首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
海河流域地下水资源演变现状与可持续利用前景   总被引:9,自引:0,他引:9       下载免费PDF全文
本文在客观评价海河流域平原区地下水资源现状的基础上,揭示了海河流域地下水系统与人类活动之间相互作用和响应的规律,并立足维持现状开采和补给条件下警告性预测了海河流域平原区地下水资源可持续利用阈值及其恢复时限性。  相似文献   

2.
海河流域水资源严重短缺,地下水长期超采是制约社会经济可持续发展的主要瓶颈。开展流域地下水资源及开发利用潜力研究,对支撑服务地下水超采治理、地下水资源可持续利用和生态环境保护都具有重要意义。经系统评价,海河流域天然资源量252.99×10~8m~3,生态水位约束条件下的浅层地下水开采资源量172.98×10~8m~3,可更新的深层水可利用量4.68×10~8m~3。海河流域山区地下水质量总体较好,Ⅰ~Ⅲ类水占比40.83%,平原区浅层地下水质量较差,Ⅰ~Ⅲ类水占比14.10%,深层地下水质量优于浅层地下水,Ⅰ~Ⅳ类水占比74.25%。海河流域山区地下水开采潜力总体较小,燕山和太行山北部山区,地下水资源禀赋较差,基本无开采潜力,太行中部山区地下水开采程度较高,无开采潜力或开采潜力较小,太行南部山区地下水资源禀赋良好,开采潜力较大;平原区浅层地下水在不同水文地质单元开采潜力差异较大,山前平原浅层地下水长期超采形成大范围降落漏斗,无开采潜力或潜力较小,中东部平原浅层地下水资源禀赋较差,以微咸水为主,开采潜力较小,山东省鲁北平原区浅层地下水开采程度较低,聊城—德州一带开采潜力较大;雄安新区地下水总体无开采潜力。平原区深层地下水基本无开采潜力。  相似文献   

3.
西北干旱区地下水生态功能评价指标体系构建与应用   总被引:2,自引:0,他引:2  
西北干旱区降水稀少、蒸发强烈,水资源紧缺,自然湖泊湿地、天然植被绿洲和土壤盐渍化程度对地下水生态水位具有强烈依赖性,因此,西北干旱区地下水生态功能评价指标体系构建成为一个重要课题.本文基于对干旱区不同类型生态状况与地下水位埋深之间关系的机制研究,构建了以浅层地下水埋藏状况为核心要素的"西北干旱区地下水生态功能评价指标体系",它由地下水对自然湿地景观维持性、天然植被绿洲维持性、农田土地质量维持性及其隶属的6项要素指标构成;在石羊河流域中、下游平原区应用结果表明,该套指标体系可为西北干旱区地下水功能评价提供参考,同时还表征石羊河流域中、下游平原区地下水生态功能脆弱,生态功能较弱和弱的分布范围占示范应用区总面积的87.86%,地下水生态功能强、较强分布范围仅占5.07%.由此可见,进一步提高西北干旱区地下水生态功能保护能力刻不容缓.  相似文献   

4.
海河流域平原浅层地下水消耗与可持续利用   总被引:2,自引:0,他引:2  
通过对海河流域平原区地下水储量消耗过程、空间分布及机理研究,揭示了区内地下水系统与相邻层圈之间水分通量因人为活动影响而发生剧变的规律,并在现状开采与补给条件下警告性预测了地下水资源可持续利用前景.  相似文献   

5.
人类活动对海河流域径流系列一致性影响的分析   总被引:3,自引:0,他引:3  
陈民  谢悦波  冯宇鹏 《水文》2007,27(3):57-59
从地下水开发利用、水土保持生态建设两方面分析流域降水径流关系变化的成因,说明山丘区、平原区径流系列一致性修正方法,提出一致性、代表性较好的径流成果。结果表明,进行一致性修正后,海河流域1956~1979年平均年径流量较第一次水资源评价减少11.1%,且山丘区减少幅度小于平原区。  相似文献   

6.
海河流域平源浅层地下水消耗与可持续利用   总被引:2,自引:1,他引:2  
费宇红  张光辉等 《水文》2001,21(6):11-13,10
通过对海河流域平原区地下水储量消耗过程、空间分布及机理研究,揭示了区内地下水系统与相邻层圈之间之分通量因人为活动影响而发生剧变的规律,并在现状开采与补给条件下警告性预测了地下水资源可持续利用前景。  相似文献   

