首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the seasonal variation and community structure of nano- and microzooplankton in Gyeonggi Bay of the Yellow Sea, the abundance and carbon biomass of nano- and microzooplankton were evaluated at 10-day intervals from January 1997 to December 1999. Four major groups of nano- and microzooplankton communities were classified: heterotrophic ciliates, heterotrophic dinoflagellates (HDF), heterotrophic nanoflagellates (HNF), and copepod nauplii. The total carbon biomass of nano- and microzooplankton ranged from 10.2 to 168.8 μg C L−1 and was highest during or after phytoplankton blooms. Nano- and microzooplankton communities were composed of heterotrophic ciliates (7.4–81.4%; average 41.7% of total biomass), HDF (0.1–70.3%; average 26.1% of total biomass), copepod nauplii (1.6–70.6%; average 20.7% of total biomass), and HNF (0.8–59.5%; average 11.5% of total biomass). The relative contribution of individual components in the nano- and microzooplankton communities appeared to differ by seasons. Ciliates accounted for the most major component of nano- and microzooplankton communities, except during summer and phytoplankton blooming seasons, whereas HDF were more dominant during the phytoplankton blooming seasons. The abundance and biomass of nano- and microzooplankton generally followed the seasonal dynamics of phytoplankton. The size and community distribution of nano- and microzooplankton was positively correlated with size-fractionated phytoplankton. The carbon requirement of microzooplankton ranged from 60 to 83% of daily primary production, and was relatively high when phytoplankton biomass was high. Therefore, our result suggests that the seasonal variation in the community and size composition of nano- and microzooplankton appears to be primarily governed by phytoplankton size and concentration as a food source, and their abundance may greatly affect trophic dynamics by controlling the seasonal abundance of phytoplankton.  相似文献   

2.
The plankton community composition comprising heterotrophic bacteria, pro-/eukaryotes, heterotrophic nanoflagellates, microzooplankton and mesozooplankton was assessed during the spring bloom and at non-bloom stations in the English Channel and Celtic Sea between 6 and 12 April 2002. Non-bloom sites were characterised by a dominance of pro-/eukaryotic phytoplankton <20 μm, higher abundance of heterotrophic nanoflagellates, microzooplankton standing stocks ranging between 60 and 380 mg C m−2, lower mesozooplankton diversity and copepod abundance of between 760 and 2600 ind m−3. Within the bloom, the phytoplankton community was typically dominated by larger cells with low abundance of pro-/eukaryotes. Heterotrophic nanoflagellate cell bio-volume decreased leading to a reduction in biomass whereas microzooplankton biomass increased (360–1500 mg C m−2) due to an increase in cell bio-volume and copepod abundance ranged between 1400 and 3800 ind m−3. Mesozooplankton diversity increased with an increase in productivity. Relationships between the plankton community and environmental data were examined using multivariate statistics and these highlighted significant differences in the abiotic variables, the pro-/eukaryotic phytoplankton communities, heterotrophic nanoflagellate, microzooplankton and total zooplankton communities between the bloom and non-bloom sites. The variables which best described variation in the microzooplankton community were temperature and silicate. The spatial variation in zooplankton diversity was best explained by temperature. This study provides an insight into the changes that occur between trophic levels within the plankton in response to the spring bloom in this area.  相似文献   

3.
The plankton food web structure and trophodynamics in the neritic area of Sagami Bay were investigated from January 2003 to December 2005, based on abundance, biomass, production rate and nutritional requirements of pico- (0.2–2 μm), nano- (2–20 μm), micro- (20–200 μm) and mesoplankton (>200 μm: mainly copepods CI-CVI) at 0–10 m depth. The average carbon biomass of the total plankton community was higher in spring and summer (1.452 and 1.466 g C m−2, respectively) than in winter and autumn (0.676 and 0.686 g C m−2, respectively). The average values of primary production and of production rate and food requirement of heterotrophic organisms were higher in summer than in other seasons. During the study period the biomass, production rate and food requirement of small heterotrophs (i.e. bacteria: BA; heterotrophic nanoflagellates: HNF; microzooplankton: MZ) were much higher than those of copepod secondary (CSP) and tertiary producers (CTP), indicating that the microbial food web was the main route of carbon flow from phytoplankton (PP) to CSP and CTP, rather than the grazing food chain. In particular, during summer and autumn the biomass of pico- and nano-size PP plus BA was greater than that of micro-size PP, suggesting the high prevalence of the microbial food web (pico-/nanophytoplankton/BA-HNF/MZ-copepods). During winter and spring, the biomass of micro-size PP was greater than that of pico- and nano-size PP plus BA, suggesting that the indirect route (microphytoplankton-MZ-copepods) probably prevailed, while the microbial food web might be important.  相似文献   

