首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为有效去除工业废水中的苯酚,本文结合臭氧化技术,引入天然碱性矿物水镁石及其煅烧产物氧化镁作为催化剂,进行了催化臭氧化处理水中苯酚的研究。结果表明,加入的两种碱性矿物对臭氧化降解苯酚都有显著的催化效果。同时,碱性矿物的加入明显的改变了臭氧化过程中水体的pH值,从而对促进苯酚的降解起到了主导作用;除此之外,吸附实验及改变催化剂加入量的实验表明,碱性矿物表面对羧酸的吸附作用在一定程度上也导致苯酚降解效率的提高。本文工作为臭氧化降解水中苯酚提供了一种简便实用的处理方法,同时为天然水镁石矿物找到了新的应用领域。  相似文献   

2.
本文针对有机染料废水臭氧化后水体严重酸化、导致臭氧化效率显著降低的问题,提出利用矿物材料改善臭氧化水体酸度,进一步提高臭氧化效率的思路。一方面采用高比表面积丝光沸石岩加载铜的氧化物作为吸附剂提高臭氧化效率,同时引入天然矿物水镁石,解决有机染料废水臭氧化后水体严重酸化的难题,进一步提高臭氧化效率。实验结果表明,Cu_丝光沸石岩/水镁石岩(复配方案为Cu_丝光沸石岩与碱性矿物质量比分别为2∶1和1∶1)可以改善染料废水臭氧化后水体的pH值,提高臭氧化效率。其中复配方案为1∶1的水体COD去除率与单独臭氧化相比提高近30%。经详细分析对比,提出矿物材料体系染料废水臭氧化反应中存在Cu_丝光沸石岩表面吸附作用反应机理、与水镁石溶解有关的碱催化机理及Mg2 与有机酸根络合反应机理。  相似文献   

3.
阿尔金山南缘地区,侵入于新太古界—新元古界变质地层中的长沙沟镁铁-超镁铁质岩由四个呈断层接触的镁铁-超镁铁质岩块组成,形成年龄为462~470Ma。不同岩块内岩石的地球化学特征虽有差异,但均以LREE及强不相容元素的富集和高的Zr/Y比值(>4.1)为特征,形成于大陆裂谷环境。其中,清水泉北段可以划分出3~4个主体由辉橄岩-角闪辉长岩构成的岩浆旋回,具有层状岩体的特征,其母岩浆的Mg#=53.7~55.9,为演化型母岩浆,暗示其经历了富镁矿物的分离结晶,且(Th/Nb)N>1.0、Nb/La比值<1.0、以及发育的矿物逆序包裹现象等表明经历了明显的地壳混染和岩浆混合作用;而清水泉南和长沙沟中段镁铁-超镁铁质岩的(Th/Nb)N<1.0、Nb/La比值>1.0,基本未遭受地壳混染,并且此Mg#与FeOT、TiO2负相关、与SiO2正相关,呈现良好的Fenner演化趋势特征;清水泉南纯橄岩-辉橄岩具有极高的Mg#(90.6~84.5),而赋存有钛-磁铁矿工业矿体的长沙沟中段镁铁-超镁铁岩的Mg#值较低(75.8~49.2),推测它们是同一母岩浆(Mg# =78.2)经Fenner演化趋势后分别形成的早期富Mg矿物堆晶相和稍晚期的富Fe-Ti残余岩浆相。长沙沟中奥陶世裂谷型层状镁铁-超镁铁质杂岩体的发现,意味着这一时期阿尔金山南缘地区处于伸展背景下,具有形成岩浆型PGE-Cu-Ni硫化物矿床和V-Ti-Fe氧化物矿床的地质背景和重要的成矿物质载体。作为该地区一种新的找矿思路,该地区同一构造带内其它镁铁-超镁超镁铁质岩体的性质及可能的金属矿化作用等也是值得进一步研究探索的。  相似文献   

4.
纤维水镁石新成分变种的发现及其矿物学意义   总被引:2,自引:1,他引:1  
董发勤  潘兆橹 《矿物学报》1998,18(3):268-272
作者在研究陕南纤维水镁石时发现了水镁石的新成分变种,即富镍水镁石、镍锌水镁石(?)和铁水镁石,其中铁水镁石中总铁含量超过Ford划定的上限,表明Mg(OH)2-Fe(OH)2从理论上推测为连续类质同象系列是正确的,更多的Fe2+可代替Mg2+进入水镁石晶格;高镍水镁石的存在表明Mg(OH)2-Ni(OH)2类质同象系列是存在的,而且高镍水镁石比一般水镁石稳定性稍高。  相似文献   

