首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
地震与海啸关系探讨   总被引:4,自引:1,他引:4  
本文探讨了海啸、地震和它们的成因。作者认为,破坏性地震常伴生着破坏性海啸,但地震不会直接引发海啸。构造地震和地壳变动型海啸之间不是因果关系,而是伴生或共生关系。此外,本文还探讨了破坏性海啸的形成条件和控制地震震级的主要因素。  相似文献   

2.
By combining landslide dynamics research and tsunami research, we present an integrated series of numerical models quantitatively simulating the complete evolution of a landslide-induced tsunami. The integrated model simulating the landslide initiation and motion uses measured landslide dynamic parameters from a high-stress undrained dynamic-loading ring shear apparatus. It provides the numerical data of a landslide mass entering and moving under water to the tsunami simulation model as the trigger of tsunami. The series of landslide and tsunami simulation models were applied to the 1792 Unzen-Mayuyama megaslide and the ensuing tsunami disaster, which is the largest landslide disaster, the largest volcanic disaster, and the largest landslide-induced tsunami disaster to have occurred in Japan. Both the 1792 megaslide and the tsunami portions of the disaster are well documented, making this an excellent test of the reliability and precision of the new simulation model. The simulated tsunami heights at the coasts well match the historical tsunami heights recorded by “Tsunami-Dome-Ishi” (a stone showing the tsunami reaching point) and memorial stone pillars.  相似文献   

3.
A simple model for calculating tsunami flow speed from tsunami deposits   总被引:2,自引:0,他引:2  
This paper presents a simple model for tsunami sedimentation that can be applied to calculate tsunami flow speed from the thickness and grain size of a tsunami deposit (the inverse problem). For sandy tsunami deposits where grain size and thickness vary gradually in the direction of transport, tsunami sediment transport is modeled as a steady, spatially uniform process. The amount of sediment in suspension is assumed to be in equilibrium with the steady portion of the long period, slowing varying uprush portion of the tsunami. Spatial flow deceleration is assumed to be small and not to contribute significantly to the tsunami deposit. Tsunami deposits are formed from sediment settling from the water column when flow speeds on land go to zero everywhere at the time of maximum tsunami inundation. There is little erosion of the deposit by return flow because it is a slow flow and is concentrated in topographic lows. Variations in grain size of the deposit are found to have more effect on calculated tsunami flow speed than deposit thickness. The model is tested using field data collected at Arop, Papua New Guinea soon after the 1998 tsunami. Speed estimates of 14 m/s at 200 m inland from the shoreline compare favorably with those from a 1-D inundation model and from application of Bernoulli's principle to water levels on buildings left standing after the tsunami. As evidence that the model is applicable to some sandy tsunami deposits, the model reproduces the observed normal grading and vertical variation in sorting and skewness of a deposit formed by the 1998 tsunami.  相似文献   

4.
This study develops a method for estimating the number of casualties that may occur while people evacuate from an inundation zone when a tsunami has inundated an area. The method is based on a simple model of hydrodynamic forces as they affect the human body. The method uses a Tsunami casualty index (TCI) computed at each grid point of a numerical tsunami model to determine locations and times within the tsunami inundation zone where evacuation during the tsunami inundation is not possible and therefore where casualties are likely to occur. The locations and times can be combined with information about population density to compute the potential number of casualties. This information is useful in developing tsunami evacuation routes that avoid such locations. To illustrate the method, it is applied to the Seattle waterfront in Washington State, USA, that is under the threat of possible tsunami disasters due to Seattle Fault earthquakes. Preliminary results suggest that the tsunami casualties may occur within the Seattle waterfront for 15 min, during the time interval from 3 to 18 min after a large Seattle Fault tsunami is generated when the background tide level is mean high water.  相似文献   

5.
A case study was conducted for the Thailand Khao Lak coast using a forward numerical model to understand uncertainties associated with interpreting tsunami deposits and relating them to their tsunami sources. We examined possible effects of the characteristics of tsunami source, multiple waves, sediment supply and local land usages. Numerical results showed that tsunami-deposit extent and thickness could be indicative of the slip value in the source earthquake near the surveyed coastal locations, provided that the sediment supply is unlimited and all the deposits are well preserved. Deposit thickness was found to be largely controlled by the local topography and could be easily modified by backwash flows or subsequent tsunami flows. Between deposit extent and deposit thickness, using deposit extent to interpret the characteristics of a tsunami source is preferable. The changing of land usages between two tsunami events could be another important factor that can significantly alter deposit thickness. There is a need to develop inversion models based on tsunami heights and/or run-up data for studying paleotsunamis.  相似文献   

