首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based upon the analysis of about 10,000 line km of echosounding and bathymetric data and variations in mass accumulation rate along the NW continental margin of India (between Kori creek and Mumbai), we have deduced that in the northern region (in the vicinity of the River Indus) the shelf-break occurs at a shallower depth and the slope is shallower, has the steepest gradient (<1:20), is smoother with no major features, and has reduced width (slope edge at 1450 m; width 19 km than off Mumbai). The width and depth of the slope edge gradually increases southwards, and is at maximum off DamanMumbai (slope edge depth 2900 m; width 84 km). The intensity of the occurrence of physiographic features also increases southwards. The shelf edge off Saurashtra is undulating and on the slope, regional notches and benches (the most prominent at 560 m) are observed. Further southwards off Khambhat-Mumbai, the slope is characterized by the presence of bathymetric highs and lows. We have also observed numerous features on the shelf, with a variable depth of the shelf-break. The gradient of the continental slope is also reduced from the northern region to the southern region. The variations in the gradient of the slope and the presence of distinct physiographic features in this area are examined vis-a-vis fluvial supply of the sediments into the region.  相似文献   

2.
The northwest Hatton Bank margin is an ideal locality to demonstrate the interaction between bottom currents and slope configuration in controlling the distribution and morphology of bottom current deposits. The slope area investigated is isolated from any major terrigenous sediment supply and at present is influenced by the Deep Northern Boundary Current (DNBC). Swath bathymetry and high resolution acoustic data allow us to evaluate both local and regional controls on slope sedimentation and the possible mechanisms for bottom-current velocity variability across a slope setting within the NW European continental margin. The slope exhibits sculpting by bottom currents that flow in a predominantly southwest to northeast direction, and is only locally modified by slope failures. Positive relief features such as the Endymion Spur play an important role in constraining and accelerating bottom-current flow and, consequently, in redistributing sediment along the margin. We demonstrate that the size, morphology and distribution of bottom-current deposits along the slope vary as a function of the interaction between bottom currents, regional slope orientation and local seafloor topography.  相似文献   

3.
Comprehensive field observations of hydrological processes in the region of the continental slope of Severnaya Zemlya in the Laptev Sea allowed us to reveal descending dense (cold) shelf water over the slope (cascading) and to determine the spatiotemporal variability of the cascading [2]. The observations represented a series of polygon surveys in the autumn-winter-spring period. The estimates of the characteristics of the slope convection of the shelf water (cascading) were based on the results of laboratory and theoretical studies of the descending of the dense water over a sloping bottom in a rotating fluid with sources of different geometry. It was shown that the cascading of dense shelf water over the continental slope mainly corresponds to a smooth (geostrophic) regime. An analysis of some thermohaline and density sections indicates, however, the possibility of the development of a wave-eddy regime of cascading and/or generation of fast gravity waves in the upper part of the continental slope. The most representative estimation of the contribution of the cascading of dense shelf water on the northern continental slope of Severnaya Zemlya to the ventilation of the intermediate waters in the Nansen Basin for five winter months is ≈0.0614 Sv.  相似文献   

4.
Shallow 3D seismic data show contrasting depositional patterns in Pleistocene deepwater slopes of offshore East Kalimantan, Indonesia. The northern East Kalimantan slope is dominated by valleys and canyons, while the central slope is dominated by unconfined channel–levee complexes. The Mahakam delta is immediately landward of the central slope and provided large amounts of sediments to the central slope during Pleistocene lowstands of sea level. In the central area, the upper slope contains relatively straight and deep channels. Sinuous channel–levee complexes occur on the middle and lower slope, where channels migrated laterally, then aggraded and avulsed. Younger channel–levee complexes avoided bathymetric highs created by previous channel–levee complexes. Levees decrease in thickness down slope. Relief between channels and levees also decreases down slope.North of the Mahakam delta, siliciclastic sediment supply was limited during the Pleistocene, and the slope is dominated by valleys and canyons. Late Pleistocene rivers and deltas were generally not present on the northern outer shelf. Only one lowstand delta was present on the northern shelf margin during the upper Pleistocene, and sediments from that lowstand delta filled a pre-existing slope valley complex and formed a basin-floor fan. Except for that basin-floor fan, the northern basin floor shows no evidence of sand-rich channels or fans, but contains broad areas with chaotic reflectors interpreted as mass transport complexes. This suggests that slope valleys and canyons formed by slope failures, not by erosion associated with turbidite sands from rivers or deltas. In summary, amount of sediment coming onto the slope determines slope morphology. Large, relatively steady input of sediment from the Pleistocene paleo-Mahakam delta apparently prevented large valleys and canyons from developing on the central slope. In contrast, deep valleys and canyons developed on the northern slope that was relatively “starved” for siliciclastic sediment.  相似文献   