7.
西北内陆河流域地下水循环特征与地下水资源评价   总被引:1,自引:0,他引:1       下载免费PDF全文
在系统梳理前人调查研究成果基础上,总结了西北内陆河流域主要的含水层特点,对山区、平原区和沙漠区的地下水循环特点进行了分析,着重对平原区地下水水流系统进行了讨论。由于西北内陆河流域地下水与地表水关系密切,形成了具有密切水力联系的含水层-河流系统,不论是上游开发地表水还是地下水,都会引起整个流域内地下水资源的强烈变化。地下水资源评价表明,西北内陆河流域地下水资源量为783亿m~3/a,其中平原区的地下水资源量为487亿m~3/a,山区与平原区的地下水资源重复量为199亿m~3/a,现状开采量为128亿m~3/a。地下水开发潜力分析表明,除柴达木盆地、塔里木盆地南缘等地区外,其他地区的地下水开采潜力有限,应通过提高水资源的利用效率来提高其承载能力。今后应加大(微)咸水资源化、地下水水库的调查研究,加强地下水的生态功能和生态需水量评价,为地下水资源的合理开发利用提供技术支撑。  相似文献   

8.
海河流域平原区地下水水质评价及硝态氮污染研究   总被引:1,自引:0,他引:1  
《地下水》2015,(6)
海河流域平原区是我国经济社会发展与水资源矛盾最为突出的区域。人均水资源量是全国人均水资源量的1/6,少于以色列的人均水资源量。海河流域平原区的水污染严重,水环境问题突出。由于水资源短缺和水污染加剧,生产活动要求地下水开采,形成大片漏斗区,引起地质灾害。随着生产活动的加剧,环境污染也向地下水蔓延,引起新的水危机。对此,本研究针对地下水,应用水质评价评估地下水污染的情况,并挑选典型污染物硝态氮,分析区域污染的时空情势,分析结果表明:从时间序列看,海河流域平原区水质变化不大,污染严重,Ⅴ及以上站点占总站点的30%,Ⅳ、Ⅴ的站点数基本在70%左右。从空间序列看,邯郸、廊坊等市水质最差,多为Ⅳ和Ⅴ类水,重金属及硝、氮为主要污染物。通过地下水水质评价,为区域经济社会环境发展提供参考。  相似文献   

9.
胡娟 《地下水》2012,(4):71-73
对阜康市平原区地下水埋藏与分布条件进行分析。根据近10 a地下水监测井监测数据,从砾质平原区、冲洪积平原中上部、冲洪积平原下部三个区域,结果得出阜康市平原区地下水水位动态年际变化呈逐年下降的变化特征;总结造成地下水水位下降的原因,分析了由于地下水水位下降引发如低山丘陵区水土流失严重、灌区盐碱地面积增大等一系列自然环境问题;针对如何控制地下水水位逐年下降提出了相应对策和建议。  相似文献   

10.
海河流域平原地下水同位素年龄及其水化学区域分布特征   总被引:1,自引:0,他引:1  
本文从海河流域平原区第四系地下淡水同位素年龄和水化学的区域分布特征的相似性入手 ,初步探讨了地下水形成年龄与其化学组分通过水循环演化过程而建立的关联机制 ,得出地下水1 4 C校正年龄或其水化学组分的区域分布特征中蕴涵着量化描述一个地区地下水循环演化进程和水动学条件信息的新认识。  相似文献   

11.
地下水具有重要的生态价值,地下水生态系统中的地下水位、水质和包气带含水率与含盐量的变化驱动着表生生态格局的演变,但目前对各变量的生态阈值研究尚处于起步阶段,理论与方法体系还不完善。以保定平原区为例,采用地下水位及地下水生态环境的历史回归法、GIS法、差分网格计算法等方法,从时空角度分析了地下水位变化的驱动力以及生态效应,在此基础上确定不同水文地质单元的生态水位阈值。研究表明:(1)20世纪50—60年代,研究区依赖于地下水的生态格局基本维持着天然状态;1959—2000年,地下水位持续下降,局部地段出现降落漏斗;2000—2008年,地下水位骤降,降落漏斗迅速扩张,地下水与地表水补排关系发生变异;2008年至今,部分区域地下水位逐渐上升。(2)研究区内山前地带地下水生态水位埋深为10~15?m,拒马河冲洪积扇群与漕河—瀑河冲洪积扇群为5~10?m,唐河—大沙河冲洪积扇群为3~5?m,冲积平原中定州—望都范围为3~5?m,保定市为10~15?m,其余均为5~10?m,冲湖积平原环淀区域小于3?m。(3)以确定的地下水生态水位为标准,初步估算研究区现状地下水位恢复至生态水位的需水量为57.14×108?m3。研究成果对恢复当地地下水生态环境格局有重要意义,对华北平原地下水生态水位的确定也具有借鉴意义。  相似文献   

