首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
Abstract

"Crust”; zones, as defined by shear strength profiles, have been delineated in Mississippi prodelta sediments since the advent of the remote wire‐line probe. Attempts to map the distribution of the “crust”; on the prodelta have been hampered by sparsity of in situ measurements and its apparent lateral discontinuity. Evidence based on clay fabric, geotechnical properties, and the location of selected cores within certain geomorphic zones, suggests the “crusts”; are associated with zones of shearing during an episode of submarine sediment movement on the prodelta.

The clay fabric within the “crust”; zone differs from that found above and below in the high‐porosity sediments. A noticeable degree of clay platelet preferential alignment is characteristic of sediments within the “crust.”; This preferred orientation occurs as localizations rather than as an overall alignment of all the particles. The clay fabric of the higher‐porosity sediments above and below the “crust”; is typified by randomly arranged clay particles and domains, sharing edge‐to‐face contacts which create an open framework. Apparent increases in the coarse silt fraction in the “crust”; zone were observed initially in scanning electron and transmission electron micrographs and later confirmed by grain size analysis. The presence of this silt apparently contributes to the increase in shear strength within the “crust.”; Clay particle arrangement in close proximity to these larger grains is modified in such a manner as to reduce water contents. Transmission electron microscopy and scanning electron microscopy observations of the “crust”; reveal that the void ratio decreases, resulting in a concomitant reduction in the water content as reflected in the geotechnical properties profiles. The type of fabric exhibited by the “crust”; suggests a remolding and dewatering of initially porous silty clay sediments in response to shear stresses operating on the prodelta.

Core samples were recovered from sediments exhibiting a “crust”; in areas identified by other researchers as unstable, based on seismic and acoustic profiles and sidescan sonar records. The prodelta has been modified by a peripheral mudflow at the location where the cores were collected for this study.  相似文献   

2.
鉴于海底浅表层软黏土强度测试精细化程度不足的现状,引入流体测试中的流变仪,对青岛海域海底浅表层软黏土开展多组原状和重塑试样的不排水剪切强度试验,通过对比静力触探和微型十字板测试结果,验证了流变仪测试方法的有效性。基于流变仪试验结果,揭示了海底软黏土原状和重塑状态下不排水剪切破坏模式,探讨了海底软黏土不排水剪切强度和灵敏度随埋深及液性指数的发展演变趋势,评价了软黏土的结构性特征。最后,引入含水率与液限之比对海底浅表层软黏土重塑不排水剪切强度进行了归一化分析,为近海海洋开发活动提供技术支撑。  相似文献   

3.
- The behavior of the reinforced concrete members subjected to combined torsion and shear is studied in this paper. Based on the skew bending failure pattern observed in tests, and according to the gradual increase in strain on the concrete surface, a nonlinear full range analysis is performed for predicting the torque-twist relationship of members under combined torsion and shear for the ratio of torsion to shear is chosen bigger than 0.5 (T/ V b> 0.5). The test results are compared with the theoretical predictions.  相似文献   

4.
循环应力下饱和黏土剪切变形特性试验研究   总被引:3,自引:0,他引:3  
针对饱和重塑黏土,利用土工静力-动力液压三轴-扭转多功能剪切仪,在不固结不排水(UU)条件下进行了应力控制式循环扭剪和竖向-扭转耦合试验,通过对试验结果的对比分析探讨了初始预剪应力和应力反向对应力-应变关系特性的影响,并阐述了不同加荷模式下孔隙水压力发展特性。以此为基础,综合考虑剪切变形和正向偏差变形的共同效应,同时为了能够反映平均残余变形和循环变形的影响,建议了一个综合应变破坏标准的算式。进而通过利用试验数据与目前常用的应变标准比较,表明这种破坏标准具有普遍适用性和较好的稳定性,适用于判定各种应力条件下黏土试样破坏及其强度。  相似文献   

5.
Abstract

When waves propagate over the ocean floor, they induce a change of hydrodynamic pressure, positive under the crest and negative under the trough. These pressure changes may cause shear failure in soft sediments and lead to submarine landslides. This paper presents a general analytical procedure for evaluating the probability of wave‐induced failure in offshore clay sediments. Both the wave and the un‐drained shear strength of clay sediments are considered random. Numerical results of some analyses are also presented.  相似文献   

