首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
SeaMARC II side-scan sonar data reveal that a large area of seafloor north and west of Easter Island has been disrupted by recent submarine volcanism. A large volcanic area begins approximately 60 km WNW of the island and extends for over 130 km to the west. The volcanic field is characterized by high backscatter intensity in the side-scan sonar records and is elevated 400–1000 m above the N-S seafloor fabric that surrounds it. This field, the Abu Volcanic Field, covers at least 2500 km2 and appears to consist of recent lava flows and small volcanoes. Backscatter intensity of the Abu Volcanic Field is similar to that of the adjacent ridge flank which is less than 0.4 Ma, suggesting a similar age for its formation. Two additional areas of high backscatter immediately north of Easter Island cover a combined area of over 300 km2. The sidescan sonar records show that these features are clearly of volcanic origin and are not debris flows from the nearby island. The flows are nearly 300 m thick and are morphologically similar to subaerial pahoehoe lava shields. Their high backscatter indicates that they are also the products of relatively recent submarine volcanic activity. The presence of these large areas of recent volcanism in the vicinity of Easter Island has important implications for the various models that have been proposed to explain the origin of the Easter Seamount Chain. In addition, the similar ages of Easter Island and the Easter Microplate suggest that the presence of a hotspot near or beneath this fast-spreading portion of the East Pacific Rise about 4.5 m.y. ago may have initiated the large-scale rift propagation that created the microplate.  相似文献   

2.
Abstract

Considerable effort has been expended in studying the Izu–Bonin Arc over the past 15 years. In particular, 43 dives of the Shinkai 2000 have been undertaken there to discover and evaluate the extent of submarine hydrothermal activity and mineralization. Most effort has been focused on Myojin Knoll (23 dives), Suiyo Seamount (6 dives), and Kaikata Caldera (10 dives).

The Izu–Bonin Arc is divided in two by the Sofugan Tectonic Line. Eight submarine caldera are located north of this line but only one is south of it. The physiography of the northern sector of the arc is quite different from that of the southern sector. Volcanic rocks from the northern sector are more acidic than those from the southern sector.

Evidence for submarine hydrothermal mineralization has been observed at four seamounts along the Izu–Bonin Arc (Myojin Knoll, Myojinsho, Suiyo Seamount, and Kaikata Caldera), and submarine hydrothermal activity is evident at another three seamounts along the arc (Kurose Hole, Mokuyo Seamount, and Doyo Seamount).

The most extensive submarine hydrothermal mineral deposit so far located on the Izu–Bonin Arc is the Sunrise deposit at Myojin Knoll. This deposit, at least 400 m in diameter and 30 m high, is associated with black smoker venting, inactive sulfide chimneys, massive sulfides, hydrothermal Mn crusts, and a hydrothermal vent fauna. The maximum recorded temperature of the hydrothermal vents there was 278°C. Some of the sulfide chimneys contained as much as 49 μg/g Au and 3,400 μg/g Ag. The sunrise deposit is one of the largest submarine volcanic massive sulfide deposits so far discovered in midocean ridge, backarc, or arc settings and has an estimated mass of 9 × 106 t. This deposit may be of the Kuroko-type. The discovery of the Sunrise deposit in 1997 gives hope that other, similarly large, sulfide deposits may be found in other caldera along the Izu–Bonin Arc.

The geological variability along the arc, the high seismicity, the occurrence of active volcanism and submarine hydrothermal venting, and a proven submarine hydrothermal mineral potential coupled with the proximity of the region to Japan suggest that the Izu–Bonin Arc could profitably serve as a natural laboratory for the long-term monitoring of the seafloor.  相似文献   

