首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
http://www.sciencedirect.com/science/article/pii/S1674987111001125   总被引:1,自引:1,他引:0  
<正>Greenstone belts of the eastern Dharwar Craton,India are reinterpreted as composite tectonostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new high-precision elemental data.The former are dominated by a komatiile plus Mg-tholeiitic basalt volcanic association,with deep water siliciclastic and banded iron formation(BIF) sedimentary rocks.Plumes melted at90 km under thin rifted continental lithosphere to preserve inlraoceanic and continental margin aspects.Associated alkaline basalts record subduction-recycling of Mesoarchean oceanic crust,incubated in the asthenosphere.and erupted coevally with Mg basalts from a heterogeneous mantle plume.Together.komaliites-Mg basalts-alkaline basalts plot along the Phanerozoic mantle array in Th/Yb versus Nb/Yb coordinate space,representing zoned plumes,establishing that these reservoirs were present in the Neoarchean mantle. Convergent margin magmatic associations are dominated by tholeiitic to calc-alkaline basalts eompositionally similar to recent intraoceanic arcs.As well,boninitic flows sourced in extremely depleted mantle are present,and the association of arc basalts with Mg-andesites-Nb enriched basalts-adakites documented from Cenozoic arcs characterized by subduction of young(20 Ma),hot,oceanic lithosphere. Consequently.Cenozoic style "hot" subduction was operating in the Neoarchean.These diverse volcanic associations were assembled to give composite terranes in a subduction-accretion orogen at~2.1 Ga,coevally with a global accretionary orogen at ~2.7 Ga,and associated orogenic gold mineralization. Archean lithospheric mantle,distinctive in being thick,refractory,and buoyant,formed complementary to the accreted plume and convergent margin terranes.as migrating arcs captured thick plumeplateaus. and the refractory,low density.residue of plume melting coupled with accreted imbricated plume-arc crust.  相似文献   

2.
http://www.sciencedirect.com/science/article/pii/S1674987112001065   总被引:2,自引:2,他引:0  
It has been thought that granitic crust,having been formed on the surface,must have survived through the Earth’s evolution because of its buoyancy.At subduction zones continental crust is predominantly created by arc magmatism and is returned to the mantle via sediment subduction,subduction erosion, and continental subduction.Granitic rocks,the major constituent of the continental crust,are lighter than the mantle at depths shallower than 270 km,but we show here,based on first principles calculations, that beneath 270 km they have negative buoyancy compared to the surrounding material in the upper mantle and transition zone,and thus can be subducted in the depth range of 270-660 km.This suggests that there can be two reservoirs of granitic material in the Earth,one on the surface and the other at the base of the mantle transition zone(MTZ).The accumulated volume of subducted granitic material at the base of the MTZ might amount to about six times the present volume of the continental crust.Our calculations also show that the seismic velocities of granitic material in the depth range from 270 to 660 km are faster than those of the surrounding mantle.This could explain the anomalous seismic-wave velocities observed around 660 km depth.The observed seismic scatterers and reported splitting of the 660 km discontinuity could be due to jadeite dissociation,chemical discontinuities between granitic material and the surrounding mantle,or a combination thereof.  相似文献   

3.
正Objective The Beiya super-large Au-rich porphyry deposit (304 t Au,2.4 g/t Au) is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen (Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction (740-1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiva ore-formine porphvrv  相似文献   