5.
To investigate effects of a continental slope along the western boundary on the abyssal circulation, numerical experiments using multi-level models were carried out. An ocean which extends over the northern and southern hemispheres is forced by cooling inside the ocean at the southwest corner of the basin and uniform heating through the sea surface. When the reference density for the cooling is vertically uniform, effects of the slope emerge clearly for the slope with considerably broad width. The deep western boundary current flowing over the slope feeds no bottom flows in the southern hemisphere, and carries the warmed deep water into the northern hemisphere. This leads to the increased meridional density gradient, which results in the modification of deep flow patterns. When the reference density is vertically distributed, the upper and lower northward flowing western boundary currents form in the deep layer. As the density stratification relaxes the topographic control, the westward intensification of the upper boundary current is achieved over the slope. The intensified flow is accompanied by the countercurrent and they form the horizontal recirculation over the slope. However, the effects are confined around the slope region and the interior flow patterns do not change. The lower boundary current is not significantly affected by the slope and has the large width with no countercurrent. It is found that the actual continental slope does not have significant effects on the gross feature of the thermohaline circulation.  相似文献   

6.
Based on an integrated analysis of seismic, well logging and paleontological data, the sequence architecture and depositional evolution of the northeastern shelf margin of the South China Sea since Late Miocene are documented. The slope deposits of the Late Miocene to Quaternary can be divided into two composite sequences (CS1 and CS2) bounded by regional unconformities with time spans of 3–7 Ma, and eight sequences defined by local unconformities or discontinuities with time spans of 0.8–2.3 Ma. Unconformities within CS1 feature shelf-edge channel erosion, while in CS2 they form truncations at the top of the shelf margin as prograding complexes and onlap contacts against the slope.Depositional systems recognized in the slope section include unidirectionally migrating slope channels, slope fans or aprons, shelf-edge deltas and large-scale slope clinoforms. CS1 (Late Miocene to Pliocene) is characterized by development of a series of shelf-margin channels and associated slope fan aprons. The shelf-margin channels, oriented mostly NW-SE, migrate unidirectionally northeastwards and intensively eroded almost the entire shelf-slope zone. Two types of channels have been identified: (1) broad, shallow and unconfined or partly confined outer-shelf to shelf-break channels; and (2) deeply incised and confined unidirectionally migrating slope channels. They might be formed by gravity flow erosion as bypassing channels and filled mostly with along-slope current deposits. Along the base of the shelf slope, a series of small-scale slope fans or fan aprons are identified, including three depositional paleo-geomorphological elements: (1) broad or U-shaped, unconfined erosional-depositional channels; (2) frontal splays-lobes; and (3) non-channelized sheets. CS2 (Quaternary) consists mainly of a set of high-angle clinoforms, shelf-margin deltas and lower slope unidirectionally migrating channels.The relative sea level changes reflected in the sequence architecture of the study area are basically consistent with Haq's global sea level curve, but the development of regional unconformities were apparently enhanced by tectonic uplift. The development of high-angle (thick) clinoforms in the Quaternary may be attributed to a high sediment supply rate and rapid tectonic subsidence. The formation of the unidirectionally migrating channels appears to have resulted from the combined effects of the northeastward South China Sea Warm Current (SCSWC) and downslope gravity flow. The formation of the slope channels in the outer-shelf to shelf-break zone may be predominately controlled by bottom current, whereas those developed along the middle to lower slope zone may be dominated by gravity flow.  相似文献   

7.
In the summer seasons of 2004–2007, the intensive runoff (cascading) of the Antarctic shelf water (ASW) down the shelf and continental slope was revealed thanks to the recording of numerous thermohaline profiles across the shelf and continental slope of the Commonwealth Sea and Prydz Bay. The quickly executed profiles (4–10 h) with submesoscale resolution (near the shelf’s edge, the scale was even eddy-determinative, i.e., within 1.9–5.6 km), in combination with the fine-structure sounding and fine vertical resolution of the near-bottom boundary layer, provided a qualitatively new level of understanding the natural data. The detailed analysis of the temperature, salinity, and density patterns revealed the regularities and peculiarities of the ASW shelf and slope cascading. The intensive ASW cascading near the shelf break and lower part of the slope can be forced (appearing as discrete frontal meanders) or free (appearing as discrete plumes) and often has a wave-eddy character. The field observational data confirmed the obtained representative estimates of the elements of the ASW slope cascading. The basic area of the ASW formation is near the Amery Shelf Ice, from where the ASW spreads to the northwest, goes around the Fram Bank, and flows down the continental slope. The evaluative contribution of the ASW slope cascading to the ventilation of the deep and slope water of the Southern Ocean (near the shelf break 70 km long where the ASW cascading was observed) is Q K = 0.04–0.24 Sv, which agrees well with the analogous estimates obtained in other regions of the Antarctic.  相似文献   