3.
Considerable effort has been expended in studying the Izu-Bonin Arc over the past 15 years. In particular, 43 dives of the Shinkai 2000 have been undertaken there to discover and evaluate the extent of submarine hydrothermal activity and mineraliza tion. Most effort has been focused on Myojin Knoll (23 dives), Suiyo Seamount (6 dives), and Kaikata Caldera (10 dives). The Izu-Bonin Arc is divided in two by the Sofugan Tectonic Line. Eight submarine caldera are located north of this line but only one is south of it. The physiography of the northern sector of the arc is quite different from that of the southern sector. Volcanic rocks from the northern sector are more acidic than those from the southern sector. Evidence for submarine hydrothermal mineralization has been observed at four seamounts along the Izu-Bonin Arc (Myojin Knoll, Myojinsho, Suiyo Seamount, and Kaikata Caldera), and submarine hydrothermal activity is evident at another three seamounts along the arc (Kurose Hole, Mokuyo Seamount, and Doyo Seamount). The most extensive submarine hydrothermal mineral deposit so far located on the Izu-Bonin Arc is the Sunrise deposit at Myojin Knoll. This deposit, at least 400 m in diameter and 30 m high, is associated with black smoker venting, inactive sulfide chimneys, massive sulfides, hydrothermal Mn crusts, and a hydrothermal vent fauna. The maximum recorded temperature of the hydrothermal vents there was 278°C. Some of the sulfide chimneys contained as much as 49 μg / g Au and 3,400 μg / g Ag. The sunrise deposit is one of the largest submarine volcanic massive sulfide deposits so far discovered in midocean ridge, backarc, or arc settings and has an estimated mass of 9 x 10 6 t. This deposit may be of the Kuroko-type. The discovery of the Sunrise deposit in 1997 gives hope that other, similarly large, sulfide deposits may be found in other caldera along the Izu-Bonin Arc. The geological variability along the arc, the high seismicity, the occurrence of active volcanism and submarine hydrothermal venting, and a proven submarine hydrothermal mineral potential coupled with the proximity of the region to Japan suggest that the Izu-Bonin Arc could profitably serve as a natural laboratory for the long-term monitoring of the seafloor.  相似文献   

4.
Several boreholes drilled by the Commissariat à l'Energie Atomique have reached and passed through the volcanic bedrock of Fangataufa atoll. The sampled volcanic rocks under the coral ring were produced during both aerial and submarine activity, whereas rocks drilled under the lagoon were erupted during submarine volcanism only. The bathymetric data show that the atoll has a “starfish” shape. The rift zones are elongated in N-S, N70–80 and N120 directions; these three main directions are also the directions of structural discontinuities in the lithosphere. Reconstruction of the atoll's topography before erosion using a slope angle of about 16° shows that the maximum height reached by the volcano was about 1300 m above sea level. For comparison, the maximum height of Méhetia island (southeast of Tahiti) is approximately 435 m. The successive construction stages are: (1) initiation of volcanism along the rift zones and construction of a central volcano; (2) production of brecciated lavas; (3) emergent volcanism; and (4) central and aerial activity. The present day position of the aerial volcanic rocks under the coral reef and the submarine products under the lagoon is discussed with reference to two hypotheses. The first is based on sea level changes and the second on a tectonic origin (collapse of the atoll's flanks). Using recent geochronological data, the submarine construction of the atoll related to the hot-spot activity lasted about 1.1 Ma. The accumulation rate was approximately 0.7 cm/yr (1.5 × 10−3 km3/yr) and the aerial volcanic activity lasted about 2 Ma (1.5 × 10−5 km3/yr).  相似文献   

5.
Observations from 17 ALVIN dives and 14 ANGUS runs plus laboratory study of basalt samples collected with ALVIN help to constrain the morphologic, volcanic and petrologic evolution of four seamounts near the East Pacific Rise (EPR). Comparison among the four volcanoes provides evidence for a general pattern of near-EPR seamount evolution and shows the importance of sedimentation, mass wasting, hydrothermal activity and other geologic processes that occur on submerged oceanic volcanoes. Seamount 5, closest to the EPR (1.0 Ma) is the youngest seamount and may still be active. Its summit is covered by fresh lavas, recent faults and hydrothermal deposits. Seamount D is on crust 1.55 Ma and is inactive; like seamount 5, it has a breached caldera and is composed exclusively of N-MORB. Seamounts 5 and D represent the last stages of growth of typical N-MORB-only seamounts near the EPR axis. Seamounts 6 and 7 have bumpy, flattish summits composed of transitional and alkalic lavas. These lavas probably represent caldera fillings and caps overlying an edifice composed of N-MORB. Evolution from N-MORB-only cratered edifices to the alkalic stage does not occur on all near-EPR seamounts and may be favored by location on structures with relative-motion-parallel orientation.  相似文献   

