首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
High concentrations of several radionuclides were reported in the sea near the Fukushima Daiichi Nuclear Power Station (FDNPS) in Japan due to the nuclear accident that occurred on 11 March 2011. The main source of these concentrations was leakage of highly radioactive liquid effluent from a pit in the turbine building near the intake canal of Unit-2 of FDNPS through a crack in the concrete wall. In the immediate vicinity of the plant, seawater concentrations reached 68 MBq m?3 for 134Cs and 137Cs, and exceeded 100 MBq m?3 for 131I in early April 2011. These concentrations began to fall as of 11 April 2011 and, at the end of April, had reached a value close to 0.1 MBq m?3 for 137Cs. Following the nuclear accident, the Tokyo Electric Power Company (TEPCO) had initiated intense monitoring of the environment including the Pacific Ocean. Seawater samples were collected and the concentrations of few radionuclides were measured on a wide spatial and temporal scale. In this study, the measured concentrations of different radionuclides near the south discharge canal of the FDNPS were used to estimate their leakages into the Pacific Ocean. The method is based on estimating the release rates that reproduce the concentration of radionuclides in seawater at a chosen location using a two-dimensional advection–dispersion model in an iterative manner. The radioactive leakages were estimated as 5.68 PBq for 131I, 2.24 PBq for 134Cs and 2.25 PBq for 137Cs. Leakages were also estimated for 99mTc, 136Cs, 140Ba and 140La and they range between 0.02 PBq (99mTc) and 0.53 PBq (140Ba). It was estimated that about 11.28 PBq of radioactivity in total was leaked into the Pacific Ocean from the damaged FDNPS. Out of this, 131I constitutes 50.3 %; 134Cs 20 %; 137Cs 20 %; 140Ba 4.6 %; 136Cs 2.6 %; 140La 2.3 % and 99mTc 0.2 % of the total radioactive leakage. Such quantitative estimates of radioactive leakages are essential prerequisites for short-term and local-scale as well as long-term and large-scale radiological impact assessment of the nuclear accident.  相似文献   

2.
The moment magnitude (M w) 9.0 Tohoku-Oki Earthquake occurred on March 11, 2011, generating an unusually large tsunami. The seismic shocks and tsunami inundation severely damaged the Fukushima Daiichi Nuclear Power Plant. Radionuclide emission due to reactor breakdown contaminated wide areas of Fukushima and its surroundings. Heavy rainfall causes runoff across surface soil, and fine soil particles are susceptible to uptake by the flowing water. The high radioactivity of grains suspended in floodwater indicates that radioactive fallout was streamed into rivers in particulate form and transported downstream under high-flow conditions. Here, we investigated the diachronic mode of 134Cs and 137Cs in central Fukushima, through which the contaminated air mass drifted and caused wet deposition of radionuclides. Stratigraphic measurements of radioactivity in sediment cores is the method employed in this study to determine the basin-wide movement of 134Cs and 137Cs, to evaluate the significance of the erosion–transportation–accumulation processes on natural decontamination in terrain characterized by steep slopes and high precipitation. Stratigraphic results illustrate the process of fluvial sediment discharge, and the massive deposition of radiocaesium suggests basin-wide movement of fallout during concentrated rainfall. Grain suspension in torrential currents is an important pathway for transportation of radionuclides from land to sea, and the appearance of hotspots on floodplains and the offshore sea floor is the consequence of erosion and transportation under seasonal heavy precipitation. Radioactive horizons occur in offshore sediment columns and thus radiocaesium discharged from the estuary will persist forever under the sea floor if no artificial disturbance occurs.  相似文献   

3.
Depth distribution profiles of environmental radionuclides (137Cs and 210Pb) have been investigated in soil to elucidate the underlying environment of semi-natural temperate deciduous and/or coniferous forest soils in Slovenia (?irovski vrh, Idrija, Ko?evski Rog, Pohorie, Gori?nica and Rakitna). Surface enrichment of both nuclides was observed at all the sites investigated in this study, suggesting that the soils had undergone little natural or anthropogenic disturbance for at least the last several decades. Apparent annual burial rates of 137Cs (0.1–0.2 cm y??1) were estimated to be about 1.3 times higher than those of 210Pb at individual sites of different lithology, which suggests strong affinity of 210Pb to soil organic matter. Variability of the vertical distribution profiles of these nuclides depends not only on “in situ” pedology but also on geographical and meteorological conditions, especially precipitation and wind direction.  相似文献   