8.
借助MITgcm模式使用二维非静力近似在水平方向采用不等间距网格,模拟了陆坡非旋转重力羽状流的流动。模拟显示陆坡上的重力羽状流的运动比较复杂。通过数值实验,发现改变地形或调整冷源强度都会影响沿陆坡下沉的低温高密度水的羽状流形态,潮汐亦会对重力羽状流有一定的影响。经计算发现在陆坡处,Richardson数小于1/4,宜发生Kelvin-Helmholtz不稳定性,并由卷挟导致环境流体与高密度流体混合,沿着斜坡加速下滑。  相似文献   

9.
对从南海东沙群岛近海陆坡(水深约500-3100m)采集到的二维地震剖面提取地形数据后进行统计学分析,结合地震相研究,发现研究区陆坡形态的变化与火成岩体,以及与火成岩体相关联的沉积过程存在着紧密地联系。共识别出了3种陆坡类型:(a)发育多个火成岩体的粗糙、陡的陆坡(类型1);(b)发育单个火成岩体的较为光滑、平缓的陆坡(类型2);(c)无火成岩体发育的光滑并且平缓的陆坡(类型3)。这些火成岩体形成于南海海底扩张之后,具有较为复杂的形态,在地震剖面上多表现为强振幅的杂乱反射。在类型1中,多个火成岩体将陆坡分为上部的两个或者多个次凹和下部的一个主凹,这些凹陷可以同时被沿坡流带来的沉积物充填。然而在类型2中,单个火成岩体将陆坡为一个上部的次凹和一个下部的主凹,只有当上部的次凹被沉积物填满后,沉积物才可以开始充填主凹。类型3为发育斜坡沉积的正常陆坡。研究区现今的陆坡形态是由于火成岩体的侵入和与火成岩体相关的沉积过程所共同导致的陆坡形态调整的结果。三种陆坡类型现今陆坡形态间的差异指示不同的沉积条件和陆坡形态调整。  相似文献   

10.
Spatial and temporal characteristics of the water masses and the dispersion of the suspended particulate matter were investigated using current meter, hydrographic and nephelometric observations, gathered during the ECOFER experiment (1989–1991) in the Cap-Ferret Canyon on the Aquitanian margin of the Bay of Biscay. While characteristics of the deep water masses were stable from one year to another, large hydrographic change in the upper 500 m related to winter renewal induced by poleward advection of warm and saline water along the continental slope. The slope circulation and seasonal eddy activity appear as important dynamical mechanisms that control the entrainment and the dispersion of the suspended particulate matter from the neritic domain to the deep ocean. A predominantly northward along-slope current with occasional reversal characterizes this circulation. The nephelometric structures also showed seasonal changes in the overall suspended particulate matter content, but recurrent features, such as the presence of intermediate nepheloid layers at the shelf-break depth and various depths along the slope (∼500, 1000 and 2000 m), were observed. These nepheloid layers extended off the slope to about 10–30 km, but especially laterally along the slope. Their presence indicated that suspended particulate matter exchanges between the shelf and the slope occurred mainly in the head of the canyon and along the southern open slope. The intermediate nepheloid layers around 500 m depth detached from the slope particularly in regions where the bottom slope is close to critical for the M2 internal tide.  相似文献   

11.
In nature, a slope stability is determined by the ratio of a sliding resistance to a slide force. The slide force of a marine deep-water continental slope is mainly affected by sediment mechanics properties, a topography, and a marine seismic. However, the sliding resistance is mainly affected by sedimentary patterns and a sedimentary stress history. Both of these are different from case to case, and their impact can be addressed when the data are organized in a geographic information system(GIS). The study area on the continental slope in Zhujiang River Mouth Basin in South China Sea provides an excellent opportunity to apply GIS spatial analysis technology for the evaluation of the slope stability. In this area, a continental slope topography and a three-dimension(3-D) topography mapping show a sea-floor morphology and the distribution of a slope steepness in good detail, and the sediment analysis of seabed samples and an indoor appraisal reveals the variability of a sediment density near the sea-floor surface. On the basis of the results of nine geotechnical studies of submarine study areas, it has worked out that an equivalent cyclic shear stress ratio is roughly between 0.158 and 0.933, which is mainly depending on the initial water content of sediment. A regional density, slope and level of anticipated seismic shaking information are combined in a GIS framework to yield a map that illustrates a continental slope stability zoning under the influencing factors in Zhujiang River Mouth Basin in the South China Sea. The continental slope stability evaluation can contribute to north resources development in the South China Sea, the marine functional zoning, the marine engineering construction and adjust measures to local conditions, at the same time also can provide references for other deep-water slope stability analysis.  相似文献   