6.
A bathymetric survey of the Gilliss Seamount, in the northwest Atlantic Basin, using a multi-beam sonar array system reveals an extremely complex morphologic character of this feature. A new chart provides the most detailed topographic presentation of an Atlantic seamount published to date and highlights the similarity of the Gilliss Seamount with terrestrial strata-volcanoes. Bottom photographs and samples reveal pillow-Iava formation. Seismic profiles show that the volcanic basement is irregularly covered by acoustically transparent deposits that are as much as 668 m thick. Volcanic debris and sediments locally are displaced down the flanks of the seamount. Bottom photographs and cores indicate that the transparent layer has accumulated slowly by deposition from suspensate-rich (mostly clay and planktonic foraminifera) water masses that flow around the mid to lower sectors of this submarine volcano. Bottom-current activity also modifies the abyssal plain turbidite-hemipelagic sequence surrounding the seamount.  相似文献   

7.
In this paper we discuss the results of a swath bathymetric investigation of the Canary archipelago offshore area. These new data indicate that volcanism is pervasive throughout the seafloor in the region, much more that would be suggested by the islands. We have mapped tens of volcanic edifices between Fuerteventura and Gran Canaria and offshore Tenerife, La Gomera, El Hierro and La Palma. Volcanic flows are present between Tenerife and La Gomera and salic necks dominate the eastern insular slope of La Gomera. This bathymetry also supports land geologic studies that indicate that the oceanic archipelago has acquired its present morphology in part by mass wasting, a consequence of the collapse of the volcanic edifices. In the younger islands, Tenerife, La Palma and El Hierro, the Quaternary (1.2 to 0.15 Ma) debris avalanches are readily recognizable and can be traced offshore for distances measured in tens of km. Off the older islands, Lanzarote, Fuerteventura, Gran Canaria and La Gomera (<20 to 3.5 Ma), the avalanches have been obscured by subsequent turbidity current deposition and erosion as well as hemipelagic processes. The failure offshore western Lanzarote is in the form of a ramp at the base of the insular slope bound on the seaward side by a scarp. Its size and the lack of evidence of rotation along its landwards side precludes the possibility that it is a slump. It probably represents a slide whose outer scarp is caused by break-up of the slide. Mounds on the ramp’s surface may represent post-displacement volcanic structures or exotic blocks transported to their present locations by the slide. The failures offshore Fuerteventura are so large that, although they occurred in the Miocene-Pliocene, exotic blocks displaced from upslope are still recognizable in the insular margin morphology. The Canary Island insular margin appears to be a creation of Miocene-Pliocene mass wasting and more recent turbidity current deposition and erosion, and hemilepagic deposition. Failures offshore La Gomera are due to debris flows and/or turbidity currents. These events have obscured earlier mass wasting events. An erratum to this article is available at .  相似文献   