4.
Distribution patterns and trophic contributions of rotifers from freshwater through polyhaline estuarine waters were examined in the southern Chesapeake Bay and its major tributaries for a two-year period. Trichocerca marina and Synchaeta spp. were the major taxa in abundance, followed by Polyarthra vulgaris, Keratella cochlearis and Brachionus spp. There was a significant negative correlation between salinity and rotifer density, biomass, and number of species. Rotifers were a component of the microzooplankton biomass during specific periods and at particular sites, dominating summer assemblages in tidal freshwater and river–estuary transition sites, plus the winter communities in estuarine waters. This observation indicates that rotifers may play an important trophic role by seasonally replacing metazoan nauplii as a biomass source in both tidal freshwater and estuarine ecosystems. The annual contribution of rotifers to the total microzooplankton biomass exclusive of heterotrophic dinoflagellates was brief but intensive, achieving over 50% of annual biomass during a 2–3 month period. Despite the small annual mean contribution of rotifers to the total microzooplankton biomass, rotifers may have a limited, but significant impact on the trophic dynamics of the zooplankton community in Chesapeake Bay and its major tidal tributaries.  相似文献   

5.
Planktonic mixotrophic and heterotrophic dinoflagellates are ubiquitous protists and often abundant in marine environments. Recently many phototrophic dinoflagellate species have been revealed to be mixotrophic organisms and also it is suggested that most dinoflagellates may be mixotrophic or heterotrophic protists. The mixotrophic and heterotrophic dinoflagellates are able to feed on diverse prey items including bacteria, picoeukaryotes, nanoflagellates, diatoms, other dinoflagellates, heterotrophic protists, and metazoans due to their diverse feeding mechanisms. In turn they are ingested by many kinds of predators. Thus, the roles of the dinoflagellates in marine planktonic food webs are very diverse. The present paper reviewed the kind of prey which mixotrophic and heterotrophic dinoflagellates are able to feed on, feeding mechanisms, growth and ingestion rates of dinoflagellates, grazing impact by dinoflagellate predators on natural prey populations, predators on dinoflagellates, and red tides dominated by dinoflagellates. Based on this information, we suggested a new marine planktonic food web focusing on mixotrophic and heterotrophic dinoflagellates and provided an insight on the roles of dinoflagellates in the food web.  相似文献   

6.
The dynamics, composition and grazing impact of microzooplankton were studied during the in situ iron fertilisation experiment EisenEx in the Antarctic Polar Frontal Zone in austral spring (November 2000). During the 21 day experiment, protozooplankton and small metazooplankton were sampled from the mixed layer inside and outside the patch using Niskin bottles. Aplastidic dinoflagellates increased threefold in abundance and biomass in the first 10 days of the experiment, but decreased thereafter to values twofold higher than pre-fertilisation values. The decline after day 10 is attributed to increasing grazing pressure by copepods. They also constrained ciliate abundances and biomass which were higher inside the fertilised patch than outside but highly variable. Copepod nauplii abundance remained stable whereas biomass doubled. Numbers of copepodites and adults of small copepod species (<1.5 mm) increased threefold inside the patch, but doubled in surrounding waters. Grazing rates estimated using the dilution method suggest that microzooplankton grazing constrained pico- and nanoplankton populations, but species capable of feeding on large diatoms (dinoflagellates and small copepods including possibly nauplii) were selectively predated by the metazoan community. Thus, iron fertilisation of a developing spring phytoplankton assemblage resulted in a trophic cascade which favoured dominance of the bloom by large diatoms.  相似文献   