5.
为研究双金属催化剂去除有机污染物的效果,采用自制Fe/Ag催化剂对模拟苯酚废水进行了臭氧催化氧化处理。通过扫描电子显微镜(SEM)、比表面积分析仪(BET)和X射线衍射(XRD)对催化剂进行表征,并考察了催化剂类型、催化剂投加量和溶液初始pH值对降解效果的影响规律。结果表明:与Fe相比,Fe/Ag比表面积减少了22.8%,在Fe/Ag/O3与含苯酚废水的反应体系中,反应遵循臭氧直接作用和活性自由基(·OH、·O2、H2O2)共同作用的机理;Fe/Ag在反应过程中体现出良好的协同作用;300 mg/L的苯酚模拟废水在pH=6.3、Fe/Ag投加量为1.00 g的最优反应条件下经60 min反应,苯酚与化学需氧量(COD)去除率比单独臭氧氧化分别提高了18.4%和29.4%。  相似文献   

6.
利用尾矿砂制备镁铁氢氧化物实验研究   总被引:1,自引:0,他引:1  
以金川铜镍矿尾矿酸浸液为原料,根据矿物沉淀pH值区间的不同,分步分离Fe、Mg的沉淀物以及有价金属Al、Co、Ni、Cu的混合沉淀物,进而制备具有高附加值的Fe(OH)3和Mg(OH)2,同时富集Co、Ni、Cu等有价金属。结果表明,当溶液pH值为3.8时可沉淀分离出主要成分为施威特曼石(schwertmannite)的氢氧化铁前驱体,pH值达到9.8时沉淀富集出Al、Co、Ni、Cu的混合氢氧化物,随即得到只含有Mg离子的溶液。在60℃条件下,将施威特曼石在pH值为12的NaOH溶液中老化36h,可以得到Fe(OH)3。同时,以NaOH调节只含有Mg离子的溶液至pH值为12.4时可获得Mg(OH)2。本研究为金属矿山尾矿的资源化综合利用提供了新的思路与方法。  相似文献   

7.
镁铁质岩石所反映出的壳幔作用信息可以为地壳增生发生的时间和方式提供可靠的证据。本文报道了南部拉萨地块东段朗县至米林之间晚白垩世镁铁质岩石的岩石学、锆石U-Pb年代学、全岩地球化学以及锆石Hf同位素数据。锆石U-Pb定年结果表明,角闪辉长岩侵位于98~88Ma,高Al2O3(17.25%~19.46%),低MgO含量(3.89%~5.07%)及Mg#(44~50),与高铝玄武岩特征相似,属于中钾钙碱性岩石,富集大离子亲石元素(LILE)、亏损高场强元素(HFSE),铕异常不明显(δEu=0.82~1.06),(87Sr/86Sr)i值为0.70427,εNd(t)值为3.0,具有高且正的锆石εHf(t)值(+11.8~+17.2)。这些晚白垩世镁铁质岩石可能是来自俯冲板片的沉积物熔体交代地幔楔物质发生部分熔融并经历一定程度镁铁质矿物分离结晶作用产物。  相似文献   

8.
通过对北京石花洞滴水地球化学一个水文年的观测,揭示了洞穴滴水水文地球化学季节变化与外界气候变化的关系,3个滴水点的滴率随降雨量的增加都有明显的变化,但不同滴水点滞后时间不同。滴水滴率、Mg2+和SO2-4含量的季节变化数据显示,雨季洞穴滴水主要来源于当季降水,但也存在岩层滞留水的混入。滴水中Mg/Ca比值存在明显季节变化,旱季较低而雨季较高,但在雨季初期出现较大的波动。分析洞穴上覆土壤和洞内裂隙土壤数据,认为雨季初期滴水中Mg/Ca比值的波动是由土壤中Mg2+的快速淋溶造成的,上覆土壤结构性质和组分变化均影响滴水地球化学特征。  相似文献   