12.
Beijing is a city of severe water shortage. The groundwater plays a key role in the water supply. However, the groundwater level has been gradually descending due to extensive pumping in consecutive drought years. How to satisfy the water demand and recover the groundwater level is an urgent work. With the implementation of the South to North Water Transfer Project, an opportunity has been provided for restoration of groundwater under over exploitation. On the basis of hydrogeology conditions of the Beijing plain, as well as the high-performance parallel computing platforms, a groundwater flow numerical model was established. And dynamic monitoring data of groundwater levels were used to calibrate the numerical model. The calculation results fit well with the measured data in the calibrated model. Therefore, the calibrated model can be used to predict the dynamic change of groundwater levels in the Beijing plain. The results show that several obvious depression cones of groundwater have been formed because of the rapid decline of groundwater levels in the Beijing plain in recent years. After the implementation of the South to North Water Transfer project and due to the restrictions on groundwater exploitation, the area of cone of depression will be reduced to different degrees, the central water level of depression cone will increase, and some cones of depression around wellhead will disappear. It is a benefit to relieve water shortage and control the development of land subsidence and the deterioration of the ecological environment.  相似文献   

13.
干旱区绿洲地下水位调控方法与模型研究进展   总被引:1,自引:0,他引:1  
适宜的地下水位是干旱区绿洲健康稳定发展的基础。从地下水生态水位的调控机理、调控方法、调控模型和应用实践入手,综述了干旱区绿洲地下水生态水位调控的研究进展:地表水与地下水相互转化规律是干旱区绿洲地下水生态水位调控的理论基础,掌握人类活动强烈影响下的地表水与地下水的响应关系是关键;地下水的补给、排泄和开发利用是实现地下水位调控的三个主要途径,不同调控方法在作用环节、适用性及效果方面存在显著差异;基于不同的研究重点,目前形成了以水资源配置、水循环过程和生态过程为核心的三类调控模型;建议继续深化强人类活动影响下干旱区绿洲生态水文响应机理与演变规律研究,构建基于调控措施-循环转化-响应反馈的地下水生态水位调控体系。  相似文献   

14.
河北省由于地下水持续超采引发一系列生态环境问题,其根源在于人类活动强度超出了地下水资源承载能力,并缺乏及时有效的预警。为了构建更符合河北省实际的地下水资源承载能力评价体系,解决以往预警方法需要设置固定的水位、水量预警区间值,水位的区域差异导致的宏观性评价困难、工作量巨大且无法动态修正的问题,从地下水的资源属性和社会属性出发,采用指标体系综合分析评判法,建立承载本底、承载状态2个层面的承载能力评价体系;采用地下水开发利用程度为主,水位变化幅度加以修正的“双控联动”预警方法,实现两指标的动态联动且无需设置固定的水位、水量区间。研究表明河北省地下水资源承载本底整体较好,但由于开发利用程度高,承载状态多处于超载状态,承载能力太行山中南部高于北部及燕山山区、坝上地区,山前冲洪积平原优于中部湖积平原和滨海平原;受咸水分布、工农业生产取水量大等因素影响,地下水红色及橙色预警区域主要分布于河北平原中部冲湖积平原的沧州、衡水地区、太行山山前平原邯邢交界区域及城市市区周边。评价及预警结果与河北省实际情况吻合。该评价方法具有区域适用性强、可操作性好、数据易获取等优点。  相似文献   

15.
天津平原区地下水位动态特征与影响因素分析   总被引:4,自引:0,他引:4  
天津市地下水位监测工作已经开展了将近40年,监测区覆盖整个平原区。根据多年地下水位监测资料,笔者对区内浅层地下水和深层地下水不同含水层组的水位动态特征及其影响因素进行了分析研究,认为:天津平原区地下水位动态受水文地质条件、降水和开采条件的控制,不同类型地下水动态规律在时空分布上有明显差异,除降水量、温度等自然因素外,开...  相似文献   

