首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors have previously determined that the effectiveness and failure pattern of the ice cover caused by flexural-gravity waves generated by a submerged body motion near the bottom ice can greatly depend on the depth of the water area. In its turn, the presence of a ledge on the ice surface may affect a wave propagation pattern. This paper presents an experimental study of the bottom contour influence on the deflection and length of flexural-gravity waves. The authors describe a numerical model for the analysis of the deformed state of ice caused by hydrodynamic loads due to a submarine motion, taking into account the bottom contour. The experiments are carried out in the ice tank. The results of calculations and experiments are compared.  相似文献   

2.
声速剖面时空分布的获取是利用声学方法监测内波的核心问题。在反演算法中,声速剖面通常是采用展开的方式用若干个参数来表示的。这就导致了有时很难从反演结果中直接获得内波的相关信息。本文的目标是找到一种通过展开系数直接获取内波特性的方法。通过推导内波水动力方程,可以从较少的声速剖面样本中提取出水动力简正模态(Hydrodynamic Normal Modes,HNMs)作为声速剖面展开的正交基。较之广泛采用的正交经验函数(Empirical Orthogonal Functions, EOFs),HNMs直接与内波活动相关,具有更明确的物理含义。然后,基于HNMs对声速剖面的时间序列进行展开,获得展开系数。最后,从前两阶展开系数的时间导数中可以获取内波活动的信息。将方法应用于受内波影响而具有明显时空扰动的南海北陆架区温度链数据,结果表明:只用前两节模态就可以在较好的精度范围内重构声速剖面。前两阶系数的时间导数具有独特的双震荡结构可以用于探测内孤立波。从展开系数也可以获得幅度以及波长信息。理论推导和实验分析证明了本文方法在内波监测中的有效性。HNMs方法使用便利且对样本的依赖性较小,可以在内波活跃海域作为EOFs的有效补充用于声速剖面的展开。  相似文献   

3.
三维随机波浪对桩柱的作用   总被引:5,自引:1,他引:4  
俞聿修  张宁川  赵群 《海洋学报》1998,20(4):121-132
试验研究了三维随机波浪作用于垂直圆柱上的作用力.采用二维波浪的方法计算三维波浪力,研究了各波力系数随KC数和波浪方向分布的变化规律,并对三维波力和二维波力进行了对比分析.  相似文献   

4.
The hydrodynamic properties of long rigid floating pontoon interacting with linear oblique waves in water of finite arbitrary depth are examined theoretically. The flow is idealized as linearized, velocity potentials are expressed in the form of eigen-function expansions with unknown coefficients. The fluid domain is split into three regions, region (1) wave-ward of the structure, region (2) in the lee of the structure, and region (3) beneath the structure. The different hydrodynamic quantities of interest such as the exciting forces, added mass and damping coefficients, reflection and transmission coefficients were studied for an applicable range of wave/structure parameters. Assuming rigid body motions, dynamic responses of the moored structure is approximately calculated through three equations of motion. Floating pontoons proved to be a convenient alternative for protection from waves in shallow water. The present method of solution was found to be computationally efficient, and results are comparable to those obtained through other techniques.  相似文献   

5.
The Multiple Column Platform (MCP) semi-submersible is a newly proposed concept, which differs from the conventional semi-submersibles, featuring centre column and middle pontoon. It is paramount to ensure its structural reliability and safe operation at sea, and a rigorous investigation is conducted to examine the hydrodynamic and structural performance for the novel structure concept. In this paper, the numerical and experimental studies on the hydrodynamic performance of MCP are performed. Numerical simulations are conducted in both the frequency and time domains based on 3D potential theory. The numerical models are validated by experimental measurements obtained from extensive sets of model tests under both regular wave and irregular wave conditions. Moreover, a comparative study on MCP and two conventional semi-submersibles are carried out using numerical simulation. Specifically, the hydrodynamic characteristics, including hydrodynamic coefficients, natural periods and motion response amplitude operators (RAOs), mooring line tension are fully examined. The present study proves the feasibility of the novel MCP and demonstrates the potential possibility of optimization in the future study.  相似文献   