7.
Role of dissolved silicate in the occurrence of a phytoplankton bloom   总被引:1,自引:0,他引:1  
The spring bloom of phytoplankton was studied in March in Funka Bay, Japan, to test the Tsunogai (1979)'s hypothesis regarding the role of silicate in the bloom. The hypothesis comprises two parts. 1) Diatoms are predominant when all the physical and chemical conditions are adequate for plankton growth. 2) Since the Si:P ratio of the diatom body is usually much larger than that of sea water, flagellates (non-siliceous phytoplankton) replace diatoms after dissolved silicate in the sea water has been almost completely consumed by diatoms. At the end of the bloom in late March phosphate still remained in the water but silicate was exhausted and the main species of phytoplankton changed from diatoms to flagellates. Grazing pressure by zooplankton at this time was not so great. A model using the data on assimilation rates of silicate showed a dramatic change of silicate uptake in late March. Poison in scallops caused byProtogonyaulux sp. (dinoflagellates) rapidly increased from mid-April at all stations along the coast of Funka Bay. All of these findings support Tsunogai's hypothesis.  相似文献   

8.
浮游植物群落结构的时空变化对生物地球化学循环、全球气候及渔业资源具有重要的影响。本文采用ROMS-CoSiNE高分辨率数值模拟结果,分析了渤海浮游植物生物量和群落结构的时空分布特征,讨论了浮游植物群落结构时空差异的主要影响因素。结果表明,渤海表层叶绿素浓度和甲硅藻比在冬季最低、夏季最高。叶绿素浓度呈条带状分布,甲硅藻比呈斑块状分布。冬季、春季和秋季浮游植物群落结构均以硅藻占绝对优势,夏季以硅藻和甲藻共同占优。不同因素对浮游植物群落结构的影响具有时空差异性。在辽东湾、渤海湾、莱州湾和渤海中部,各个季节浮游植物群落结构差异分别受磷酸盐、氮磷比、硅氮比、溶解无机氮的影响最大。在冬季、夏季和秋季,各个区域浮游植物群落结构差异均受溶解无机氮的影响最大,在春季则受硅氮比的影响最大。总体上,营养盐浓度及结构是浮游植物群落结构时空差异的主要影响因子。  相似文献   

9.
Phytoplankton group-specific growth and microzooplankton grazing were determined seasonally using the dilution technique with high-performance liquid chromatography (HPLC) in the Xiamen Bay, a subtropical bay in southeast China, between May 2003 and February 2004. The results showed that growth rates of phytoplankton ranged from 0.71 to 2.2 d^-1 with the highest value occurred in the inner bay in May. Mierozooplankton grazing rates ranged from 0.5 to 3.1 d^-1 with the highest value occurred in the inner bay in August. Microzooplankton grazing impact ranged from 39% to 95% on total phytoplankton Chl a biomass, and 65% to 181% on primary production. The growth and grazing rates of each phytoplankton group varied, the highest growth rate (up to 3.3 d^-1 ) was recorded for diatoms in August, while the maximum grazing rate ( up to 2.1 d ^-1 ) was recorded for chlorophytes in February in the inner bay. Among main phytoplankton groups, grazing pressure of microzooplankton ranged from 10% to 83% on Chl a biomass, and from 14% to 151% on primary production. The highest grazing pressure on biomass was observed for cryptophytes (83%) in August, while the maximum grazing pressure on primary production was observed for eyanobacteria (up to 151% ) in December in the inner bay. Net growth rates of larger phytoplanktons (diatoms and dinoflagellates) were higher than those of smaller groups ( prasinophytes, chlorophytes and cyanobacteria). Relative preference index showed that microzooplankton grazed preferentially on prasinophytes and avoided to harvest diatoms in cold seasons (December and February).  相似文献   