9.
坡北镁铁-超镁铁质岩体位于塔里木板块东北缘的北山地区,主要由坡一、坡三、坡七和坡十等十几个侵入体组成,已发现坡一和坡十岩体赋存大型Cu-Ni硫化物矿床,目前对坡北含矿岩体成岩成矿构造背景存在不同认识。本文对坡一岩体各类岩石的矿物、主量和微量元素组成进行了系统分析,坡北岩体橄榄石Fo值范围为83.17~90.2,斜方辉石主要为古铜辉石,单斜辉石主要为普通辉石和透辉石;铬尖晶石Cr#和Mg#值变化范围分别为0.45~0.69和0.11~0.41,具有由富铝、富镁向富铬、富铁方向演化的趋势。微量元素具有明显的Nb、Ta和Ti负异常,Pb正异常。岩体主量元素变化特征主要受橄榄石、辉石和斜长石分离结晶/堆晶作用控制。模拟计算表明,岩体母岩浆MgO含量为16.09%,FeO含量为10.38%,岩浆结晶温度为1 331~1 411℃,为高温苦橄质岩浆。坡北岩体是早期受俯冲流体交代的岩石圈地幔在塔里木地幔柱作用下发生较高程度部分熔融的产物。  相似文献   

10.
新疆坡北镁铁-超镁铁质杂岩体由一个辉长岩体以及二十多个超镁铁质侵入体组成,其中坡一超镁铁质岩体稀有气体同位素组成揭示存在地幔柱的贡献。坡北杂岩体西端的坡一、坡四、坡十和坡十四等几个超镁铁质岩体的稀有气体同位素对比分析结果表明,岩浆矿物的3He/4He值(0.26~2.79Ra)分布于地壳与地幔值之间,较高的20Ne/22Ne和较低的21Ne/22Ne值分布于Ne质量分馏线(MFL)和L-K线之间,40Ar/36Ar=295~598。3He/4He与40Ar/36Ar比值揭示坡北杂岩体西端不同超镁铁质岩体形成过程中地幔(柱)、地壳和大气组分的贡献不同,岩体成因也可能不同。其中,坡一岩体具有地幔柱作用的贡献,其他三个岩体的岩石圈地幔及地壳流体组分的贡献较大。岩浆地幔源区由深部地幔柱物质叠加俯冲流体交代的岩石圈地幔物质所组成,大气与地壳物质组分可能由俯冲再循环洋壳带入到岩浆地幔源区以及围岩物质的混入。  相似文献   

11.
储刚  蒋晓光  林忠  李卫刚 《岩矿测试》2010,29(6):711-714
研究了离子色谱法同时测定砂岩型铀矿浸出液中阳离子的方法。采用Ionpac CS12A阳离子分离柱,以20 mmol/L甲基磺酸(MSA)为淋洗液,直接电导检测-离子色谱法分离测定铀矿石浸出液中常见的阳离子(Li+、Na+、K+、NH4+、Ca2+、Mg2+),方法检出限为0.012 7~0.194 mg/L,相对标准偏差(RSD,n=5)为1.04%~4.50%,加标回收率为91.5%~106.0%。该方法用于铀矿石浸出液中的阳离子同时测定,具有很好的实用性。  相似文献   