6.
Phase control may substantially increase the power absorption in point-absorber wave energy converters. This study deals with validation of dynamic models and latching control algorithms for an oscillating water column (OWC) inside a fixed vertical tube of small circular cross-section by small-scale testing. The paper describes experimental and numerical results for the system's dynamics, using simple and practical latching control techniques that do not require the prediction of waves or wave forces, and which will be relevant to any type of point-absorbing devices.In the experimental set-up, the upper end of the tube was equipped with an outlet duct and a shut-off valve, which could be controlled to give a latching of the inner free surface movement. The pressure drop through the open valve is used as a simplified measure of the energy extraction. The control was realized by using the real-time measurement signals for the inner and outer surface displacement.A mathematical model of the system was established and applied in numerical simulation. In the case the OWC's diameter is much smaller than the wavelength and the wave amplitude much smaller than the draft, the free surface movement inside the tube can be described as an oscillating weightless piston. For this hydrodynamic problem an analytical solution is known. In addition, the mathematical model includes the effects of viscous flow losses, the air compressibility inside the chamber and the pressure drop across the valve. Experimental results were used to calibrate some of the model parameters, and the total model was formulated as a coupled system of six non-linear, first-order differential equations. Time-domain integration was used to simulate the system in order to test the control strategies and compare with experimental results.  相似文献   

7.
The three-dimensional scattering of cnoidal waves by cylinder arrays are studied numerically by using the generalized Boussinesq equations. The boundary-fitted coordinate transformation and a dual-grid technique are used to simplify the finite-difference computation. Also, a set of open boundary conditions and an incident cnoidal wave are incorporated for time-domain simulation. The free-surface elevation and hydrodynamic forces on each cylinder are calculated to illustrate the evolution of nonlinear waves and their interactions with large cylinder arrays. Comparisons are made between the present nonlinear wave loads and those obtained from linear diffraction theory. The sheltering role played by the neighboring cylinders and the feature of wave interference are discussed.  相似文献   

8.
In this study, a practical model is proposed to predict cross-flow (CF) and in-line (IL) vortex-induced vibrations of a flexible riser in time domain. The hydrodynamic force as a function of non-dimensional amplitude and frequency is obtained from the forced vibration experimental data of a two-dimensional cylinder. An empirical nonlinear damping model is used to simulate the hydrodynamic damping outside the experiment's range. Coupling effect of CF and IL-VIV is taken into account by implanting a magnification model for the IL hydrodynamic force associated with CF amplitude, and by increasing the non-dimensional amplitude corresponding to the IL hydrodynamic coefficient in the second excitation region. The experimental models of flexible riser under the uniform and sheared current are simulated to validate the proposed model. The predicted displacement, curvatures, excited modes and fatigue damage show reasonable agreement with the measured data.  相似文献   

9.
Bin Li   《Ocean Engineering》2008,35(17-18):1842-1853
A spatial fixed σ-coordinate is used to transform the Navier–Stokes equations from the sea bed to the still water level. In the fixed σ-coordinate system only a very small number of vertical grid points are required for the numerical model. The time step for using the spatial fixed σ-coordinate is efficiently larger than that of using a time dependent σ-coordinate, as there is substantial truncation error involved in the time dependent σ-coordinate transformation. There is no need to carry out the σ-coordinate transformation at each time step, which can reduce computational times. It is important that wave breaking can be potentially modeled in the fixed σ-coordinate system, but in a time-dependent σ-coordinate system the wave breaking cannot be modeled. A projection method is used to separate advection and diffusion terms from the pressure terms in Navier–Stokes equations. The pressure variable is further separated into hydrostatic and hydrodynamic pressures so that the computer rounding errors can be largely avoided. In order to reduce computational time of solving the hydrodynamic pressure equation, at every time step the initial pressure is extrapolated in time domain using computed pressures from previous time steps, and then corrected in spatial domain using a multigrid method. For each time step, only a few of iterations (typically six iterations) are required for solving the pressure equation. The model is tested against available experimental data for regular and irregular waves and good agreement between calculation results and the measured data has been achieved.  相似文献   