4.
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.  相似文献   

5.
Western China locates in the eastern section of the Tethys domain, granitic rocks in this region with variable formation ages and geochemistry record key information about the crust-mantle structure and thermal evolution during the convergent process of Tethys. In this study, we focus on some crucial granitic magmatism in the western Yangtze, Qinling orogen, and western Sanjiang tectonic belt, where magma sequence in the convergent orogenic belt can provide important information about the crust-mantle structure, thermal condition and melting regime that related to the evolution processes from Pre- to Neo-Tethys. At first, we show some features of Pre-Tethyan magmatism, such as Neoproterozoic magmatism (ca. 870–740 Ma) in the western margin of the Yangtze Block were induced by the assembly and breakup of the Rodinia supercontinent. The complication of voluminous Neoproterozoic igneous rocks indicated that the western Yangtze Block underwent the thermodynamic evolution from hot mantle-cold crust stage (ca. 870–850 Ma) to hot mantle and crust stage (ca. 850–740 Ma). The Neoproterozoic mantle sources beneath the western Yangtze Block were progressively metasomatized by subduction-related compositions from slab fluids (initial at ca. 870 Ma), sediment melts (initial at ca. 850 Ma), to oceanic slab melts (initial at ca. 825–820 Ma) during the persistent subduction process. Secondly, the early Paleozoic magmatism can be well related to three distinctive stages (variable interaction of mantle-crust to crustal melting to variable sources) from an Andeans-type continental margin to collision to extension in response to the evolution of Proto-Tethys and final assembly of Gondwana continent. Thirdly, the Paleo-Tethys magmatism, Triassic granites in the Qinling orogenic display identical formation ages and Lu-Hf isotopic compositions with the related mafic enclaves, indicate a coeval melting event of lower continental crust and mantle lithosphere in the Triassic convergent process and a continued hot mantle and crust thermal condition through the interaction of subducted continental crust and upwelling asthenosphere. Finally, the Meso- and Neo-Tethyan magmatism: Early Cretaceous magmatism in the Tengchong Block are well responding to the subduction and closure of Bangong-Nujiang Meso-Tethys, recycled sediments metasomatized mantle by subduction since 130 Ma and subsequently upwelling asthenosphere since ca. 122 Ma that causes melting of heterogeneous continental crust until the final convergence, this process well recorded the changing thermal condition from hot mantle-cold crust to hot mantle and crust; The Late Cretaceous to Early Cenozoic magmatism well recorded the processes from Neo-Tethyan ocean slab flat subduction, steep subduction, to initial collision of India-Asia, it resulted in a series of continental arc magmatism with enriched mantle to crustal materials at Late Cretaceous, increasing depleted and/or juvenile materials at the beginning of early Cenozoic, and increasing evolved crustal materials in the final stage, implying a continued hot mantle and crust condition during that time. Then we can better understand the magmatic processes and variable melting from the mantle to crust during the evolution of Tethys, from Pre-, Paleo-, Meso-, to Neo-, both they show notably intensive interaction of crust-mantle and extensive melting of the heterogeneous continent during the final closure of Tethys and convergence of blocks, and thermal perturbation by a dynamic process in the depth could be the first mechanism to control the thermal condition of mantle and crust and associated composition of magmatism.  相似文献   

6.
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai–Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in mainland China and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional(3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai–Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north–south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by lowvelocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan–Dian and Songpan–Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan–Ganzi Block and the sub–block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80–120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background forthe area's strong earthquake activity.  相似文献   

7.
Progress in the Study of Deep Profiles of Tibet and the Himalayas (INDEPTH)   总被引:5,自引:0,他引:5  
This paper introduces 8 major discoveries and new understandings with regard to the deep structure and tectonics of the Himalayas and Tibetan Plateau obtained in Project INDEPTH, They are mainly as follows. (1) The upper crust, lower crust and mantle lithosphere beneath the blocks of the plateau form a "sandwich" structure with a relatively rigid-brittle upper crust, a visco-plastic lower crust and a relatively rigid-ductile mantle lithosphere. This structure is completely different from that of monotonous, cold and more rigid oceanic plates. (2) In the process of north-directed collision-compression of the Indian subcontinent, the upper crust was attached to the foreland in the form of a gigantic foreland accretionary wedge. The interior of the accretionary wedge thickened in such tectonic manners as large-scale thrusting, backthrusting and folding, and magmatic masses and partially molten masses participated in the crustal thickening. Between the upper crust and lower crust lies a large detachment (e.g  相似文献   