10.
The planktonic food web structure in the subarctic coastal water off Usujiri south-western Hokkaido, Japan was investigated from June 1997 to June 1999, based on seasonal biomass data of pico- (<2 µm), nano- (2–10 µm), micro- (10–200 µm) and mesoplankton (>200 µm), and path analysis using the structural equation model (SEM). In spring, microphytoplankton predominated due to diatom bloom, while pico- and nanophytoplankton predominated in the other seasons, except November and December 1997. The seasonal change in size distribution of heterotrophic plankton was almost similar to that of phytoplankton, and mesozooplankton biomass was high in spring. The path analyses suggest that the main channel in the microbial food web could vary according to phytoplankton size composition, indicating not only the classical food chain (microphytoplankton - copepods) but also the indirect route (microphytoplankton - naked dinoflagellates - copepods).  相似文献   

11.
北冰洋浮游生物空间分布及其季节变化的模拟   总被引:3,自引:1,他引:2  
低营养级浮游生物生态动力过程对环境变化的响应非常敏感。随着全球气候变化加剧,北冰洋正在经历快速的环境变化。厘清北冰洋低营养级浮游生物季节分布与变化特征是探究北冰洋生态系统对环境快速变化响应的前提,也是评估北极海区固碳能力的重要依据。基于此,本文构建了海洋–海冰–生物地球化学循环模型,并对北冰洋叶绿素浓度以及浮游生物结构的时空变化特征进行了模拟,结果表明:(1)北冰洋表层叶绿素浓度的峰值主要出现在5月,且太平洋一侧叶绿素浓度高于大西洋一侧;随着海水层化,表层受营养盐限制的海区呈现次表层叶绿素浓度最大值现象,且由陆架向海盆,次表层叶绿素浓度最大值层逐渐加深;9月,叶绿素浓度高值重回水体上层,太平洋一侧海区表层叶绿素浓度呈现较为明显的次峰值。(2)由于太平洋和大西洋入流营养盐浓度及结构的不同,北冰洋表层浮游生物群落结构存在明显空间差异。太平洋一侧,硅藻和中型浮游动物占优,硅藻在5月和9月出现生物量峰值,微型浮游植物在3月、5月和6月维持相对较高生物量;而大西洋一侧,在早春-春末夏初-夏秋经历了微型浮游植物-硅藻-微型浮游植物的演替,总体而言,微型浮游植物和微型浮游动物占优。此外,两侧海区浮游动物浓度峰值相较浮游植物滞后约半月。  相似文献   

12.
Microzooplankton species composition and grazing rates on phytoplankton were investigated along a transect between ∼46 and 67°S, and between 140 and 145°E. Experiments were conducted in summer between November 2nd and December 14th in 2001. The structure of the microbial food web changed considerably along the transect and was associated with marked differences in the physical and chemical environment encountered in the different water masses and frontal regions. On average microzooplankton grazing experiments indicated that 91%, 102%, and 157%, (see results) of the phytoplankton production would be grazed in the <200, <20 and <2 μm size fractions, respectively, indicating microzooplankton grazing was potentially constraining phytoplankton populations (<200 μm) along most of the transect. Small ciliates in general and especially oligotrich species declined in importance from the relatively warm, Southern Subtropical Front waters (6.8 μg C/L) to the colder waters of the southern branch of the Polar Front (S-PF), (∼0.5 μg C/L) before increasing again near the Antarctic landmass. Large changes in microzooplankton dominance were observed, with heterotrophic nanoflagellates (HNF), ciliates and larger dinoflagellates having significant biomass in different water masses. HNF were the dominant grazers when chlorophyll a was low in areas such as the Inter-Polar Frontal Zone (IPFZ), while in areas of elevated biomass such as the S-PF and Southern Antarctic Circumpolar Current (SACC), a mix of copepod nauplii and large heterotrophic and mixotrophic dinoflagellates tended to dominate the grazing community. In the S-PF and SACC water masses the tight coupling observed between the microzooplankton grazers and phytoplankton populations over most of the rest of the transect was relaxed. In these regions grazing was low on the >20 μm size fraction of chlorophyll a, which dominated the biomass, while smaller diatoms and nanoplankton in the <20 μm size fraction were still heavily grazed. The lack of grazing pressure on large phytoplankton contributes to this region's potential to export carbon with larger cells known to have higher sinking rates.  相似文献   