4.
日本福岛第一核电站核泄漏后放射性物质运动轨迹   总被引:3,自引:0,他引:3       下载免费PDF全文
岑况  陈媛  刘舒波  于扬 《地学前缘》2012,19(2):234-238
日本北部近海于2011年3月11日发生里氏9.0级地震,导致福岛第一核电站发生一连串事故并引发了核泄漏。日前此次核事故级别由事发后定的5级提至7级(核事故最高级别),核泄漏后放射性物质的扩散与迁移是目前关于核事故研究的热点之一。利用HYSPLIT模型模拟核爆炸后空气中放射性物质的运动轨迹发现核大气颗粒物主要运移方向为东和东北方向,进入太平洋上空,甚至美国境内,亦有朝南转西南运移的轨迹与趋势,使得放射性物质进入中国上空。根据历史气象资料对接下来的5—8月份大气颗粒物的运动轨迹进行预测,分析结果显示放射性物质随后可能往北,东北和西部运移,由于风向,降雨和洋流等的影响,将会继续影响中国,运移到中国的携带放射性物质的大气颗粒物主要来自高空。  相似文献   

5.
长江河口水下三角洲137Cs地球化学分布特征   总被引:10,自引:8,他引:2       下载免费PDF全文
文章通过对长江口水下三角洲采集的10个柱状样放射性核素137Cs的分析可以得知,长江口水下三角洲137Cs剖面中均存在清晰的最大蓄积峰,其峰值比活度介于5.68±1.03~21.74±1.39Bq/kg之间,平均值为14.11±1.10Bq/kg,最大蓄积峰所处的深度为55~117cm。剖面中137Cs最大蓄积峰应该与1963年的137Cs散落沉降相对应。长江口水下三角洲的表层沉积物中的137Cs比活度范围介于0~9.19±1.12Bq/kg之间,并且与长江流域其他地区的表层137Cs比活度相一致。长江口水下三角洲可探测到的137Cs比活度的最大深度范围在88~160cm的范围内变化,137Cs蓄积总量为2361.30±174.38~17714.94±262.14Bq/m2,平均值为9664.97±100.05Bq/m2,137Cs比活度的最大深度及137Cs蓄积总量均表现出从岸向海逐渐增加的趋势。实测的137Cs总量均大于长江流域的137Cs背景值,说明了长江口水下三角洲的137Cs蓄积既有大气散落直接沉降的来源,又有流域侵蚀带来的137Cs输入,并且主要以后者为主。通过放射性核素示踪模型分析长江口水下三角洲137Cs散落蓄积特征可以得知,长江口水下三角洲137Cs的蓄积以长江流域来源为主,说明了放射性核素137Cs在长江口水下三角洲沉积物中的蓄积主要受流域侵蚀因素的影响。  相似文献   

6.
Various anthropogenic radionuclides and210Pb were analyzed in a 4.3-m-long core, sampled near the Rhône River mouth in March 1991, to evaluate the extent of industrial releases that accumulate in this area. The whole core was significantly marked by radionuclide inputs from the nuclear facilities located along the river (137Cs,134Cs,60Co). Irregular profiles in natural and artificial radionuclides should be related to variations in their respective inputs from the Rhône River to the Mediterranean Sea. Minimum concentrations were found during high flow periods. Using both the137Cs/134Cs profile in the core and the range of this ratio in Rhône waters, mean apparent accumulation rates were estimated to range between 37 cm yr?1 and 48 cm yr?1. This core would then represent a sedimentary record over a 7–10 year period. However, the presence of a signal from the Chernobyl accident, which occurred on April 26, 1986, was not clearly observed in the core. Inventories of both artificial and natural radionuclides were greater than expected from atmospheric inputs. The increased sedimentation occurring in close vicinity to the mouth of the Rhône River is thus responsible for trapping of elements transported by the river to the Mediterranean Sea. In this area, inventories of artificial radionuclides are well in excess of aerial deposition from Chernobyl and atmospheric weapons tests and are linked primarily to industrial releases.  相似文献   

7.
The redistribution of Chernobyl 137Cs within a small drainage basin was studied in the Lokna river basin, Tula region, Central Russia. Sheet erosion on the cultivated part of basin is the main reason for 137Cs horizontal migration. However there is no statistically significant 137Cs redistribution within cultivated field because of relatively low erosion rates. The valley bottom is the main sink of 137Cs, where 73–84% eroded soil is stored. The resulting 137Cs level in the valley bottom is 1.5–2 times that of the initial 137Cs fallout.  相似文献   

