首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The Direct Current resistivity method was applied to the consolidated coastal Plioquaternary aquifer of Mamora plain, located on the Atlantic coast of Morocco. The aim is to determine the depth of the base of the saturated zone in the aquifer and to help in imaging lateral and vertical distribution of groundwater salinity. The geoelectric survey showed four geoelectric formations with the following electrical resistivities from top to bottom: 20–80, 200–2000, 200–300 and 5–70 Ohm m. The latter designates the basement of the aquifer constituted of marls and sandy marls. The mean resistivity of 250 Ohm m designates the aquifer formation. It decreases to less than 25% of its initial values for the soundings near the shore, reflecting the oceanic impact on the aquifer formation resistivity. The contour map shows that the basement of the saturated zone in the aquifer is deeper in the Northwest near the Sebou River estuary with values up to 70 m below sea level. This results in a larger thickness of the saturated zone of the aquifer leading to a consequent hydraulic potential. On the other hand, it has been deduced that the extent of marine intrusion inside the continent can be governed by human activities, natural properties and substratum geometry of the aquifer as well as by ecological factors. An optimal network of electrical soundings has been proposed for the monitoring of saltwater intrusion.  相似文献   

2.
The integrated use of geophysical, geological, hydrogeochemical and hydrogeological data has allowed the development of a plausible conceptual model for groundwater flow in the Ballimore region. A realistic model for this under-explored system could not be derived solely by the use of hydrogeological data. Interpretation of the available datasets indicates that two groundwater systems are active: a regional and a local system. These are separated by a regionally extensive aquiclude. Groundwater flow in the regional groundwater system is controlled by the structural fabric of the Palaeozoic basement rocks. The local groundwater system is restricted to the Permian to Recent sequence of cover rocks. The local groundwater system is subdivided into three cells: the deep, intermediate and shallow cells. Groundwater flow within the deep cell of the local groundwater system is controlled by fracture flow. Groundwaters from this aquifer are under artesian pressure and are effervescent (CO2-gas). The intermediate cell is a leaky aquitard that acts as a mixing zone between the deep and shallow cells. Groundwater flow within the shallow cell is controlled by the influx of surface waters which migrate laterally through permeable beds.  相似文献   

3.
 The Judea Group, a limestone and dolomite karstic aquifer of late Albian–Turonian age, is one of the most important sources of water in Israel. In the western part of the country, the Judea Group aquifer is also known as the Yarkon–Taninim basin. In the northern Negev, the Judea Group is a recipient for fresh water flowing southward from the Hebron Mountains and of brackish paleowater flowing northward from Sinai. Very little is known of the hydraulic properties of this aquifer. In order to outline assumed natural flow paths that existed in this karstic environment prior to groundwater exploitation, use was made of lithological, structural, and paleomorphological features. A detailed hydrogeological conceptual model of the Judea Group aquifer in northern Negev was established by the geological interpretation of high-resolution seismic reflection and by analysis of lithological evidence from boreholes. Isopach, isolith-contour, and isolith-ratio maps were compiled for the main lithological components. Increase in transmissivity values is inversely proportional with the cumulative thickness of argillaceous components. The lithological and hydraulic evidence provides the basis for subdividing the subsurface into distinctive permeability zones for the upper and lower sections of the aquifer; for outlining possible preferential groundwater flow paths for both subaquifers; and for improving understanding of groundwater-salinty variations that result from lithological variability, direction of groundwater flow paths, groundwater flow rates, and the duration of rock/water interactions. In an earlier conceptual model of the basin, the Judea Group aquifer was regarded as a continuous and undisturbed entity. The present study reveals an intricate groundwater flow pattern that is controlled by lithological and structural factors that create zones of preferential flow. This interpretation bears on the overall evaluation of groundwater resources and their management and exploitation. Received, December 1996 · Revised, October 1997, June 1998 · Accepted, July 1998  相似文献   