13.
曾祥波  黄邦钦 《海洋学报》2008,30(6):140-146
为了研究小型浮游动物对近岸浮游植物藻华的摄食调控作用,于2005年7月,应用"稀释法"并结合高效液相色谱(HPLC)光合色素分析技术,研究了台湾海峡船基围隔实验条件下浮游植物生长率及小型浮游动物摄食率的日变动。结果表明:由于营养盐添加的影响,迅速形成了以尖刺伪菱形藻(Pseudo-nitzschia pungens)为优势种的藻华,生物量(叶绿素a)从实验初始7月6日的1.45μg/dm3迅速增加到7月8日的29.80μg/dm3,随后消退。镜检和光合色素分析的结果显示,实验期间一直以此硅藻占绝对优势。浮游植物的生长率在藻华峰值(7月8日)前保持了较高的生长速率(>1.0/d)且大于小型浮游动物的摄食率;小型浮游动物的摄食率也逐渐增加,7月7日时达到0.86/d,显示有57%以上的浮游植物现存量被摄食。7月8日后,水华迅速消退,摄食率除13日外,均大于浮游植物的生长率。小型浮游动物主要由急游虫(Strombidium spp.)、侠盗虫(Strobilidium spp.)等无壳纤毛虫、异养甲藻-螺旋环沟藻(Gyrodinium spirale)及砂壳纤毛虫等组成,其对浮游植物的生长迅速作出了反应,各类群的丰度在水华峰值后的7月9日均几达最大值,水华后期(11日)大型的无壳纤毛虫达最大值。小型浮游动物的这种组成及变动特点是其保持较高摄食率及一定程度上控制和促进藻华消退的原因之一。  相似文献   

14.
We use inverse analysis to model carbon and nitrogen flows in the upper ocean food web at Ocean Station Papa (OSP; 50°N, 145°W) for winter, spring, and late summer. The seasonal variability in basic physical, chemical, and biological characteristics is low, and the particulate carbon and nitrogen flux at 200 m is remarkably constant. Despite this apparent uniformity, the food web structure undergoes significant seasonal changes. The diversity of trophic pathways is higher during late summer than during the other two periods. The spring ecosystem is not in steady state and undergoes net phytoplankton growth and macronutrient consumption. The microbial loop is well developed only during late summer. Nevertheless, ammonium regeneration by the food web seems insufficient to meet demand by the primary producers. The difference may be due to recycling of dissolved organic nitrogen (urea+free amino acids), a process not represented in the model. The winter food web is the closest to steady state, with nitrate utilisation approximately in balance with export of particulate nitrogen. The inverse analysis suggests two main seasonally invariant features of the NE Pacific ecosystem. First, the major trophic pathway is always from picophytoplankton (0.2–5 μm) to microzooplankton (heterotrophic dinoflagellates and ciliates) to mesozooplankton. This supports the idea of a strong coupling between the microbial and metazoan food webs. Second, much of the primary production (and bacterial production in late summer) is not grazed and is recycled through the detrital pool. Both these features seem to arise from the requirement to conserve nitrogen as well as carbon in the food web. More complete measurements on the microzooplankton 20–200 μm in size, including the small metazoans like nauplii larvae, are required to improve the models presented here.  相似文献   