8.
http://www.sciencedirect.com/science/article/pii/S1674987110000071   总被引:2,自引:1,他引:1  
<正>The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics.Firstly,China's continental crust is thick in the west but thins to the east,and thick in the south but thins to the north.Secondly,the continental crust of the Qinghai—Tibet Plateau has an average thickness of 60—65 km with a maximum thickness of 80 km,whereas in eastern China the average thickness is 30—35 km,with a minimum thickness of only 5 km in the center of the South China Sea.The average thickness of continental crust in China is 47.6 km,which greatly exceeds the global average thickness of 39.2 km.Thirdly,as with the crust,the lithosphere of China and its adjacent areas shows a general pattern of thicker in the west and south,and thinner in the east and north.The lithosphere of the Qinghai—Tibet Plateau and northwestern China has an average thickness of 165 km, with a maximum thickness of 180—200 km in the central and eastern parts of the Tarim Basin,Pamir, and Changdu areas.In contrast,the vast areas to the east of the Da Hinggan Ling—Taihang—Wuling Mountains,including the marginal seas,are characterized by lithospheric thicknesses of only 50—85 km.Fourthly,in western China the lithosphere and asthenosphere behave as a "layered structure", reflecting their dynamic background of plate collision and convergence.The lithosphere and asthenosphere in eastern China display a "block mosaic structure",where the lithosphere is thin and the asthenosphere is very thick,a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials.The latter is responsible for a huge low velocity anomaly at a depth of 85—250 km beneath East Asia and the western Pacific Ocean.Finally,in China there is an age structure of "older in the upper layers and younger in the lower layers" between both the upper and lower crusts and between the crust and the lithospheric mantle.  相似文献   

9.
Seismic observations have shown structural variation near the base of the mantle transition zone(MTZ)where subducted cold slabs,as visualized with high seismic speed anomalies(HSSAs),flatten to form stagnant slabs or sink further into the lower mantle.The different slab behaviors were also accompanied by variation of the "660 km" discontinuity depths and low viscosity layers(LVLs) beneath the MTZ that are suggested by geoid inversion studies.We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics.A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ.We found that the viscosity reduction of subducted crustal material leads to a separation of crustal material from the slab main body and its transient stagnation in the MTZ.The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20-30 My from the start of the plate subduction.The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model.Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals,dehydration should occur at the phase transformation depth,~660 km.The variation of the discontinuity depths and highly localized low seismic speed anomaly(LSSA) zones observed from seismic P waveforms in a relatively high frequency band(~1 Hz) support the hypothesis of dehydration from hydrous slabs at the phase boundary.The LSSAs which correspond to dehydration induced fluids are likely to be very local,given very small hydrogen(H~+) diffusivity associated with subducted slabs.The image of such local LSSA zones embedded in HSSAs may not be necessarily captured in tomography studies.The high electrical conductivity in the MTZ beneath the northwestern Pacific subduction zone does not necessarily require a broad range of high water content homogeneously.  相似文献   

10.
The development of Early Cretaceous mafic dikes in northern and southern Jiangxi allows an understanding of the geodynamic setting and characteristics of the mantle in southeast China in the Cretaceous. Geological and geochemical characteristics for the mafic dikes from the Wushan copper deposit and No. 640 uranium deposit are given in order to constrain the nature of source mantle, genesis and tectonic implications. According to the mineral composition,the mafic dikes in northern Jiangxi can be divided into spessartite and olive odinite types, which belong to slightly potassium-rich calc-alkaline lamprophyre characterized by enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), large depletion in high strength field elements (HSFE) and with negative Nb, Ta and Ti anomalies, as well as 87Sr/86Sr ratios varying from 0.7055 to 0.7095 and 143Nd/r44Nd ratios varying from 0.5119 to 0.5122.All features indicate that the magma responsible for the mafic dikes was derived mainly from metasomatic lithosphere mantle related to dehydration and/or upper crust melting during subduction. Differences in geochemical characteristics between the mafic dikes in northern Jiangxi and the Dajishan area, southern Jiangxi were also studied and they are attributed to differences in regional lithospheric mantle components and/or magma emplacement depth. Combining geological and geochemical characteristics with regional geological history, we argue that southeast China was dominated by an extensional tectonic setting in the Early Cretaceous, and the nature of the mantle source area was related to enrichment induced by asthenosphere upwelling and infiltration of upper crust-derived fluids responding to Pacific Plate subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号