8.
Peak activities of radiocaesium (137Cs) in lake sediments have frequently been used to infer the ages of sediments deposited in the 1960s (137Cs derived from nuclear bomb testing) or in 1986 (Chernobyl derived 137Cs). Records of the vertical distribution of 137Cs in sediments can thus be used to provide accurate dates for a critical period in which palaeoecological reconstructions often overlap contemporary monitoring data. However, knowledge regarding how the distribution of 137Cs in sediments is affected by post‐depositional processes is limited to interpretations based on the 137Cs distribution in sediments sampled at a single given date. This study assesses the extent to which the 137Cs record in annually laminated (varved) lake sediments is affected by post‐depositional diffusion, using 11 archived sediment cores sampled between 1986 and 2007. The sediment record reveals how Chernobyl 137Cs incorporated into the 1986 varve diffused downwards in the core at a decreasing rate over time, whereas the surface sediments continued to receive inputs of 137Cs mobilized from the catchment soils or lake margin. In spite of these processes, all cores post‐dating the Chernobyl accident had a clear and well‐resolved peak in the 1986 varve, justifying the use of this feature as a fixed chronostratigraphic feature. Because of the very high levels of Chernobyl fallout at this site, downwards migration of Chernobyl 137Cs has, however, completely masked the nuclear weapons 137Cs fallout peak that had been clearly preserved in the 1964 varve of a pre‐Chernobyl core sampled just three weeks before the Chernobyl accident. In consequence, the weapons fallout marker is likely to be of little use for determining 137Cs dates in areas strongly affected by high levels of Chernobyl fallout.  相似文献   

9.
This paper presents the results of investigation on uptake of radioactive species 90Sr and 137Cs present in the liquid effluents from nuclear processing plants. Chemical precipitation process is adopted to remove radioactivity from the effluents with low and intermediate level of activity. In this process, radioactive 90Sr and 137Cs are co-precipitated along with copper ferrocyanide, ferric hydroxide and either calcium phosphate or barium sulphate. These precipitates being fine in size require flocculation for enhanced settling rate in clarifier/thickener. The flocculation by some selected high molecular weight polyacrylamide based polymers has improved the uptake of radioactive metal ions. The adsorption of these radioactive species has been found to increase in the presence of these flocculants thereby improving the decontamination factor (DF). While flocculating the precipitates, there may be some complex formation with Sr2+/Cs+, flocculant and the substrate. This has enhanced the uptake of the radioactive metal ions from the liquid component. The plant trials have indicated the improvement of DF value due to flocculation by cationic flocculant.  相似文献   

10.
Vertical profiles of137Cs and210Pb have been determined in a 9 m column of ice from accumulation zone of Changme-Khangpu glacier in north Sikkim valley.137Cs activity varies from 4 to 22 dpm/ L. In many samples210Pb occurs at a level of 20 to 65 dpm/ L which is much higher than the expected fallout value.137Cs and210Pb activities correlate well with each other but not with the dust content. Possibility of210Pb production in the nuclear explosions is discussed. Several peaks appear in the depth profile of137Cs and210Pb which can be matched with Chinese atmospheric nuclear explosions with some phase difference if a uniform ice accumulation rate of 0.7 m per year is assumed since 1969.  相似文献   

11.
 This study was undertaken to determine whether recent anthropogenic changes in the Nile basin have affected the modern rate of sediment accumulation in the Nile delta. Excess 210Pb, 137Cs, and 239,240Pu were used to develop a sediment chronology for a core from central Manzala lagoon, the delta sector which has had the highest average rate of sediment accumulation during the Holocene (to about 0.7 cm year–1). Excess 210Pb was detected in the top 32 cm of the core, yielding an accumulation rate of 1.2 cm year–1, higher than the mean rate for the Holocene. A high 137Cs/239,240Pu ratio requires a reactor source (possibly Chernobyl) for these nuclides. Low concentrations of excess 210Pb and weapons-fallout nuclides precluded recognition of changes in sediment accumulation rate in Manzala lagoon during this century and may limit the use of tracer radionuclides for modern sediment chronology in the Nile delta. Received: 18 March 1997 · Accepted: 22 July 1997  相似文献   