6.
For the testing of the effect on the tsunami prevention facilities, a simplified methodfor tsunami risk assessment was suggested without wave run-up analysis. This methodis proposed using calculated offshore tsunami waveform and field reconnaissance suchas the seawall height, time necessary for residents' evacuation and tsunami warninginsurance. Then, two normalized values are evaluated; one is the ratio of calculatedmaximum tsunami height to seawall height, the other is the ratio of time betweentsunami over-topping and evacuation completion to total time required for evacuation.These two values are used to qualitatively estimate the safety of residents and the effectof tsunami prevention facilities, eliminating the necessity to compute complicatedtsunami run-up onshore.  相似文献   

7.
Here we perform an inventory of tsunamis recorded by tide gauges in the Pacific coast of Costa Rica. This paper also reveals nine tsunami records that had not been published before, at Puntarenas tide gauge corresponding to the 1979 Colombia tsunami and at Quepos tide gauge corresponding to the 1985 Mexico twin tsunamis, the 2010, 2014 and 2015 Chile tsunamis, the 2006 Tonga tsunami, the 2011 Japan tsunami and the 2013 Solomon Islands tsunami. The original record of 1990 Cóbano tsunami at Quepos was digitized again at a higher resolution and re-processed. The arrival of 1979, 1985, 2006 and 2014 tsunamis to Costa Rica is not listed on tsunami catalogs. The maximum tsunami height obtained here after processing 1990, 2011 and 2013 records was higher than reported on catalogs. The opposite happened for the 2010 tsunami. Quepos gauge record for January 2007 was analyzed as it seemed to have registered the Kuril Islands tsunami, but the results were not conclusive due to the low sample rate and the small tsunami amplitude if any. All those eleven tsunamis were modeled and the results compared with the records. A good agreement was obtained for the Quepos gauge, although the modeled 2011 and 2013 tsunamis had a difference of 8 min on the arrival time. An acceptable agreement was obtained for the Puntarenas gauge for 1979 tsunami, considering at least the first 4 h of the marigram is lost.  相似文献   

8.
A coupled hydrostatic and morph-dynamic model COMCOT-SED was used to investigate the morphological change in Lhok Nga bay during the 2004 Indian Ocean tsunami, and the coupled model predicted the thickness of tsunami deposits in agreement with the measured ones. The relationship between the characteristics of tsunami deposit and flow hydrodynamics was discussed in details. Phenomena such as landward thinning in deposit thickness, landward fining in grain size, and fining upwards in grain size are commonly used to identify tsunami deposits and were examined in this case study. We also discussed the effects of sediment supplies and the constraints that can be put on the earthquake parameters using the information derived from tsunami deposits. This study shows that the model presented in this paper is capable of simulating extreme tsunami events (tsunami wave height ~30?m) in a large domain and that forward models of tsunami sediment transport can be a promising tool to help tsunami geologists understand tsunami deposits.  相似文献   

9.
The tsunami run-up, inundation and damage pattern observed along the coast of Tamilnadu (India) during the deadliest Indian Ocean tsunami of December 26, 2004 is documented in this paper. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries, bordering the Indian Ocean. Along the coast of Indian mainland, the damage was caused by the tsunami only. Largest tsunami run-up and inundation was observed along the coast of Nagapattinam district and was about 10–12 m and 3.0 km, respectively. The measured inundation data were strongly scattered in direct relationship to the morphology of the seashore and the tsunami run-up. Lowest tsunami run-up and inundation was measured along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts of Tamilnadu in the Palk Strait. The presence of shadow of Sri Lanka, the interferences of direct/receded waves with the reflected waves from Sri Lanka and Maldive Islands and variation in the width of continental shelf were the main cause of large variation in tsunami run-up along the coast of Tamilnadu.  相似文献   

10.
Jain  Nikita  Virmani  Deepali  Abraham  Ajith 《Natural Hazards》2021,106(1):139-172

In the last fifteen years, tsunami science has progressed at a rapid pace. Three major tsunamis: The Indian Ocean in 2004, the 2011 Tohoku tsunami, and the 2018 Palu tsunami were significant landmarks in the history of tsunami science. All the three tsunamis, as mentioned, suffered from either no warning or poor reception of the alerts issued. Various lessons learned, consequent numerical models proposed, post-2004 tsunami damage findings manifested into solutions. However, the misperceived solutions led to a disastrous impact of the 2011 Tohoku event. In the following years, numerous improvements in warning systems and community preparedness frameworks were proposed and implemented. The contributions and new findings have added multi-fold advancements to tsunami science progress. Later, the 2018 Palu tsunami happened and again led to a massive loss of life and property. The warning systems and community seemed un-prepared for this non-seismic tsunami. A significant change is to take place in tsunami science practices and solutions. The 2018 tsunami is one of the most discussed and researched events concerning the palaeotsunami records, damage assessment, and source findings. In the new era, using machine learning and deep learning prevails in all the fields related to tsunami science. This article presents a complete 15-year bibliometric analysis of tsunami research from Scopus and Web of Science (WoS). The review of majorly cited documents in the form of a progressing storyline has highlighted the need for multidisciplinary research to design and propose practical solutions.