10.
An approach based on artificial neural network (ANN) is used to develop predictive relations between hydrodynamic inline force on a vertical cylinder and some effective parameters. The data used to calibrate and validate the ANN models are obtained from an experiment. Multilayer feed-forward neural networks that are trained with the back-propagation algorithm are constructed by use of three design parameters (i.e. wave surface height, horizontal and vertical velocities) as network inputs and the ultimate inline force as the only output. A sensitivity analysis is conducted on the ANN models to investigate the generalization ability (robustness) of the developed models, and predictions from the ANN models are compared to those obtained from Morison equation which is usually used to determine inline force as a computational method. With the existing data, it is found that least square method (LSM) gives less error in determining drag and inertia coefficients of Morison equation. With regard to the predicted results agreeing with calculations achieved from Morison equation that used LSM method, neural network has high efficiency considering its convenience, simplicity and promptitude. The outcome of this study can contribute to reducing the errors in predicting hydrodynamic inline force by use of ANN and to improve the reliability of that in comparison with the more practical state of Morison equation. Therefore, this method can be applied to relevant engineering projects with satisfactory results.  相似文献   

11.
The traditional governing equations for sway–yaw maneuvering motion are a set of ordinary differential equations with constant coefficients. But, as is well known, integro–differential equations with impulse response functions are more strict governing equations that can handle the frequency dependence of hydrodynamic forces.In this paper, the two types of equation are compared and used to calculate the 10°–10° zig-zag maneuver in waves. Differences between the solutions are discussed.  相似文献   

12.
In this paper,the maneuvering characteristics of a low speed submersible are investigated.First,the captive model tests are carried out to obtain the hydrodynamic forces acting on the submersibleusing a Planar Motion Mechanism(PMM).For the hydrodynamic forces within a wide range of attack an-gles,the hydrodynamic coefficients which are usually used in the conventional maneuvering motion arequite difficult to be applied.In this case,a Fourier series is adopted to represent the hydrodynamic forcesand it fits the experimental data well.Then,based on the experimental results the simulation calculationsare made to predict some of the maneuvering performance of the low speed submersible.  相似文献   

13.
The run-up flow and related pressure of solitary waves breaking on a 1:20 plane beach were investigated experimentally in a super tank (300 m × 5 m × 5.2 m). Swash flow measurements of flow velocities are compared with an existing analytical solution. By incorporating an analytical solution, the hydrodynamic pressure for a quasi-steady flow state is determined and compared with laboratory data. Concerning the evident extra pressure exerted by the impact of swash flow, an empirical drag coefficient for a circular plate is also suggested in the present study.  相似文献   

14.
An array of large concentric porous cylinder arrays is mounted in shallow water exposed to cnoidal waves. The interactions between waves and cylinders are studied theoretically using an eigenfunction expansion approach. Semi-analytical solutions of hydrodynamic loads and wave run-up on each cylinder are obtained using first approximation to cnoidal waves. The square array configuration of four-legged identical concentric porous cylinder is investigated in present study. Numerical results reveal the variation of dimensionless wave force and wave run-up on individual cylinder with angle of incidence, porosity parameter, spacing between outer and inner cylinders, spacing between concentric porous cylinders and wave parameter. Different mechanism of wave force is found under different range of scattering parameter.  相似文献   

15.
An experimental set-up is developed and proved to be effective for laboratory study of an underwater towed system. The experimental technique gives a practical method for monitoring the kinematic and dynamic performance of an underwater towed system in a ship towing tank. Both the theoretical and experimental results in the investigation indicate that the hydrodynamic response of a towed vehicle to the wave induced motion of a towing ship can be significantly reduced by applying a two-part tow method. A comparison of the numerical and experimental results in the investigation demonstrates that the numerical simulation results are close to the experimental data, overall agreement between experimental and theoretical results is satisfactory. The results qualitatively verify the mathematical model of a two-part underwater towed system proposed by Wu and Chwang [Wu, J., Chwang, A.T., 2000. A hydrodynamic model of a two-part underwater towed system. Ocean Engineering 27 (5), 455–472].  相似文献   