16.
温州市永强平原经济发达,工业化的发展和地下水无计划的开采,使永强平原地面沉降较为严重,永中累计沉降量超过300mm。为了更好地对永强平原地面沉降做出分析预测,本文通过研究区域地质环境、地下水开采量、地下水位的动态变化特征及2005~2010年的地面沉降监测资料,分析地面沉降速率、范围、沉降量,从而进一步探讨地面沉降与地层结构、地下水动态的关系,同时采用年开采量和年平均沉降速率预测2015年的地面沉降量。分析结果对深化永强平原地面沉降研究具有一定意义。  相似文献   

17.
关中盆地地下水系统的划分与特征   总被引:1,自引:1,他引:0       下载免费PDF全文
关中盆地是一个水文地质结构完整、含水系统与水流系统相对独立、水循环开放的地下水系统。通过概述区域水文地质结构和地下水循环特征,依据地下水含水介质的结构组合、分布特征以及地下水循环特征的不同,将关中盆地地下水系统划分为6类: 黄土台塬孔隙-裂隙含水系统、冲积平原孔隙含水系统、山前洪积平原孔隙含水系统、渭北岩溶含水系统、新近系和古近系砂泥岩互层裂隙-孔隙含水系统及基岩裂隙含水系统。文章总结分析了每种含水系统的富水性、补径排、水化学和动态特征,旨在为客观评价关中经济区水资源现状并提出水资源优化配置、开发利用和保护方案提供依据。研究成果对建设优良、宜居的生态环境和经济可持续发展具有积极的意义。  相似文献   

18.
陈伟 《安徽地质》2010,20(3):229-233
本文利用上世纪70年代和本世纪初的水位对比和典型孔组的水位历时变化曲线,分析安徽省淮北平原孔隙水水位动态及历史变化。结果表明:多年来持续开采地下水,改变了淮北平原孔隙水水位动态类型和不同流动系统地下水的补排关系,加剧了孔隙水水位变化的随机性;集中开采区的中深部孔隙水水位动态变化尤为显著,水位持续大幅度下降,原自流区消失,并诱发地面沉降等地质环境问题。  相似文献   

19.
The Beijing-Tianjin-Hebei Plain (BTHP) is the political, economic and cultural center of China, where groundwater is the main source of water supply to support social and economic development. Continuous overdraft of the resources has caused a persistent decline of groundwater level and formed a huge cone of depression at a regional scale. This paper addresses current groundwater situation over the BTHP area. The paper also delineates the groundwater flow field, using groundwater level data, in order to provide an effective method for the restoration of groundwater level and associated water resources management. Based on the analysis of multiple factors, such as groundwater level, soil salinization, ground subsidence, groundwater recharge and storage, urban underground space security, formation of fractures, and seawater intrusion, the threshold for groundwater level restoration is defined, and some measures for groundwater over-exploitation management are accordingly proposed. The study shows that: (i) Since the 1980s to 2020, shallow groundwater level in the western part of the BTHP area has dropped by 25 m to 60 m, while the cumulative decline of deep groundwater in the central and eastern regions is in the range of 40–80 m; (ii) The water table of the shallow groundwater within the depression zone over the Western Piedmont Plain should be controlled in the range of 15–30 m below ground level (mbgl), while the depth of groundwater level in large and medium-sized urban areas should be controlled within 20–30 mbgl. The groundwater level in the resource preservation area should be controlled within 10–15 mbgl, and the groundwater level in the area with identified soil salinization in the central and eastern plain should be controlled within 3–10 mbgl. However, for the deep groundwater in the central and eastern plainwater, the main focus of the resources management is to control the land subsidence. The water level in the severe land subsidence area should be controlled within 45–60 mbgl, and in the general subsidence area should be controlled within 30–45 mbgl; (iii) Based on the water level recovery threshold and proposed groundwater overdraft management program, if the balance of abstraction and recharge is reached in 2025, the shallow groundwater abstraction needs to be gradually reduced by about 2×108 m3. Meanwhile, the ecological water replenishment of rivers through the South-to-North Water Transfer Project should be increased to 28.58×108 m3/a, and the deep groundwater abstraction needs to be gradually reduced by 2.24×108 m3. To reach the target of shallow groundwater level in 2040, surface water replacement is recommended with a rate of 25.77×108 m3/a and the ecological water replenishment of rivers in the South-to-North Water Diversion Project should reach 33.51×108 m3/a. For deep groundwater recovery, it is recommended to replace the deep freshwater extraction with the utilization of shallow salt water by 2.82×108 m3 , in addition to the amount of 7.86×108 m3 by water diversion. The results are of great significance to the remediation of groundwater over-exploitation, the regulation of water resources development and utilization, and ecological protection in Beijing-Tianjin-Hebei plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号