  相似文献   

11.
Seaquake is a phenomenon where there are water disturbance at the sea, caused by earthquake or submarine eruption. The scope of this study focuses on tsunami simulation due to Manila Trench and Sulu Trench seaquake which is prone to harm Malaysia offshore areas. Manila Trench is a highly potential earthquake source that can generate tsunami in South China Sea. Meanwhile, Sulu Trench could be a threat to east of Sabah offshore areas. In this study, TUNA-M2 model was utilized to perform tsunami simulation at South China Sea and Sulu Sea. TUNA-M2 model applied Okada source model to create tsunami generation due to earthquake. It utilized linear shallow water equation during tsunami propagation with its radiant boundary condition. Five simulations performed at each study region. Forecast points at South China Sea areas were divided into three separate locations which are at the Peninsular Malaysia, west of Sabah and Sarawak offshore areas. Forecast points at Sulu Sea were focused at the east of Sabah offshore areas. This paper will present the simulation results of tsunami wave height and arrival time at various forecast points. The findings of this study show that the range of tsunami wave height at Sulu Sea is higher than that of South China Sea. The tsunami arrival time at Sulu Sea is less than South China Sea. It can be concluded that Sulu Sea poses worse tsunami threat than South China Sea to the Malaysian offshore areas.  相似文献   

12.
Estimating tsunami potential is anessential part of mitigating tsunami disasters. Weproposed a new method to estimate the far-fieldtsunami potential by assuming faultmodels on the Pacific Rim. We find thata tsunami that generates in the areas wherethere is no tsunami in the history can damagethe Japanese coast. This shows that it isimportant to estimate tsunami potential byassuming fault models other than the pastearthquake data.Another important activity to mitigate tsunamidisasters is to provide appropriatewarnings to coastal communities when dangerfrom a tsunami is imminent. We applied anew inversion method using wavelet transformto a part of the real-time tsunami forecastsystem for the Pacific. Because this inversionmethod does not require fault location, it ispossible to analyze a tsunami in real timewithout all seismic information. In order tocheck the usability of the system, anumerical simulation was executed assuming anearthquake at sea off Taiwan. The correlationcoefficient for the estimated initialwaveform to the assumed one was calculatedto be 0.78. It takes 90 min to capturetime-series waveform data from tsunamigauges and 5 sec to estimate the 2-D initialwaveform using the inversion method. After that,it takes 2 minutes to forecast thetsunami heights at the Japanese coast. Since thesum of these times is less than the 105minutes transit time of the tsunami fromTaiwan to Japan, it is possible to give a warningto the residents before the tsunami attacksthe Japanese coast. Comparing the tsunamiheights forecasted by this system with thosecalculated by the fault model, the averageerror was 0.39 m. The average error ofthe arrival time was 0.007 min.  相似文献   

13.
The National Geophysical Data Center and co-located World Data Center for Geophysics and Marine Geology provide integrated access to historical tsunami event, deposit, and proxy data. Historical events are important for understanding the frequency and intensity of relatively recent tsunamis. Deposit data collected during post-tsunami field surveys provide information on tsunami erosion, sedimentation, flow depths, inundation, and run-up. Deposit data from prehistoric tsunami events extend the record to pre-recorded times, constrain tsunami recurrence intervals, and estimate the minimum magnitude of tsunami inundation. Proxies indicate that an event capable of producing a tsunami occurred, but are not direct evidence of a tsunami. All of these data are used to develop tsunami hazard assessments, provide guidance to warning centers, validate models, inform community preparedness efforts, and educate the public about tsunami risks.  相似文献   