12.
A regional study of the Veracruz Basin provided an excellent view of long-term deepwater sedimentation patterns from an evolving foreland-type basin. The regional seismic and well-log data set allows for an accurate reconstruction of slope and basin-floor depositional patterns, lithologic compositions, and paleogradients from a continuous succession of bathyal strata that span the Miocene to the lower Pliocene. Variations in Miocene and Pliocene deepwater reservoirs can be linked to prevailing slope characteristics. The Miocene basin had a high-gradient, tectonically generated slope, and the Pliocene basin had a low-gradient constructional slope. The Miocene basin owes its steep margin to the tectonic stacking of early Tertiary, Laramide-age thrust sheets. The Miocene margin shed a mixture of coarse elastic sediments (sands, gravels, and cobbles) and fines (silts and clays) that were transported into the deep basin via turbidity currents and debris flows. Channelized deposits dominate the Miocene slope, and reservoirs occur in long-lasting basement-confined canyons and shorter-lived shallower erosional gulleys. Thick and areally-extensive basin-floor fans exist outboard of the strongly channelized Miocene slope. Fan distribution is strongly controlled by synsedimentary contractional anticlines and synclines. In contrast, the latest Miocene to early Pliocene basin development was dominated by a strongly prograding wedge of shelf and slope deposits that was induced by volcanogenic uplift and increased sediment supply. During this phase, turbidite reservoirs are limited to narrow and sinuous deepwater channels that reside at the toe of the constructional clinoforms and areally limited, thinner basinal fans.  相似文献   

13.
Transmission and reflection coefficients are calculated for Rossby waves incident on a bottom topography with constant slope in a continuously stratified ocean. The characteristics of the coefficients are interpreted in terms of the quasigeostrophic waves on the slope. In the parameter range where only the barotropic Rossby waves can propagate in the region outside the slope, the bottom trapped wave plays the same role as the topographic Rossby wave in a homogeneous ocean, and hence the transmission is weak unless phase matching takes place. When both of the barotropic and baroclinic Rossby waves can propagate outside the slope, the total transmission can be strong. The bottom trapped wave affects the transmission and reflection, and it leads to the possibility that the Rossby wave is transmitted as a mode different from the incident mode. When the number of the wavy modes on the slope is smaller than that of the Rossby wave modes outside the slope, strong reflection occurs.The results for an ocean with linear distribution of the squared Brunt-Väisälä frequency are compared to those in a uniformly stratified ocean. The weakening of the stratification near the bottom is almost equivalent to reducing the effect of the slope.  相似文献   

14.
为完善内孤立波与海底斜坡沉积物相互作用研究,本文着眼于内孤立波破碎后在斜坡上继续运动的阶段,开展物理模拟实验,分析斜坡响应的土压力和超孔隙水压力的变化状况,揭示内波作用过程。研究发现:斜坡沉积物颗粒在内孤立波破碎引起的涡旋和渗流的共同作用下,会发生再悬浮,斜坡坡度变化不改变沉积物产生动力响应的主导动力作用;内孤立波振幅大小影响涡旋与渗流两者的比例,即在小振幅条件下由涡旋作用主导,在大振幅条件下由渗流作用主导;破碎流体在沿斜坡冲出坡顶位置后形成新的涡流,沉积物在新生涡流作用下的动力响应受斜坡坡度的影响。本文结果对于研究内孤立波再悬浮运移海底沉积物、改造海底地形地貌具有参考价值。  相似文献   

15.
High sedimentation rates on the subaqueous delta of the Mississippi River create localized sediment instabilities that result in downslope movement through well-defined chutes or gullies. A simplified kinematic wave equation model that neglects second-order effects such as diffusion treats the failure mechanism as a sedimentation and slope oversteepening process and sediment motion as a propagating kinematic wave. The model allows estimation of sedimentation rates necessary to initiate slope failures for a range of observed depths of basal shear planes. Model results indicate that slope oversteepening is a viable failure mechanism and a thin surface sediment layer may be moving downslope in a slow, continuous motion.  相似文献   