15.
This paper reports estimates of trophic flows of carbon off the Galician coast from a 1D ecological model, which are compared with field data from a two week Lagrangian drift experiment. The model consists of 9 biological components: nitrate, ammonium, >5μm phytoplankton, <5μm phytoplankton, heterotrophic nanoflagellates/dinoflagellates (5–20 μm), heterotrophic dinoflagellates (>20 μm), ciliates, fast sinking detritus and slow sinking detritus. Calculations were made for the fluxes of carbon between biological components within the upper 45m of the water column. The temporal development of primary production during the simulation period of two weeks was in good agreement with field estimates, which varied between 248 and 436mgC.m−2.d−1. Heterotrophic nanoflagellates had the greatest impact on carbon flux, with a grazing rate of 168mgC.m−2.d−1. Herbivorous grazing by microzooplankton amounted to 215mgC.m−2.d−1, whereas grazing by copepods on phytoplankton was 35mgC.m−2 d−1. Copepods grazing on microzooplankton was minor (0.47mgC.m−2.d−1) and the export flux from the upper 45m was 302mgC.m−2.d−1. Sensitivity analyses, in which the grazing parameters (i.e the functional relationship between ingestion and food concentration) were changed, were carried out on the heterotrophic dinoflagellate, ciliate and heterotrophic nanoflagellates/dinoflagellate components of the model. These changes did not alter the temporal development of heterotrophic nanoflagellates/dinoflagellates biomass significantly, but ciliates and heterotrophic dinoflagellates were more sensitive to variations in the grazing parameters. The overall conclusion from this modelling study is that the coupling between small phytoplankton and heterotrophic nanoflagellates was the quantitatively most important process controlling carbon flow in this region.  相似文献   

16.
The trophic efficiency of the planktonic food web in the Phaeocystis-dominated ecosystem of the Belgian coastal waters was inferred from the analysis of the carbon flow network of the planktonic system subdivided into its different trophodynamic groups. A carbon budget was constructed on the basis of process-level field experiments conducted during the spring bloom period of 1998. Biomass and major metabolic activities of auto- and heterotrophic planktonic communities (primary production, bacterial production, nanoproto-, micro- and mesozooplankton feeding activities) were determined in nine field assemblages collected during spring at reference station 330. In 1998, the phytoplankton spring flowering was characterised by a moderate diatom bloom followed by a massive Phaeocystis colony bloom. Phaeocystis colonies, contributing 70% to the net primary production, escaped the linear food chain while the early spring diatom production supplied 74% of the mesozooplankton carbon uptake. The rest of mesozooplankton food requirement was, at the time of the Phaeocystis colony bloom, partially fulfilled by microzooplankton. Only one-third of the microzooplankton production, however, was controlled by mesozooplankton grazing pressure. Ungrazed Phaeocystis colonies were stimulating the establishment of a very active microbial network. On the one hand, the release of free-living cells from ungrazed colonies has been shown to stimulate the growth of microzooplankton, which was controlling 97% of the nanophytoplankton production. On the other hand, the disruption of ungrazed Phaeocystis colonies supplied the water column with large amounts of dissolved organic matter available for planktonic bacteria. The budget calculation suggests that ungrazed colonies contributed up to 60% to the bacterial carbon demand, while alternative sources (exudation, zooplankton egestion and lysis of other organisms) provided some 30% of bacterial carbon requirements. This suggests that the spring carbon demand of planktonic bacteria was satisfied largely by autogenic production. The trophic efficiency was defined as the ratio between mesozooplankton grazing on a given source and food production. In spite of its major contribution to mesozooplankton feeding, the trophic efficiency of the linear food chain, restricted to the grazing on diatoms, represented only 5.6% of the available net primary production. The trophic efficiency of the microbial food chain, the ratio between mesozooplankton grazing on microzooplankton and the resource inflow (the bacterial carbon demand plus the nanophytoplankton production) amounted to only 1.6%. These low trophic efficiencies together with the potential contribution of ungrazed Phaeocystis-derived production to the bacterial carbon demand suggest that during spring 1998 most of the Phaeocystis-derived production in the Belgian coastal area was remineralised in the water column.  相似文献   

17.
1 Introduction Phytoplankton has been considered as a dom inantprim ary producer in m arine ecosystem s, starting them arine food chain (N ing and V aulot.,2003;Sun etal.,2001; Zhu et al., 2000; N ing and V aulot, 1992). A l-though potentialfates ofphytoplankton include advec-tion,verticalm ixing,sinking and m ortality due to virallysis and grazing (B anse,1994),m ortality due to graz-ing,especially by m icrozooplankton,is generally con- μm m esh to 25-L carboys, then transpo…  相似文献   