14.
Tsunamis versus storm deposits from Thailand   总被引:3,自引:0,他引:3  
Along the Andaman (west) coast of Thailand, the 2004 tsunami depositional features associated with the 2004 tsunami were used to describe the characteristics of tsunamis in a place far away from the effect of both recent and ancient storms. The current challenge is that a lack of precise sedimentological characteristics have been described that will differentiate tsunami deposits from storm deposits. Here, in sedimentological senses, we reviewed the imprints of the sedimentological characteristics of the 2004 tsunami and older deposits and then compared them with storm deposits, as analyzed from the deposits found along the eastern (Gulf of Thailand; GOT) coast of Thailand. We discuss the hydraulic conditions of the 2004 tsunami and its predecessors, on the Andaman coast, and compare them to storm flows found on the coast of the GOT. Similar to an extensive tsunami inflow deposit, a storm flow overwash has very similar sedimentary structures. Well-preserved sedimentary structures recognized in sand sheets from both tsunami and storms include single and multiple normal gradings, reverse grading, parallel, incline and foreset lamina, rip-up clasts, and mud drapes. All these sedimentary structures verify the similarity of tsunami and storm inflow behavior as both types of high-energy flow start to scour the beach zone. Antidunes are likely to be the only unique internal sedimentary structures observed in the 2004 tsunami deposit. Rip-up clasts are rare within storm deposits compared to tsunami deposits. We found that the deposition during the outflow from both tsunami and storms was rarely preserved, suggesting that it does not persist for very long in the geological record.  相似文献   

15.
A general approach for the estimation of tsunami height and hazard in the vicinity of active volcanoes has been developed. An empirical relationship has been developed to estimate the height of the tsunami generated for an eruption of a given size. This relationship can be used to estimate the tsunami hazard based on the frequency of eruptive activity of a particular volcano. This technique is then applied to the estimation of tsunami hazard from the eruption of the Augustine volcano in Alaska. Modification of this approach to account for a less than satisfactory data base and differing volcanic characteristics is also discussed with the case of the Augustine volcano as an example. This approach can be used elsewhere with only slight modifications and, for the first time, provides a technique to estimate tsunami hazard from volcanic activity, similar to a well-established approach for the estimation of tsunami hazard from earthquake activity.  相似文献   

16.
The Sultanate of Oman is among the Indian Ocean countries that were subjected to at least two confirmed tsunamis during the twentieth and twenty-first centuries: the 1945 tsunami due to an earthquake in the Makran subduction zone in the Sea of Oman (near-regional field tsunami) and the Indian Ocean tsunami in 2004, caused by an earthquake from the Andaman Sumatra subduction zone (far - field tsunami). In this paper, we present a probabilistic tsunami hazard assessment for the entire coast of Oman from tectonic sources generated along the Makran subduction zone. The tsunami hazard is assessed taking into account the contribution of small- and large-event magnitudes. Results of the earthquake recurrence rate studies and the tsunami numerical modeling for different magnitudes were used through a logic-tree to estimate the tsunami hazard probabilities. We derive probability hazard exceedance maps for the Omani coast considering the exposure times of 100, 250, 500, and 1000 years. The hazard maps consist of computing the likelihood that tsunami waves exceed a specific amplitude. We find that the probability that a maximum wave amplitude exceeds 1 m somewhere along the coast of Oman reaches, respectively, 0.7 and 0.85 for 100 and 250 exposure times, and it is up to 1 for 500 and 1000 years of exposure times. These probability values decrease significantly toward the southern coast of Oman where the tsunami impact, from the earthquakes generated at Makran subduction zone, is low.  相似文献   

17.
Prasetya  G. S.  De Lange  W. P.  Healy  T. R. 《Natural Hazards》2001,24(3):295-307
The Makassar Strait region has had the highest frequency of historical tsunamievents for Indonesia. The strait has a seismic activity due to the convergenceof four tectonic plates that produces a complex mixture of structures. The maintsunamigenic features in the Makassar Strait are the Palu-Koro and Pasternostertransform fault zones, which form the boundaries of the Makassar trough.Analysis of the seismicity, tectonics and historic tsunami events indicatesthat the two fault zones have different tsunami generating characteristics.The Palu-Koro fault zone involves shallow thrust earthquakes that generatetsunami that have magnitudes that are consistent with the earthquakemagnitudes. The Pasternoster fault zone involves shallower strike-slipearthquakes that produce tsunami magnitudes larger than would normallybe expected for the earthquake magnitude. The most likely cause for theincreased tsunami energy is considered to be submarine landslidesassociated with the earthquakes. Earthquakes from both fault zonesappear to cause subsidence of the west coast of Sulawesi Island.The available data were used to construct a tsunami hazard map whichidentifies the highest risk along the west coast of Sulawesi Island.The opposite side of the Makassar Strait has a lower risk because it isfurther from the historic tsunami source regions along the Sulawesicoast, and because the continental shelf dissipates tsunami wave energy.The greatest tsunami risk for the Makassar Strait is attributed tolocally generated tsunami due to the very short travel times.  相似文献   

18.
This study proposes a tsunami depositional model based on observations of emerged Holocene tsunami deposits in outcrops located in eastern Japan. The model is also applicable to the identification of other deposits, such as those laid down by storms. The tsunami deposits described were formed in a small bay of 10–20-m water depth, and are mainly composed of sand and gravel. They show various sedimentary structures, including hummocky cross-stratification (HCS) and inverse and normal grading. Although, individually, the sedimentary structures are similar to those commonly found in storm deposits, the combination of vertical stacking in the tsunami deposits makes a unique pattern. This vertical stacking of internal structures is due to the waveform of the source tsunamis, reflecting: 1) extremely long wavelengths and wave period, and 2) temporal changes of wave sizes from the beginning to end of the tsunamis.