8.
The Easter microplate-Crough Seamount region located between 25° S–116° W and 25° S–122° W consists of a chain of seamounts forming isolated volcanoes and elongated (100–200 km in length) en echelon volcanic ridges oriented obliquely NE (N 065°), to the present day general spreading direction (N 100°) of the Pacific-Nazca plates. The extension of this seamount chain into the southwestern edge of the Easter microplate near 26°30 S–115° W was surveyed and sampled. The southern boundary including the Orongo fracture zone and other shallow ridges (< 2000 m high) bounding the Southwest Rift of the microplate consists of fault scarps where pillow lava, dolerite, and metabasalts are exposed. The degree of rock alternation inferred from palagonitization of glassy margins suggests that the volcanic ridges are as old as the shallow ridges bounding the Southwest Rift of the microplate. The volcanics found on the various structures west of the microplate consist of depleted (K/Ti < 0.1), transitional (K/Ti = 0.11–0.25) and enriched (K/Ti > 0.25) MORBs which are similar in composition to other more recent basalts from the Southwest and East Rifts spreading axes of the Easter microplate. Incompatible element ratios normalized to chondrite values [(Ce/Yb)N = 1–2.5}, {(La/Sm)N = 0.4–1.2} and {(Zr/Y)N = 0.7–2.5} of the basalts are also similar to present day volcanism found in the Easter microplate. The volcanics from the Easter microplate-Crough region are unrelated to other known South Pacific intraplate magmatism (i.e. Society, Pitcairn, and Salas y Gomez Islands). Instead their range in incompatible element ratios is comparable to the submarine basalts from the recently investigated Ahu and Umu volcanic field (Easter hotspot) (Scientific Party SO80, 1993) and centered at about 80 km west of Easter Island. The oblique ridges and their associated seamounts are likely to represent ancient leaky transform faults created during the initial stage of the Easter microplate formation ( 5 Ma). It appears that volcanic activity on seamounts overlying the oblique volcanic ridges has continued during their westward drift from the microplate as shown by the presence of relatively fresh lava observed on one of these structures, namely the first Oblique Volcanic Ridge near 25° S–118° W at about 160 km west of the Easter microplate West Rift. Based on a reconstruction of the Easter microplate, it is suggested that the Crough seamount (< 800 m depth) was formed by earlier (7–10 Ma) hotspot magmatic activity which also created Easter Island.  相似文献   

9.
南海火山玻璃的分布特征、化学成分及源区探讨   总被引:8,自引:2,他引:6  
研究了南海火山玻璃的分布特征、化学成分及源区,结果表明,表层沉积物中的火山玻璃含量基本呈南北向分布,由北部、西部、南部大陆架分别向中部、东部深海盆逐渐增加;柱样沉积物中的火山玻璃在深海盆出现的层数多、含量大.火山玻璃化学组分之间的相关性不显著,表层沉积物中的火山玻璃属于安山岩,柱样沉积物中的火山玻璃的岩石类型广泛,主要属于安山岩和流纹岩.菲律宾岛弧火山带、南海深海盆火山喷发以及印尼岛弧火山带是南海火山玻璃主要源区,火山玻璃搬运和沉积主要受台风、越赤道气流和环流的影响和控制.  相似文献   

10.
A detailed reconstruction of the stratigraphic and tectonic setting of the Gulf of Pozzuoli (Naples Bay) is provided on the basis of newly acquired single channel seismic profiles coupled with already recorded marine magnetics gathering the volcanic nature of some seismic units. Inferences for the tectonic and magmatic setting of the Phlegrean Fields volcanic complex, a volcanic district surrounding the western part of the Gulf of Naples, where volcanism has been active since at least 50 ka, are also discussed. The Gulf of Pozzuoli represents the submerged border of the Phlegrean caldera, resulting from the volcano-tectonic collapse induced from the pyroclastic flow deposits of the Campanian Ignimbrite (35 ka). Several morpho-depositional units have been identified, i.e., the inner continental shelf, the central basin, the submerged volcanic banks and the outer continental shelf. The stratigraphic relationships between the Quaternary volcanic units related to the offshore caldera border and the overlying deposits of the Late Quaternary depositional sequence in the Gulf of Pozzuoli have been highlighted. Fourteen main seismic units, both volcanic and sedimentary, tectonically controlled due to contemporaneous folding and normal faulting have been revealed by geological interpretation. Volcanic dykes, characterized by acoustically transparent sub-vertical bodies, locally bounded by normal faults, testify to the magma uprising in correspondence with extensional structures. A large field of tuff cones interlayered with marine deposits off the island of Nisida, on the western rim of the gulf, is related to the emplacement of the Neapolitan Yellow Tuff deposits. A thick volcanic unit, exposed over a large area off the Capo Miseno volcanic edifice is connected with the Bacoli-Isola Pennata-Capo Miseno yellow tuffs, cropping out in the northern Phlegrean Fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号