12.
东北四海龙湾玛珥湖沉积物纹层计年与137Cs、210Pb测年   总被引:15,自引:6,他引:15       下载免费PDF全文
对东北四海龙湾玛珥湖SHLF6孔纹层沉积物的137Cs放射性测量表明:137Cs比活度的最大值出现在55cm处,对应于1963年世界原子弹试爆高峰期。纹层计年表明0~6cm共有35个纹层层偶。从75cm到65cm,137Cs比活度从256±009dpm/g急剧增加到1868±017dpm/g,可能65cm对应于1954年。通过测量226Ra子核214Pb和214Bi(能量为295keV,352keV和609keV)放射的光子数获得226Ra比活度数据,然后求得过剩210Pb比活度(210Pbuns)。210Pbuns比活度随深度增加而呈指数衰减,其异常波动可能与人类活动以及沉积速率变化有关,例如55cm处210Pb比活度较高,与137Cs的峰值对应,这可能与1963年前后人工核实验的高峰有关,因为核试验不仅产生137Cs,而且可以产生208Pb和210Pb;45cm处210Pb比活度较低,而226Ra较高,可能与人类活动加剧,导致沉积速率增加有关。根据210PbunsCRS模式,SHLF6孔0~19cm的平均沉积速率为20mg/cm2·a,或约为011cm/a。210Pb测年数据与137Cs时标及纹层计年均有很好的一致性。四海龙湾玛珥湖发育的纹层为年纹层,可以建立高分辨率时间序列。  相似文献   

13.
This paper presents a detailed survey of the activities of selected man-made radionuclides in peat deposits located in SW Spitsbergen. Peat cores from the High Arctic (SW Spitsbergen) were analyzed by gamma spectrometry (137Cs), alpha spectrometry (238Pu, 239,240Pu, 241Am activities) and by ICPMS (240Pu/239Pu atom ratios). Maximum activities evident in the peats correspond to the 1963/1964 global maximum fallout from atmospheric testing of nuclear weapons; some of the activity profiles have been altered post-deposition by water infiltration. Activity ratios of 238Pu/239+240Pu, 241Am/239+240Pu, 239+240Pu/137Cs and 240Pu/239Pu atom ratios indicate mixing between global (stratospheric) and regional (tropospheric) sources of these radionuclides in the Svalbard area. The 238Pu/239+240Pu activity ratios varied from 0.02 ± 0.01 to 0.09 ± 0.03, suggesting global fallout as the dominant source of Pu. The 239+240Pu/137Cs activity ratios varied from 0.01 ± 0.01 to 0.42 ± 0.11, which apparently arises from the post-depositional mobility of 137Cs. The 241Am/239+240Pu activity ratios ranged between 0.10 ± 0.02 and 1.5 ± 0.3 and exceed the published global fallout ratio for Svalbard of 0.37 due to the relatively higher geochemical mobility of Pu vs. Am and/or ingrowth of Am from the decay of 241Pu. The atom ratio 240Pu/239Pu ranged from 0.142 ± 0.006 to 0.241 ± 0.027; however, the vast majority of peat samples exhibited 240Pu/239Pu atom ratios similar to the stratospheric fallout (∼0.18).  相似文献   

14.
Surficial and core samples collected from the eastern Thessaloniki Gulf, located in the NW Aegean Sea, were analyzed for their sedimentation rate and inventories of 137Cs and 210Pb. The study of the spatial radionuclide dispersion in the specific region is essential for the assessment of marine pollution levels. The sedimentation rates were calculated from the vertical distribution of 137Cs and excess 210Pb in the sediment cores. The spatial distribution of 137Cs was studied with respect to sediment characteristics such as the grain size of the sample and the organic carbon content. The activity concentrations were measured by means of gamma ray spectrometry using HPGe detector for 137Cs and gross alpha counting using alpha counter for 210Pb. The average sedimentation rate along the sediment cores is characterized by a consistent pattern and varies from 0.18?±?0.02 to 0.22?±?0.03?cm?year?1. The 137Cs inventories varied from 205?±?15 to 602?±?39?Bq?m?2, while the 210Pb inventories of the studied cores exhibited average value of 140?±?9?Bq?m?2. Elevated 137Cs activities were observed compared to certain Mediterranean marine areas; however, they were lower than the reported values in the Black Sea.  相似文献   

15.
Cesium-137 derived from the explosion of the Chernobyl reactor in 1986 was preserved in anoxic sediments from a coastal environment in southern Rhode Island. Although the radioactive plume was detected in surface air samples at several locations in the United States, this is the first known record of a Chernobyl 137Cs peak in sediments from North America. The inventory of Chernobyl 137Cs that was preserved in the Pettaquamscutt River is small compared to European counterparts and should only be detectable for the next 15-20 yr. However, the presence of two 137Cs peaks (1963 and 1987) identifies a well-dated segment of the sediment column that could be exploited in understanding the decomposition and preservation of terrestrial and aquatic organic matter. Different methods for calculating the 210Pb chronology were also evaluated in this study and checked against independent varve counting. The end result is a detailed chronology of a site well suited for reconstruction of historical records of environmental change.  相似文献   