The tsunami deposits display many sub-layers with scoured and graded structures. Each sub-layer, especially in sandy facies, is characterized by HCS and inverse and normal grading that are the result of deposition from prolonged high-energy sediment flows. The vertical stack of sub-layers shows incremental deposition from the repeated sediment flows. Mud drapes cover the sub-layers and indicate the existence of flow-velocity stagnant stages between each sediment flow. Current reversals within the sub-layers indicate the repeated occurrence of the up- and return-flows.

The tsunami deposits are vertically divided into four depositional units, Tna to Tnd in ascending order, reflecting the temporal change of wave sizes in the tsunami wave trains. Unit Tna is relatively fine-grained and indicative of small tsunami waves during the early stage of the tsunami. Unit Tnb is a protruding coarse-grained and thickest-stratified division and is the result of a relatively large wave group during the middle stage of the tsunami. Unit Tnc is a fine alternation of thin sand sheets and mud drapes, deposited from waning waves during the later stage of the tsunami. Unit Tnd is deposited during the final stage of the tsunami and is composed mainly of suspension fallout. Cyclic build up of these sub-layers and depositional units cannot be explained by storm waves with short wave periods of several to ten seconds common in small bays.  相似文献   


19.
For the assessment of tsunami risk and vulnerability, one has to make use of past tsunami observations. The most comprehensive tsunami databases for the world have been prepared by the National Geophysical Data Center of USA which are listed on their website for all the four oceans as well as the following marginal seas: Caribbean Sea, Mediterranean Sea, Black Sea, Red Sea and Gulf of Mexico. The dataset goes back as far as the first century AD and lists the events on a confidence rating scale of 0–4; 0 being an erroneous entry and 4 being a definite tsunami. Based on these various datasets for different geographical areas, a comprehensive global dataset was prepared in this study, which included only tsunami events with confidence rating of 3 and 4, meaning either probable or definite. In this composite and abridged global tsunami database there is no distinction either according to geography or tsunami strength as implied by its impact on the coast. A simple and straightforward statistical analysis suggests an almost complete randomness and no patterns that can be used for future tsunami predictions with a few minor exceptions.  相似文献   

20.
The Indian Ocean tsunami flooded the coastal zone of the Andaman Sea and left tsunami deposits with a thickness of a few millimetres to tens of centimetres over a roughly one-kilometre-wide tsunami inundation zone. The preservation potential and the post-depositional changes of the onshore tsunami deposits in the coastal plain setting, under conditions of a tropical climate with high seasonal rainfall, were assessed by reinvestigating trenches located along 13 shore-perpendicular transects; the trenches were documented shortly after the tsunami and after 1, 2, 3 and 4 years. The tsunami deposits were found preserved after 4 years at only half of the studied sites. In about 30% of the sites, the tsunami deposits were not preserved due to human activity; in a further 20% of the sites, the thin tsunami deposits were eroded or not recognised due to new soil formation. The most significant changes took place during the first rainy season when the relief of the tsunami deposits was levelled; moderate sediment redeposition took place, and fine surface sediments were washed away, which frequently left a residual layer of coarse sand and gravel. The fast recovery of new plant cover stabilised the tsunami deposits and protected them against further remobilisation during the subsequent years. After five rainy seasons, tsunami deposits with a thickness of at least a few centimetres were relatively well preserved; however, their internal structures were often significantly blurred by roots and animal bioturbation. Moreover, soil formation within the deposits caused alterations, and in the case of thin layers, it was not possible to recognise them anymore. Tsunami boulders were only slightly weathered but not moved. Among the various factors influencing the preservation potential, the thickness of the original tsunami deposits is the most important. A comparison between the first post-tsunami survey and the preserved record suggests that tsunamis with a run-up smaller than three metres are not likely to be preserved; for larger tsunamis, only about 50% of their inundation area is likely to be presented by the preserved extent of the tsunami deposits. Any modelling of paleotsunamis from their deposits must take into account post-depositional changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号