16.
南沙群岛珊瑚岛礁众多,大多数岛礁具有向海坡陡峭、外礁坪比较平缓的特征。将南沙群岛岛礁的迎浪向地形概化为陡坡和缓坡组成的双斜坡,采用FUNWAVE-TVD模式数值模拟概化地形上的波浪,根据模拟的破碎波高分析其拍岸浪特征。对拍岸浪数值模拟结果进行比较分析,向海坡的坡度对拍岸浪影响不大,外礁坪上拍岸浪高随地形坡度增大而略有增大;向海坡和外礁坪交界位置(即坡折点)水深对拍岸浪有比较明显的影响,拍岸浪高随坡折点水深增大而减小;拍岸浪高随入射波高和波周期增大而增大。利用大量的拍岸浪数值模拟数据对国内外5种统计模型进行检验,并且基于拍岸浪数值模拟数据建立了3种南沙群岛岛礁拍岸浪统计模型,计算结果显示这些模型适用性较好。  相似文献   

17.
The northern continental slope off the Ebro Delta has a badland topography indicating major slope erosion and mass movement of material that deposits sediment into a ponded lobe. The southern slope has a low degree of mass movement activity and slope valleys feed channel levee-complexes on a steep continental rise. The last active fan valley is V-shaped with little meandering and its thalweg merges downstream with the Valencia Valley. The older and larger inactive channel-levee complex is smoother, U-shaped, and meanders more than the active fan valley.  相似文献   

18.
北冰洋楚科奇海陆架到陆坡表层沉积物有机碳载荷的变化   总被引:2,自引:0,他引:2  
沉积物单位表面积上吸附的有机碳被广泛用于示踪有机碳载荷的变化。本文研究了北冰洋典型边缘海——楚科奇海表层沉积物的有机碳载荷。研究发现陆架区沉积物的有机碳载荷高于陆坡区。相比于已报道的东西伯利亚海和马更些河,楚科奇海陆坡区沉积物的有机碳载荷也较低。这种有机碳载荷的变化可能和陆坡区的初级生产力较低,以及沉积物在传输过程中经历的氧化降解有关。沉积物的有机碳含量和比表面积呈线性相关,在有机碳轴上有正截距,表明一部分有机碳来自于岩石的贡献。此外,陆架区低有机碳载荷的沉积物含有的岩石有机碳更高。本研究的数据有助于深刻理解楚科奇海区域的碳循环问题。  相似文献   

19.
To determine recent interannual variations in the planktonic ecosystem of the slope water south of Japan, an area between 1000 m isobath on the continental slope and assumable Kuroshio front, in reference to preceding reports on the Kuroshio, we examined interannual variations of physical factors, sea surface chlorophyll concentration (SSChl), size-fractioned copepod biomass and the abundance of Calanus sinicus, one of the dominant copepods in the region, in February from 1990 to 2002. In the slope water, SSChl concentration had generally shown a higher value than in the Kuroshio and increase of the SSChl in both areas started in February but lasted longer in the slope water. The regional distribution of copepod biomass and C. sinicus abundance was similar to that of phytoplankton in that they were distributed more densely in the slope water than in the Kuroshio, reflecting assumed higher nutrient supply. The interannual variation in sea surface temperature in the slope water was explained by the rise of air temperature in 1998, a strong El Niño year, and subsequent change in the Kuroshio path (1999–2001). The interannual variation of the planktonic community, i.e. sea surface chlorophyll concentration and copepod biomass, was attributed to the effects of those physical events through the direct effect of local temperature and/or variation in surface irradiance, except for a prominent increase of copepods in the slope water in 2000. The effect of interannual change in the vertical mixing, suggested in previous studies, was not apparent in February, when the primary production is not limited by nutrient concentration which would be more important in regulating biological production in later months.  相似文献   

20.
Seismic reflection profiles and long- and medium-range sidescan sonar were used to investigate a salt diapir complex and area of slope instability near the base of the Continental Slope off North Carolina. Within the area of investigation three diapirs are bounded on their upslope side by a scarp 60 m high and 50 km long. The slope above the scarp is characterized by a series of shallow rotational normal faults. The bottom below the scarp is furrowed by slide tracks, which were probably carved by large blocks that broke off the scarp face and slid downslope leaving rubble and scree lobes.Extensive slumping in this area appears to be a result of uplift and faulting associated with salt intrusion, which has fractured and oversteepened the slope leading to instability and failure. Sharply defined slide tracks suggest that slope failure above the breached diapir complex is a continuing process, in contrast to much of the surrounding slope area where few instability features were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号