6.
An engineering geological study was undertaken to determine the engineering properties, and mineralogy of ultrasoft soils (USS) obtained from a nearshore mine tailings sedimentation pond. The USS is a high plasticity clay of high water content and low shear strength. Marine bathymetric and seismic reflection surveys were undertaken in the sedimentation pond located in the foreshore of the Eastern part of the Republic of Singapore. Specimens collected from the bore holes were tested to determine the engineering and mineralogy properties of the USS. Field vane shear tests were undertaken just adjacent to the sampling bore holes to determine the shear strength properties of the USS. The mineralogical properties of the USS were determined using X-ray diffraction and scanning electron microscope techniques. The USS is under consolidated soil where higher density and lower water content were found at deeper depth. The USS had three different compression indices under three log cycles of effective stress between 1–10, 10–100, and 100–1,000 kPa. This is the main characteristic of USS, which diverts from reconstituted soil. The outcome of this research is fundamental for understanding the compression behavior and subsequently the development of a constitutive model for USS, typical found in sedimentary pond.  相似文献   

7.
The behaviors of granular material and influencing factors under complex dynamic loading are studied by more and more researchers with particle flow method. Only the strain-controlled loading has been generally used in the current study, although this method was not consistent with the practice of engineering in many situations. In this article, stress-controlled dynamic simulation tests were carried out with particle flow method, which were used to study the collapse characteristics of silt under mutation of principal stress orientation. The tests were performed by PFC2D. The simulation results and the laboratory real tests’ results had a high degree of similarity, particularly in the collapse strain and vibration times. It was very useful to forecast the silt's critical failure state. Based on the verification data, the effects of confining pressure and cyclic shear stress ratio on the collapse characteristics of silt were studied further. With the increase of cyclic shear stress ratio, the deviator strain amplitude increased and the required vibration times gradually reduced to achieve the same strain level. Under the same dynamic shear stress ratio and vibration times, the initial dynamic elastic modulus slightly increased with the increase of initial confining pressure, and the variation range of final collapse deviator strain was small. In the analysis of micro-structural evolution, the redistribution of internal stress of sample was revealed during cyclic loading. With the increase of vibration times, the development of distribution gradually stabilized, and then the high shear stress appeared in some connected regions. On that stage, the particle system developed to instability and failure. The PFC simulation results confirmed that the collapse state was the critical stage to trigger the liquefaction of silt.  相似文献   

8.
由于预载下土体固结,海底浅基础的承载力会随作业时间的增加而改变,其时变效应评估困难。基于修正剑桥模型,采用水土耦合有限元方法研究了预载作用下浅基础在正常固结黏土海床中承载力破坏包络面的时变规律。在验证数值模型准确性后,通过位移探针测试获取复合加载模式下浅基础的破坏包络面,揭示了预载和固结程度对基础承载力和破坏包络面的影响,给出了预载作用下浅基础承载力包络面计算方法。结果表明:随着预载比增加,固结单轴承载力呈现线性增长,固结承载力增幅在水平向最大;部分固结承载力相对增幅与预载比无关,而随固结度变化;破坏包络面形状由预载比控制,而包络面大小由预载比和固结度共同控制。研究结果可为海洋浅基础的时变承载力评估提供参考依据。  相似文献   

9.
The paper presents the results of a series of monotonic and cyclic triaxial shear tests carried out to study the influence of the strain effect and load cycles on the undrained shear strength of a cemented marine clay from the East coast of India. The undrained shear strength of Indian coastal marine clay has been established from a detailed shear testing carried out in three phases. Undisturbed soil samples taken out from the seabed were used in the test. In the first part, a comprehensive monotonic shear testing has been carried out under both stress-controlled and strain rate-controlled conditions. In the second phase on identical soil specimen, undrained cyclic shear tests were carried out at various cyclic stress ratios (CSR) and these stress levels are chosen in such a way so that no failure occurred during testing. In the final phase post cyclic monotonic shear testing was conducted to qualitatively evaluate the damage caused by cyclic loading. The monotonic shear test results bring out the influence of cementation that can be detected by the stress-controlled test. The cyclic stress results are analysed in terms of CSR. Further, the results are correlated in terms of stress path.  相似文献   