16.
对兴凯湖我国水域沉积物137Cs比活度及通量空间分布进行了研究,利用137Cs测年法建立年代框架,估算了兴凯湖的沉积速率,结合粒度C-M图分析了湖泊现代沉积环境。兴凯湖我国水域西岸白棱河河口区域137Cs剖面形态区别于典型的137Cs全球大气沉降模式,且137Cs沉积通量高、平均137Cs活度高,中部和东部区域137Cs沉积通量低、平均137Cs活度低;137Cs沉积通量的空间分布主要受流域输入、水动力条件以及沉积物粒径的影响。兴凯湖沉积环境多表现为静水沉积,受特殊的风浪条件和泄洪闸等人类活动的影响,1963—2019年平均沉积速率空间分布上呈现西部高,中、东部低的特点,XKH-1、XKH-2和XKH-3柱样1963—2019年的平均沉积速率分别为0.143 cm/a、0.080 cm/a和0.036 cm/a。  相似文献   

17.
Many wells in the Sanriku region used as sources for water supply systems were heavily contaminated by the tsunami of the 2011 great Tohoku earthquake on March 11 in 2011. To better understand the nature of the groundwater contamination by the tsunami inundation and to clarify the recovery process of contaminated groundwater at the study wells, groundwater monitoring has been conducted once or twice yearly since early summer in 2011. High and abnormal values of electric conductivity (EC), chloride ion concentration (CIC), Na+, Ca+, heavy metal ions, and heavier isotopes of the contaminated groundwater were also obtained in April and June 2011. The chemical elements have rapidly and exponentially decreased as a result of effective pumping of the contaminated groundwater from the study wells and because of abundant rainfall in 2011. In April 2015 (about 4 years after the tsunami inundation), the CIC and EC of the contaminated groundwater of two study wells in Minamisanriku town had reached pre-inundation values. The estimated residence times of groundwater of the two study wells were 105–118 days in the full-day pumping stage and 910–1000 days in the daytime-only pumping stage.  相似文献   

18.
The studies presented explore post-depositional changes of zinc, cadmium, lead, manganese and 137Cs distribution in alluvial sediments accumulated in the upper Odra River valley in southern Poland. The rate of these changes was estimated by comparing metal and 137Cs distributions in four vertical alluvial profiles with a history of river pollution and sediment deposition. The untypical 137Cs distribution with peaks in the surface 40–60 cm and lower down, even at a depth of 2.5 m in strata deposited before the beginning of nuclear tests in 1954, indicates rapid post-depositional migration of this isotope from the surface and its retention in lower, less permeable layers. Moreover, the highest concentrations of lead, zinc and cadmium were found at a depth of 4 m in sediments accumulated in the mid-nineteenth century in spite of the growth of industrialization and the pollution of the Odra River with heavy metals until the end of the twentieth century. The post-depositional changes in heavy metals and 137Cs are rapid in comparison with the slow element migration usually observed in uninundated soils. This difference is explained by the frequent and easy infiltration of polluted river water into the gravelly and sandy sediments present in the profiles.  相似文献   

19.
Continuous measurements of speciated atmospheric mercury (Hg), including gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM) were conducted in Guizhou Province, southwestern China. Guiyang Power Plant (GPP), Guiyang Wujiang Cement Plant, Guizhou Aluminum Plant (GAP), and Guiyang Forest Park (GFP) in Guiyang were selected as study sites. Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A) were used for GEM analysis. PHg and RGM were simultaneously collected by a manual sampling system, including elutriator, coupler/impactor, KCl-coated annular denuder, and a filter holder. Results show that different emission sources dominate different species of Hg. The highest average GEM value was 22.2 ± 28.3 ng·m?3 and the lowest 6.1 ± 3.9 ng·m?3, from samples collected at GPP and GAP, respectively. The maximum average PHg was 1984.9 pg·m?3 and the minimum average 55.9 pg·m?3, also from GPP and GAP, respectively. Similarly, the highest average RGM of 68.8 pg·m?3 was measured at GPP, and the lowest level of 20.5 pg·m?3 was found at GAP. We conclude that coal combustion sources are still playing a key role in GEM; traffic contributes significantly to PHg; and domestic pollution dominates RGM.  相似文献   

20.
Rates of surficial sediment mixing and sediment burial are measured in Shagawa Lake, Minnesota, using radionuclide tracers. Based on 106Ru profiles in 16 cores, mixing rates average 13 cm2/yr within the upper 9 cm of sediment. Two other nuclides, 210Pb and 137Cs, provide further evidence for calculation of mixing rates. In addition, 210Pb profiles estimate sediment burial rates (about 0.4 cm/yr). Mixing estimates are shown to be fairly insensitive both to uncertainties in sediment burial rates and to temporal patterns of 106Ru deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号