12.
High-resolution core level and valence band (VB) X-ray photoelectron spectra (XPS) of olivine [(Mg0.87Fe0.13)2SiO4], bronzite [(Mg0.8Fe0.2)2Si2O6] and diopside [Ca(Mg0.8Fe0.2)Si2O6] were collected before and after leaching in pH ∼2 solutions with the Kratos magnetic confinement charge compensation system which minimizes differential charge broadening. The leached samples yield Si 2p, Mg 2p, Ca 2p and O 1s XPS spectral linewidths and lineshapes similar to those collected from the respective pristine samples prior to leaching. As with previous XPS studies on crushed samples, our broadscan XPS spectra show evidence for initial, preferential leaching of cations (i.e., Ca2+ and Mg2+) from the near-surface of these minerals. The O 1s spectra of leached olivine and pyroxenes show an additional peak due to OH, which arises from H+ exchange with near-surface cations (Ca2+ and Mg2+) via electrophilic attack of H+ on the M-O-Si moiety to produce the H2Mg(M1)SiO4(surf) complex at olivine surfaces, and two complexes, H2Mg(M1)Si2O6(surf) and H4Si2O6(surf) at diopside and enstatite surfaces. The olivine and pyroxene surface complexes H2Mg(M1)SiO4(surf) and H2Mg(M1)Si2O6(surf) have been proposed previously, but the second pyroxene surface complex H4Si2O6(surf) has not. Two electrophilic reactions occur in both olivine and pyroxene. For olivine, the more rapid attacks the M2-O-Si moiety producing H2Mg(M1)SiO4(surf); while the second attacks the M1-O-Si moiety ultimately producing H4SiO4 which is released to solution. For pyroxenes, the first electrophilic reaction produces H2Mg(M1)Si2O6(surf), while the second produces.H4Si2O6(surf). These two reactions are followed by a nucleophilic attack of H2O (or H3O+) on Si of H4Si2O6(surf). This reaction is responsible for rupture of the brigding oxygen bond of the Si-O-Si moiety and release of H4SiO4 to solution. The intensity of the OH peak for the leached pyroxenes is about double the OH intensity for the leached olivine, consistent with the equivalent of about a monolayer of the above surface complexes being formed in all three minerals.Valence band XPS spectra and density functional calculations demonstrate the remarkable insensitivity of the valence band to leaching of Ca2+ and Mg2+ from the surface layers. This insensitivity is due to a dearth of Ca and Mg valence electron density in the valence band: the Ca-O and Mg-O bonds are highly ionic, with metal-derived s orbital electrons taking on strong O 2p character. The valence band spectrum of leached olivine shows an additional very weak peak at about 13.5 eV, which is assigned to Si 3s valence orbitals in the surface complex H2Mg(M1)SiO4, as indicated by high quality density functional calculations on an olivine where Mg2+ in M2 is replaced by 2H+. The intensity of this new peak is consistent with formation of the equivalent of a monolayer of the surface complex.  相似文献   

13.
In this study, a series of interaction coefficients of the Brønsted-Guggenheim-Scatchard specific interaction theory (SIT) have been estimated up to 200°C and 400 bars. The interaction coefficients involving Cl- estimated include ε(H+, Cl-), ε(Na+, Cl-), ε(Ag+, Cl-), ε(Na+, AgCl2 -), ε(Mg2+, Cl-), ε(Ca2+, Cl-), ε(Sr2+, Cl-), ε(Ba2+, Cl-), ε(Sm3+, Cl-), ε(Eu3+, Cl-), ε(Gd3+, Cl-), and ε(GdAc2+, Cl-). The interaction coefficients involving OH- estimated include ε(Li+, OH-), ε(K+, OH-), ε(Na+, OH-), ε(Cs+, OH-), ε(Sr2+, OH-), and ε(Ba2+, OH-). In addition, the interaction coefficients of ε(Na+, Ac-) and ε(Ca2+, Ac-) have also been estimated. The bulk of interaction coefficients presented in this study has been evaluated from the mean activity coefficients. A few of them have been estimated from the potentiometric and solubility studies. The above interaction coefficients are tested against both experimental mean activity coefficients and equilibrium quotients. Predicted mean activity coefficients are in satisfactory agreement with experimental data. Predicted equilibrium quotients are in very good agreement with experimental values. Based upon its relatively rapid attainment of equilibrium and the ease of determining magnesium concentrations, this study also proposes that the solubility of brucite can be used as a pH (pcH) buffer/sensor for experimental systems in NaCl solutions up to 200°C by employing the predicted solubility quotients of brucite in conjunction with the dissociation quotients of water and the first hydrolysis quotients of Mg2+, all in NaCl solutions.  相似文献   