10.
通过对南海重塑粉质粘土土样的大量动三轴试验结果分析,得到此种土在波浪荷载作用后不捧水抗剪强度衰化同动载作用引起的动应变幅及平均累积孔压之间的相互关系和预估公式;并通过与超固结土样的静三轴剪切试验结果的比较,发现动、静三轴两种试验结果具有很好的吻合关系。建议可用超固结土样的静三轴剪切试验同时结合部分动三轴试验来预估土样在波浪荷载作用后不排水抗剪强度衰化与平均累积孔压之间的关系。  相似文献   

11.
半潜浮式风机逐渐在深海风电开发中受到关注,建立风机、平台与系泊结构耦合数值计算模型,通过FAST与AQWA链接进行风机塔基荷载及平台运动响应相互耦合传递,基于随机波与极限波组合模型生成畸形波时程序列,进行半潜浮式风机系泊失效全过程时域模拟计算分析,得出系泊锚链张力、风机、塔筒和平台运动时程响应,探究系泊失效、风机停机和叶片变桨速率对浮式风机平台系泊结构动力响应的影响。结果表明:畸形波作用下浮式平台和系泊结构动力响应显著,系泊失效导致塔基剪力增加,平台纵荡和纵摇运动响应显著增大;风机停机会引起系泊锚链张力显著减小,转子推力、塔基剪力和叶尖挥舞位移响应逐渐衰减,平台纵荡、纵摇和横摇运动响应显著减小;随着叶片变桨速率增加,风机转子推力和塔基剪力波动幅值增大。  相似文献   

12.
Results are presented from a series of settling column experiments investigating temporal variations in the flocculation characteristics of purely cohesive (kaolin clay) sediment suspensions and cohesive (kaolin) and non-cohesive (fine sand) sediment fraction mixtures. Experimental runs were conducted under controlled hydrodynamic conditions generated by a rigid array of in-phase oscillating grids. The results indicated that rapid initial floc aggregation occurred under low turbulent shear rates, with peak maximal and root-mean-square (r.m.s.) floc sizes (∼ 400 μm and ∼ 200 μm, respectively) attained after relatively short time periods, before reducing with time. By contrast, lower aggregation rates and smaller floc sizes were observed under higher shear conditions, with flocs retaining suspended in the settling column for longer time scales due to the increased turbulence. The mud input concentration displayed some correlation with maximal and r.m.s. floc sizes at higher shear rates but no correlation was apparent at low shear rates. This observed floc behaviour may be attributed to the differences in concentration gradients at high and low shear rates that affect both floc settling rate and time required for flocs to attain equilibrium size. The addition of the fine sand fraction to the kaolin clay suspension reduced both the initial floc formation (i.e. aggregation) rate and the maximal and r.m.s. floc sizes attained throughout the experiments. The reduction in maximal floc sizes appeared to be enhanced by an increase in the ratio of fine sand to kaolin clay content within the mixture.  相似文献   

13.
现代黄河三角洲沉积物临界剪切应力研究   总被引:2,自引:1,他引:1  
为研究现代黄河三角洲沉积物临界剪切应力空间分布特征及其影响要素,本文在现代黄河三角洲不同沉积区域,垂直海岸线布设测线,采用黏结力仪进行沉积物临界剪切应力测试,并在相应测点开展沉积物物理力学性质与粒度成分测量工作。研究结果表明高潮滩沉积物临界剪切应力最高,在1.1~4.02Pa之间,沉积物不易发生侵蚀,含水量低、干容重大、黏粒与粉粒含量高、平均粒径小、不排水剪切强度大是高潮滩沉积物临界剪切应力偏高的重要因素;中潮滩沉积物受生物活动影响显著,临界剪切应力在0.10~1.90Pa之间,生物活动扰动、生物排泄及遗体遗迹的程度与数量是造成不同区域测试差异的重要原因;低潮滩沉积物临界剪切应力很低,在0.08~0.80Pa之间,沉积物极易发生侵蚀,含水量高、干容重偏低、砂砾含量高、平均粒径大、不排水剪切强度小是其典型的沉积物物理力学性质,也是造成低潮滩沉积物临界剪切应力普遍低于高潮滩的重要原因;现代黄河三角洲沉积物临界剪切应力区域特征表现为北部沉积物临界剪切应力水平最低,在0.11~0.4Pa之间,东部最高,在2.8~4.55Pa之间,南部与东北部居中,分别在0.63~0.84Pa与0.83~2.99Pa之间,东北部空间非均匀性分布显著,粒度组分的分异是导致沉积物临界剪切应力区域差异显著的重要因素,黏粒含量高的沉积区域沉积物临界剪切应力普遍高于砂砾含量高的沉积区;与世界其他大型河口三角洲相比,现代黄河三角洲沉积物临界剪切应力水平偏低但非均匀程度较高。  相似文献   