18.
Size and taxonomic structure of plankton community carbon biomass for the 0.2–2000 μm equivalent spherical diameter range were determined at the equator at 175°E in September 1990–1993 and April 1994. Total biomass of the plankton community ranged from 1944 to 3448 mg C m−2. Phytoplankton, zooplankton and bacteria carbon biomasses were 604–1669 mg C m-2, 300–797 mg C m2, and 968–1200 mg C m-2, and the percentages were 31–54%, 15–26%, and 29–54%, respectively. Biomass of heterotrophic bacteria was always the largest fraction andProchlorococcus biomass was second. Heterotrophic and autotrophic flagellates and dinoflagellates in the nanoplankton size range and copepods (adults and copepodites) in the mesoplankton range were also high. Relatively small biomass was observed in the microplankton size range. The differences in integrated biomass of plankton community for El Nin˜o type oligotrophic conditions of September 1990–1993 and non-El Nifio type mesotrophic conditions of April 1994 were generally small compared with the interannual difference during 1990–1993. However, the percentage ofProchlorococcus in phytoplankton carbon biomass was larger in non-El Nin˜o year. Biomasses of cyanobacteria, diatom, dinoflagellates, nauplii of copepods, and crustaceans other than copepods were larger in the non-El Nin˜o year. Primary production increased significantly from El Nin˜o to non-El Nin˜o years. Carbon flow through the plankton food chain was estimated using the plankton carbon biomass data, primary production measurements, and published empirical relationships.  相似文献   

19.
This study examined the biomass structure of autotrophic and heterotrophic plankton along a trophic gradient in the northwestern Pacific Ocean in an attempt to understand planktonic food web structure. Autotrophic biomass exceeded that of heterotrophic organisms in all sampling regions, but with lesser contribution to total planktonic biomass at stations of higher phytoplankton biomass, including the northern East China Sea, compared to the regions of lower phytoplankton biomass. The proportion of the biomass of heterotrophic bacteria, nanoflagellates (HNF), and dinoflagellates (HDF) relative to that of phytoplankton was all inversely related to phytoplankton biomass, but positive relationships were observed for both ciliates and mesozooplankton. Mesozooplankton biomass inclined greater than phytoplankton along the gradient of phytoplankton biomass, with biomass rise being most closely associated with ciliate and HDF biomass and, to a lesser degree, with large phytoplankton (>3?μm). Both bacteria and picophytoplankton were significantly and positively related to the biomass ratio of mesozooplankton to the sum of HDF and ciliates (i.e., proxy of mesozooplankton predation on protozoans), but no positive relationship was apparent either for HNF or for large phytoplankton. Such relationships may result from predation relief on lower food webs associated with mesozooplankton feeding on protistan plankton.  相似文献   

20.
The tsunami caused by the 2011 off the Pacific coast of Tohoku Earthquake seriously damaged the Pacific coast of northeastern Japan. In addition to its direct disturbance, a tsunami can indirectly affect coastal pelagic ecosystems via topographical and environmental changes. We investigated seasonal changes in the phytoplankton community structure in Otsuchi Bay, northeastern Japan, from May 2011, which was 2 months after the tsunami, to May 2013. The phytoplankton species composition in May 2011 was similar to that observed in May 2012 and 2013. The present results are consistent with the dominant species and water-mass indicator species of phytoplankton in past records. These results suggest that there was no serious effect of the tsunami on the phytoplankton community in Otsuchi Bay. Community analysis revealed that two distinct seasonal communities appeared in each year of the study period. The spring–summer community was characterized by warm-water Chaetoceros species, and dinoflagellates appeared from May to September. The fall–winter community was characterized by cold neritic diatoms, which appeared from November to March. The succession from the spring–summer community to the fall–winter community took place within a particular water mass, and the fall–winter community appeared in both the surface water and the Oyashio water mass, suggesting that water-mass exchange is not the only factor that determines the phytoplankton community structure in Otsuchi Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号