4.
Abstract

The Mamora area (Morocco) is located in the northern part of the Meseta and the southern part of Rharb. The recent formations (Mesozoic to Quaternary) lie unconformably on a Paleozoic basement. This study based on hydrogeological, sedimentological, drilling data and seismic reflection profiles interpretation, proposes new interpretations of geodynamical evolution of this area particularly in terms of tectonic patterns. The most ancient formations recognized in this region are Paleozoic schists and quartzites in the Tifíete sector. They represent the basement of the basin on which Triassic conglomerates and red mudstones associated with basalts lie unconformably. Jurassic and Cretaceous sediments are limestones and marls. The Mio-pliocene formations are open marine blue marls. Plio-quaternary sediments are limestones and sands containing gravel and pebbles. Miocene to Pliocene blue marls facies corresponds to deep marine marls (bathyal as indicated by planctonic foraminifers) with an attributed age from upper Miocene [9] to middle Pliocene [7]. A facies distribution map of the top of the blue marls has been realized where four main facies—conglomerate, shelly sandstone, limestone and marls—indicate a major regression in the Mamora basin. The datation of the formations was mostly realized by Wernli [22, 23, 24, 25], and Cirac [10], In the Mamora area, Hercynian faults show two main structural directions, N020°E-N040°E (Agadir-Rabat), N120°E (Rabat- Tiflète) [5], and a new major Hercynian fault (K2S). The seismic profiles have been studied between Sidi Slimane and Sidi Yahia area, to illustrate the structure of the Mamora, and to replace it, in the geodynamical evolution. The seismic reflection lines and drilling data show that the eastern Mamora was subdivided into two sectors: i) the southern sector is affected by Hercynian faults which create horsts and grabens in the Paleozoic. Mio-Pliocene formations infill these depressions and are covered by Quaternary sediments; ii) the northern sector is constituted by various formations: 1. Paleozoic formation as basement covered by autochthonous Mesozoic to Miocene, 2. Prerifain nappes (marls and evaporites), 3. Mio-Plio-Pleistocene formations as subautochthonous to autochthonous. These two sectors are separated by a major fault (K2S). On the other hand, in the occidental Mamora, the facies distribution and the Plio-Pleistocene thickening seem to be induced by faults with a NE-SW and NW-SE trends which affect the Paleozoic basement. Then, between the Meseta domain and the septentrional Rharb basin, two major Hercynian initially dextral shear zones, Rabat- Tiflete and K2S, have been recognised. During the Atlantic Ocean opening, they are probably senestral shear zones. At the same time the subsidence in Rharb basin is active, major action of these faults is normal. Therefore, Mamora represents a real hinge between stable Meseta and unstable septentrional Rharb basin. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

5.
《Geodinamica Acta》2001,14(6):361-372
The Mamora  area (Morocco) is located in the northern part of the Meseta and the southern part of Rharb. The recent formations (Mesozoic to Quaternary) lie unconformably on a Paleozoic basement. This study based on hydrogeological, sedimentological, drilling data and seismic reflection profiles interpretation, proposes new interpretations of geodynamical evolution of this area particularly in terms of tectonic patterns. The most ancient formations recognized in this region are Paleozoic schists and quartzites in the Tiflete sector. They represent the basement of the basin on which Triassic conglomerates and red mudstones associated with basalts lie unconformably. Jurassic and Cretaceous sediments are limestones and marls. The Mio-pliocene formations are open marine blue marls. Plio-quaternary sediments are limestones and sands containing gravel and pebbles. Miocene to Pliocene blue marls facies corresponds to deep marine marls (bathyal as indicated by planctonic foraminifers) with an attributed age from upper Miocene 〚9〛 to middle Pliocene 〚7〛. A facies distribution map of the top of the blue marls has been realized where four main facies - conglomerate, shelly sandstone, limestone and marls - indicate a major regression in the Mamora basin. The datation of the formations was mostly realized by Wernli 〚22〛, 〚23〛, 〚24〛, 〚25〛, and Cirac 〚10〛. In the Mamora area, Hercynian faults show two main structural directions, N020°E-N040°E (Agadir-Rabat), N120°E (Rabat-Tiflète) 〚5〛, and a new major Hercynian fault (K2S). The seismic profiles have been studied between Sidi Slimane and Sidi Yahia area, to illustrate the structure of the Mamora, and to replace it, in the geodynamical evolution. The seismic reflection lines and drilling data show that the eastern Mamora was subdivided into two sectors : i) the southern sector is affected by Hercynian faults which create horsts and grabens in the Paleozoic. Mio-Pliocene formations infill these depressions and are covered by Quaternary sediments ; ii) the northern sector is constituted by various formations : 1. Paleozoic formation as basement covered by autochthonous Mesozoic to Miocene, 2. Prerifain nappes (marls and evaporites), 3. Mio-Plio-Pleistocene formations as subautochthonous to autochthonous. These two sectors are separated by a major fault (K2S). On the other hand, in the occidental Mamora, the facies distribution and the Plio-Pleistocene thickening seem to be induced by faults with a NE-SW and NW-SE trends which affect the Paleozoic basement. Then, between the Meseta domain and the septentrional Rharb basin, two major Hercynian initially dextral shear zones, Rabat-Tiflete and K2S, have been recognised. During the Atlantic Ocean opening, they are probably senestral shear zones. At the same time the subsidence in Rharb basin is active, major action of these faults is normal. Therefore, Mamora represents a real hinge between stable Meseta and unstable septentrional Rharb basin.  相似文献   