14.
Abstract

To model the deep penetration process of T-bar in soft clay, an adhesive contact algorithm was developed in conjunction with the Coupled Eulerian–Lagrangian approach with consideration of the effect of strain softening. Numerical results show the simulated penetration resistance agrees well with the previous centrifuge experimental data. The failure mechanisms of the clay around the T-bar can be divided into three stages, including shallow penetration stage with global failure mechanism, partially and fully back-flow stages with local failure mechanism. Fluctuations of the penetration resistance can be explained by the formation and evolution of shear bands around the T-bar. Newly formed shear bands would intersect the previously formed shear bands in the partially back-flow stage, which results in the formation of “ear-shaped” areas rotating anticlockwise around the T-bar. The evolution of shear bands would form a similar fabric structure in the fully back-flow stage.  相似文献   

15.
Abstract

A nonlinear mathematical model for estimating the water content dependent undrained shear strength of clayey soils was developed. Three types of clay mixtures (kaolinite, bentonite, and kaolinite-bentonite) were considered. The shear strength of the given soil samples was determined via torvane tests. Experimental results were compared with three numerical results: (i) the analytical function fit, (ii) modeling without the water content effect, and (iii) modeling with the water content effect using the Mohr-Coulomb (M-C) model. There was good agreement among the experimental, analytical, and numerical results with and without the water content effect in the fully softening zone. However, there was a large difference between the numerical results obtained from the developed model with and without the water content effect in the flow zone with a high liquidity index, because the shear strength may decrease significantly to low value in the case of an abrupt increase of the water content. The greatest advantage of the developed model is that it can simulate the reduction of the shear strength and shear band development under the high water content condition, which may trigger a large mobile mass movement.  相似文献   

16.
An investigation was made to present analytical solutions of cyclic response to suction caisson subjected to inclined cyclic loadings in clay using a three-dimensional displacement approach. A model representing the relationship between vertical load and vertical displacement and that between lateral load and lateral displacement along the skirt of suction caisson subjected to cyclic loadings is proposed for overconsolidated clay. For the effect of vertical load on cyclic load capacity of suction caisson, using the Mindlin solution in the case of a vertical point load, the vertical stress of soil under the base of suction caisson is presented. For the stress state of soil beneath the base of suction caisson subjected to cyclic loading, the Mohr–Coulomb failure line and critical state line are presented and the relationship between total stress, effective mean principal stress, stress difference, and pore-pressure is elucidated. The comparison of results predicted by the present method for a suction caisson subjected to cyclic loadings in clay has shown good agreement with those obtained from field tests. Cyclic behavior of clay up to failure is made clear from the relationship between cyclic tensile load, vertical and lateral displacements, and rotation and that between depth, vertical, and lateral pressures.  相似文献   