14.
Second‐order transgressive–regressive (T–R) cycles, previously recognized using sedimentological criteria in Lower Jurassic hemipelagic deposits from northern Spain, are distinguishable based upon bulk‐rock organic geochemistry [total organic carbon (TOC) and hydrogen index (HI)] and the stable carbon isotope compositions from belemnite rostra. There is a coincidence between regressions and decreasing δ13Cbel, TOC and HI values, and between transgressions and increasing δ13Cbel, TOC and HI values. The δ18O and Mg/Ca records from the belemnite rostra are not always in phase with the T–R cycles. The δ18Obel record reveals, however, a prominent excursion towards higher values within the spinatum Zone that correlates, according to our results, with a regression and with negative shifts in Mg/Ca, δ13Cbel and TOC. On the other hand, an excursion in the δ18Obel towards lower values in the serpentinus Zone also correlates with a peak transgression and with positive shifts in Mg/Ca, δ13Cbel and TOC. These two excursions have been identified in other European regions as geochemical perturbations of the same characteristics. This suggests a link between second‐order relative sea‐level changes and variations in seawater geochemistry that may reflect local and regional palaeoceanographic perturbations in sea‐water temperature, salinity and water circulation during the Early Jurassic. Terra Nova, 18, 233–240, 2006  相似文献   

15.
A detailed study of the chemical composition and substitutions in calcium tourmalines from a scapolite-bearing rare-metal pegmatite vein from the Sol’bel’der River basin has shown that their species attribution is determined by occupancy of octahedral site Y. The composition of the yellow tourmaline most abundant in the central part of the pegmatite bodyis rather constant and characterized by the ideal formula Ca(Mg2Li)Al6(Si6O18)(BO3)3(OH)3F. Variations in the chemical composition of zonal tourmaline crystals from the contact part of the pegmatite are controlled by abrupt change in the chemical medium during their formation. The yellow cores of these crystals are close in composition to tourmaline from the central part of the pegmatite vein. The Mg content abruptly decreases toward the crystal margin: Mg2+ → Fe2+, 2Mg2+ → Li+ + Al3+, and Mg2+ + OH → Al3+ + O2−. The composition of dark green marginal zones in tourmaline is characterized by the ideal formula Ca(Al1.5Li1.5)Al6(Si6O18)(BO3)3 (OH2O)(F). The results indicate specific formation conditions of pegmatite. The crystallochemical formulas of the studied tourmalines allow us to regard them as new mineral species in the tourmaline group.  相似文献   

16.
The paper presents data on the thermochemical study (high-temperature melt calorimetry in a Tian–Calvet microcalorometer) of two natural Mg–Fe amphiboles: anthophyllite Mg2.0(Mg4.8Fe0.2 2+)[Si8.0O22](OH)2 from Kukh-i-Lal, southwestern Pamirs, Tajikistan, and gedrite Na0.4Mg2.0(Mg1.7Fe0.2 2+Al1.3)[Si6.3Al1.7O22](OH)2 from the Kola Peninsula, Russia. The enthalpy of formation from elements is obtained as–12021 ± 20 kJ/mol for anthophyllite and as–11545 ± 12 kJ/mol for gedrite. The standard entropy, enthalpy, and Gibbs energy of formation are evaluated for Mg–Fe amphiboles of theoretical composition.  相似文献   

17.
The effect of γ-irradiation on the structure, phase composition and kinetics of isothermal decomposition of natural textural brucite Mg(OH)2 has been investigated by Mn2+ electron paramagnetic resonance (EPR), proton magnetic resonance (PMR), X-ray diffraction (XRD) and weight loss methods. Starting from a 106-Gy dose, γ-irradiation (60Co, 13.8 Gys?1) is found to stimulate the formation of a new phase in the brucite structure, namely basic magnesium carbonate. The carbonate phase is assumed to form in brucite under γ-irradiation accordingly to the scheme \(\) (in the brucite structure). There is also a possibility that γ-irradiation forms particles with high reaction ability, CO?2 radicals and/or CO molecules, which can react with the brucite structure. Preliminary γ-irradiation (9.75 × 107 Gy) slows down the subsequent isothermal dehydroxylation of natural brucite, which can be explained by the formation of the new carbonate phase in the Mg(OH)2 structure. Dehydroxylation kinetics of both original and irradiated samples are interpreted by a two-stage nucleation model at 623, 648, 673, 698 and 723 K. The reaction rate is limited by the first nucleation stage rate (proton transition from an OH group near the reaction interface on a freed vacant orbital of an oxygen ion of the OH group in the nearest elementary cell, i.e., formation of a structured water molecule). The second-stage rate (water molecule removal from the structure and proton migration from the residual hydroxyl inside the structure) is about 1 order of magnitude higher. The activation energy of the limiting stage is 194 and 163 kJ mol?1 for the original and irradiated samples, respectively. Non-linear Arrhenius dependencies for the first-stage rate constants are related to the potential barrier reduction due to thermal fluctuations of large structural zones (with radii of about 20 and 81 Å in original and irradiated samples, respectively), whose ions form this barrier.  相似文献   

