded along 48 transects across the width of the estuary, and then reviewed to identify, classify and map habitats. Using the method developed in this study, 21 hours of footage was recorded over 15 days of sampling, and about 30 hours of post-processing was carried out to map an area exceeding 850 ha. This study has produced the first baseline dataset of subtidal habitats for a South African estuary. Additionally, the study revealed the previously unknown distribution of the invasive red seaweed Asparagopsis taxiformis, and the underestimation in previous studies of the estuary of area cover of eelgrass Zostera capensis by 130 ha.  相似文献   

18.
一种新型潜水器HROV及其关键技术综述   总被引:8,自引:0,他引:8  
沈明学  胡震  刘正元 《海洋工程》2006,24(3):119-123
介绍一种新概念潜水器———混合型潜水器(HROV)。该潜水器能在两种不同的模式下工作,可以像AUV一样进行大范围的探测和搜索,也可以通过直径小于1 mm的微细光纤,执行传统ROV的近距离观察和采样任务。介绍了HROV的系统组成和工作过程,探讨与之相关的关键技术及其主要研究内容,并对HROV技术的应用前景也作了一些分析。  相似文献   

19.
A deep ROV "DOLPHIN 3K": Design and performance analysis   总被引:1,自引:0,他引:1  
DOLPHIN 3K is a tethered remotely operated vehicle (ROV) system for ocean bottom surveys down to a depth of 3300 m. The system will be completed in fiscal year 1986. This paper describes the design of the system, and analyzes the maneuverability of the vehicle and the transmission performance of the optical fiber data communication system.  相似文献   

20.
This paper considers the performance of subsea intervention tasks from an unmanned untethered submersible while using acoustic communications. It is argued that the low bandwidth and high delay imposed by acoustic modems makes it unwise to adopt conventional teleoperation techniques and a system is presented which permits subsea teleoperative tasks to be carried out using such limited communication resources. The described implementation employs active techniques to assist the operator both in performing actions and in recovering from those problems which will inevitably occur during real-world interaction. It provides the operator with both simulated and real visual imagery and is designed to adapt dynamically to changing bandwidth and computational resources. Experiments are described in which an operator in Philadelphia, PA, controlled a robot manipulator mounted on the JASON underwater vehicle submerged off the Massachusetts coast. All communication over this 500-km distance was via a combination of Internet and a simulated acoustic link. Analysis of the bandwidth requirements showed them to be consistent with those from acoustic subsea networks  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号