17.
This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure mechanism under vertical loading comprises a plane strain Prandti-type mechanism over the central part of the longer side, and the size of the mechanism gradually reduces at the ends of the longer side and over the shorter side as the corner of rectangular footing is being approached where the direction of soil motion remains normal to each corresponding side respectively. The failure mechanism under moment loading comprises a plane strain scoop sliding mechanism over the central part of the longer side, and the radius of scoop sliding mechanism increases linearly at the ends of the longer side. On the basis of the kinematic failure mechanisms mentioned above, the vertical ultimate bearing capacity and the ultimate bearing capacity against moment or moment ultimate bearing capacity are obtained by use of upper bound limit analysis theory. At the same time, numerical analysis results, Skempton' s results and Salgado et al. 's results are compared with this upper bound solution. It shows that the presented failure mechanisms and plastic limit analysis predictions are validated. In order to investigate the behaviors of undrained clay foundation beneath the rectangular footing subjected to the combined loadings, numerical analysis is adopted by virtue of the general-purpose FEM software ABAQUS, where the clay is assumed to obey the Mohr-Coulomb yielding criterion. The failure envelope and the ultimate bearing capacity are achieved by the numerical analysis results with the varying aspect ratios from length L to breadth B of the rectangular footing. The failure mechanisms of rectangular footing which are subjected to the combined vertical loading V and horizontal loading H (Vertical loading V and moment loading M, and horizontal loading H and moment loading M respectively are observed in the finite e  相似文献   

18.
An angle exists between the initial static shear stress and cyclic shear stress when embankment and retaining walls are subjected to cyclic loadings. To investigate the influence of this angle on the dynamic properties of marine soft clay, tests were performed on Wenzhou soft clay. When the angle was varied from 0° to 90°, the shear strain and excess pore pressure decreased as θ increased while increased as θ increased from 120° to 180°. Shear strain developed more rapidly when θ was 120°, 150°, or 180° than that when θ was 0°, 30°, or 60°. These results indicate that the number of cycles to failure at the larger angles was greater than at the smaller angles. When θ was 90°, the strain in the x-axis direction increased as the number of cycles increased. The development of the excess pore pressure associated with specimen failure was different for different cyclic shear stress ratios and shearing angles. The effect of θ on the strain and excess pore pressure increased as the cyclic shear stress ratio increased.  相似文献   

19.
孔凡玲  王滢  张粮  高盟  吴迪 《海洋工程》2023,41(6):148-157
为研究深海能源土在负压开采过程中含气储层的力学特性,基于含气土赋存理论,提出一种能够控制含气量及气泡大小的制样方法,通过GDS标准应力路径三轴试验系统,开展深海能源土含气储层的固结排水试验研究,分析深海能源土在不同黏土含量及不同含气量下的力学响应规律。研究结果表明:围压变化对深海能源土含气储层的抗剪强度峰值大小影响显著,围压越大抗剪强度峰值越高;黏土含量是决定应力应变曲线变化趋势的关键影响因素,黏土含量越高试样抗剪强度越低,试样抵抗应变软化效应的能力越强;含气土比饱和土体承载能力更低,且承载能力随含气量的增大呈衰减趋势;黏土含量和含气量是深海能源土含气储层抗剪强度指标的重要影响因素,黏土含量、含气量越高,土体自身的总抗剪强度值越低。  相似文献   

20.
This study was undertaken to investigate the implication of geoacoustic behaviors in the shallow marine sediments associated with the changes in geotechnical index properties. Two piston cores (270 cm and 400 cm in core length) used in this study were recovered from stations 1 and 2, the western continental margin, the East Sea. Scanning electron microscopy (SEM) was employed to illustrate the effects of microstructure on shear properties. The direct SEM observation of sediment fabrics is inevitable to understand the correlation of the changes in geoacoustic properties to the sediment structure. The consolidation of sediments by overburden stress resulting in the clay fabric alteration appears to play an important role in changing shear properties. Water contents and porosity of sediments gradually decreases with increasing depth, whereas wet bulk density shows a reverse trend. It is interesting to note that shear wave velocities increase rapidly from 8 to 20 m/s while compressional wave velocities significantly fluctuate, ranging from 1450 to 1550 m/s with depth. The fabric changes in sediment with increasing depth for example, uniform grain size and well oriented clay fabrics may cause the shear strength increase from 1 to 12 kPa. Shear wave velocity is, therefore, shown to be very sensitive to the changes in undrained strength for unconsolidated marine sediments. This correlation allows an in-situ estimation of shear stress in the subsurface from shear wave velocity data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号