18.
Two types of laboratory experiments were used to quantify magnesium isotopic fractionations associated with chemical and thermal (Soret) diffusion in silicate liquids. Chemical diffusion couples juxtaposing a molten natural basalt (SUNY MORB) and a molten natural rhyolite (Lake County Obsidian) were run in a piston cylinder apparatus and used to determine the isotopic fractionation of magnesium as it diffused from molten basalt to molten rhyolite. The thermal diffusion experiments were also run in a piston cylinder apparatus but with a sample made entirely of molten SUNY MORB displaced from the hotspot of the assembly furnace so that the sample would have a temperature difference of about 100-200 °C from one end to the other. The chemical diffusion experiments showed fractionations of 26Mg/24Mg by as much as 7‰, which resulted in an estimate for the mass dependence of the self-diffusion coefficients of the magnesium isotopes corresponding to D26Mg/D24Mg=(24/26)β with β = 0.05. The thermal diffusion experiments showed that a temperature difference of about 100 °C resulted in the MgO, CaO, and FeO components of the basalt becoming slightly enriched by about 1 wt% in the colder end while SiO2 was enriched by several wt% in the hotter end. The temperature gradient also fractionated the magnesium isotopes. A temperature difference of about 150 °C produced an 8‰ enrichment of 26Mg/24Mg at the colder end relative to the hotter end. The magnesium isotopic fractionation as a function of temperature in molten basalt corresponds to 3.6 × 10−2‰/°C/amu.  相似文献   

19.
Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5–Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg–Fe silicates. Multi-anvil experiments were performed at 11–20 GPa and 1100–1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least ~?1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot?=?~?0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+?+?[6]Mg2+?=?2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential “water-storing” mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298?=???1981.5 kJ mol??1. Solid solution is complete across the Fe4O5–Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg–Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.  相似文献   

20.
The detailed hydro-chemical study of meltwater draining from Khangri glacier Arunachal Pradesh has been carried out to evaluate the major ion chemistry and weathering processes in the drainage basin. The investigative results shows that the meltwater is almost neutral to slightly acidic in nature with Mg–HCO3-dominated hydro-chemical facies. In glacial meltwater, Ca+?2 is the most dominated cation followed by Mg+2, Na+, and K+, while HCO3? is the most dominant anion followed by SO42?, NO3?, and Cl?. The dominant cations such as Ca+2 and Mg+2 show a good relation with the minerals abundance of the rocks. Calcite (CaCO3) and biotite [K(Mg,Fe)3AlSi3O10(F,OH)2] are the most abundant minerals in the deformed carbonate-rich metasedimentary rocks near to the snout with some K feldspar (KAlSi3O8) and quartz (SiO2). This suggests Ca+2 have definitely entered into the water due to the dissolution of calcite and Ca feldspar (CaAl2Si2O8), while one of the source of Mg+2 is biotite. Na feldspar (NaAlSi3O8) has contributed towards the availability of sodium ion, while potassium ion is derived from the chemical weathering of K feldspar and biotite. The chemical weathering is the foremost mechanism controlling the hydro-chemistry of the Khangri glacier because of the least anthropogenic interferences. The mineralogy of surrounding rocks is studied to understand better, the rock–water interaction processes, and their contribution towards ionic concentration of meltwater. The meltwater discharge and individual ion flux of the catchment area have also been calculated, to determine the ionic denudation rate for the ablation season. The high elemental ratio of (Ca?+?Mg)/(Na?+?K) (7.91?±?0.39 mg/l) and low elemental ratio of (Na?+?K)/total cations (0.11?±?0.004) indicate that the chemical composition of meltwater is mainly controlled by carbonate weathering and moderately by silicate weathering. The scatter plot result between (Ca?+?Mg) and total cations confirms that carbonate weathering is a major source of dissolved ions in Khangri glacier meltwater. In addition, the statistical analysis was also used to determine the correlation between physical parameters of glacier meltwater which controlled the solute dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号