16.
Based on the linear diffraction theory, an investigation is made on the interaction of water waves with a completely submerged sphere in water of finite depth in this paper. The method of multipole expansions is used to obtain the fluid velocity potential in the form of double series of the associated Legendre functions with the unknown coefficients of the infinite set of infinite matrix equations. The truncation property of the matrices and the convergence of the multipole series coefficients are investigated for various wavelengths and depths. The systematic numerical simulation, based on our analytical solution, is carried out and the fields of the hydrodynamic diffraction pressure and fluid velocity around the sphere, the three-dimensional free surface elevation, and total exciting forces acting on the sphere are graphically presented for a wide range of the body submergences, ocean depths and wavelengths.  相似文献   

17.
Because of the complex geological conditions of the seabed, submarine pipelines buried beneath the ocean floor become suspended over the seabed under the long-term scour of waves eroding the surrounding sediment. Further, most oil fields were built in offshore areas while the country was developing. This gives the waves seen in shallow water obvious nonlinear features, and the abnormal characteristics of these waves must be considered when calculating their hydrodynamic forces. Particularly under such conditions, these suspended spans of submarine pipelines are prone to damage caused by the action of the external environment load. Such damages and eventual failures may result not only in great property losses but also pollution of the marine environment. The span length of these areas is a key predictive factor in pipeline damages. Therefore, determining the allowable span length for these submarine pipelines will allow future projects to avoid or prevent damage from excessive suspended span lengths. Expressions of the hydrodynamic loads placed on suspended spans of pipeline were developed in this work based on the first-order approximate cnoidal wave theory and Morison equation. The formula for the allowable free span length was derived for the common forms of free spanning submarine pipeline based on the point where maximum bending stresses remain less than the material’s allowable stress. Finally, the allowable free span length of real-world pipelines was calculated for a subsea pipeline project in Bohai Bay. This research shows that, with consideration for the complicated marine environment, existing suspended spans are within allowable length limitations. However, continuing to limit the length of these submarine pipeline spans in the Nanpu oil field will require ongoing attention.  相似文献   

18.
Wave characteristics past a flexible fishnet   总被引:1,自引:0,他引:1  
The scattering of surface waves by a flexible fishnet is studied analytically. The fishnet is modelled as a porous flexible barrier displaced solely by hydrodynamic force like a catenary. The objective is to investigate how a flexible permeable barrier affects the passing waves in the way they are transmitted and reflected, as observed by the fact that the water inside a fishfarm surrounded by fishnets is significantly calmer than that outside. The boundary value problems are solved by defining the reflection coefficient in terms of velocity potential and then the full solutions are obtained by suitable application of the eigenfunction expansion method and the least squares approximation method. The variations of the reflection coefficient, hydrodynamic pressure, barrier deformation and surface wave elevation are determined with respect to the barrier length, porosity and stiffness. It is observed that as the fishnet gets more flexible, its deformation increases and the reflection coefficient decreases, whereas as the fishnet gets more porous, more water can pass through it and thus the reflection coefficient, barrier deformation and the hydrodynamic force are reduced. The flexibility of the barrier behaves like its porosity by allowing more wave energy to act on it through its deformation and hence reduce the reflection and hydrodynamic force of the incident waves acting on the barrier.  相似文献   

19.
Hydrodynamic loads during the deployment of ROVs   总被引:1,自引:0,他引:1  
P. Sayer   《Ocean Engineering》2008,35(1):41-46
Offshore operators understandably seek to operate remotely operated vehicles (ROVs) for as long as possible and in the widest range of sea conditions. Accurate predictions of the hydrodynamic loads are important at the design stage as well as in operation, particularly during the launch and recovery phases when snatching of the tether may occur. There is some speculation that calculation methods currently advocated in guidelines lead to an over-estimation of the hydrodynamic forces and consequently to unduly restrictive operability constraints. The present paper has measured wave forces on a 1/8 scale model of a widely used ‘workclass’ ROV, as well as on a solid box of similar envelope dimensions, and compared these against Morison's equation using coefficients derived from three methods. It is concluded that simple linear theory using total (substantive) derivatives, together with a Morison coefficient Cm≈1.5, can provide good estimates of the loading even in waves of quite high steepness, perhaps for height-to-wavelength ratios up to 0.08; i.e., in practice, up to wave breaking.  相似文献   

20.
Three-dimensional numerical modeling of nearshore circulation   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号