6.
The present work deals with the groundwater aquifer of the Lower Cretaceous sandstone and its sustainable development in Sinai. The studied aquifer system is the most promising groundwater system in Sinai due to its wide extension, hug storage, and good quality. The objective of this paper aims to elucidate the hydrogeological characteristics of the Lower Cretaceous aquifer. The aquifer system occurs under confined conditions. The top surface of the Lower Cretaceous dips steeply towards the southwest direction with step faults. The average sand percent of the penetrated aquifer attains 54%. The main direction of groundwater flow is generally from southwest and locally is concentric to the center of study area related to the influence of the graben block. The aquifer has a hydraulic gradient generally reaches 0.0011 m/m and attains 0.0028 in central portion of study area. The aquifer parameters (effective porosity, transmissivity, and hydraulic conductivity) increase towards the northeast direction with increasing of the sand percentage. Durov diagram plot revealed that the groundwater has been a final stage evolution represented by a NaCl water type. The groundwater salinity increases towards the central of study area coinciding with groundwater flow. The groundwater salinity of the Lower Cretaceous aquifer is brackish water and varies from 2,510 to 5,256 ppm and unsuitable for drinking and domestic purposes.  相似文献   

7.
The aquifer of the Rharb Basin is constituted by heterogeneous material. The seismic reflexion interpretation carried out in this area, highlighted a permeable device compartmentalized in raised and subsided blocks. Depressions identified in the northern and southernmost zones are characterized by Plio-Quaternary fillings that are favourable to the hydrogeological exploitation. Two mechanisms contribute to structure the Plio-Quaternary aquifer: the Hercynian reactivation in the southernmost part, and the gravitational mechanism of the Pre-Rifean nappe. The groundwater flow and the aquifer thickening are controlled by this reactivation.  相似文献   

8.
郭敏  万军伟  江峰  黄琨 《地球科学》2017,42(1):155-160
目前对潜水含水层地下水潮汐效应和水文地质参数求解方法的研究相对较少.通过对福建古雷半岛滨海潜水含水层地下水潮汐效应和海水潮汐动态的观测, 运用Fourier频谱分析方法确定了研究区海水潮汐波动方程(波动特征参数), 并以此作为地下水的边界条件, 推导了潜水含水层地下水潮汐效应的波动方程, 利用最小二乘法以地下水水位波动观测值为目标函数对潜水含水层的渗透系数与重力给水度的比值进行了反演识别, 为类似地区水文地质参数的确定提供了借鉴, 也为该区后续地下水中溶质迁移规律的研究奠定了基础.   相似文献   

9.
The subsurface data are a basic requirement for the set up of hydrogeological framework. Geographic information systems (GIS) tools have proved their usefulness in hydrogeology over the years which allow for management, synthesis, and analysis of a great variety of subsurface data. However, standard multi-layered systems are quite limited for modeling, visualizing, and editing subsurface data and geologic objects and their attributes. This paper presents a methodology to support the implementation of hydrogeological framework of the multi-layered aquifer system in Nabeul–Hammamet (NH) coastal region (NE, Tunisia). The methodology consists of (1) the development of a complete and generally accepted hydrogeological classification system for NH aquifer system (2) the development of relational databases and subsequent GIS-based on geological, geophysical and hydrogeological data, and (3) the development of meaningful three-dimensional geological and aquifer models, using GIS subsurface software, RockWorks 2002. The generated 3-D geological models define the lithostratigraphy and the geometry of each depositional formation of the region and delineate major aquifers and aquitards. Where results of the lithologic model revealed that there is a wide range of hydraulic conductivities in the modeled area, which vary spatially and control the groundwater flow regime. As well, 17 texturally distinct stratigraphic units were identified and visualized in the stratigraphic model, while the developed aquifer model indicates that the NH aquifer system is composed of multi-reservoir aquifers subdivided in aquifers units and separated by sandy clay aquitards. Finally, this study provides information on the storing, management and modeling of subsurface spatial database. GIS has become a useful tool for hydrogeological conceptualization and groundwater management purposes and will provide necessary input databases within different groundwater numerical models.  相似文献   

10.
Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17–60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9–45.9 hm3 year?1) is in agreement with the average recharged groundwater (44.7 hm3 year?1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.  相似文献   

11.
为了揭示华北型煤田松散承压含水层水文地质参数及其对地下水流数值模拟的意义,以安徽淮北煤田宿南矿区祁东煤矿松散层承压第四含水层(简称“四含”)为研究示范,对多个影响因素综合分析,采用层次分析-模糊综合评价法,对研究区四含水文地质参数进行分区,合理确定各分区的水文地质参数,并用于采煤情景下地下水流动态数值模拟。数值模拟结果表明:祁东煤矿2008-2012年浅部煤层开采过程中四含地下水流场没有明显改变,但南北分区水头差逐年增大,地下水流向始终从南向北,而且在井田北部水力梯度逐渐减小,在井田南部水力梯度逐渐增大,南北区以倾角为60°~70°、断距为10~320 m的魏庙断层为分界线,基岩中大倾角与大落差断层的出现是引起上覆松散承压含水层水力梯度异常的根本原因。  相似文献   

12.
A small-scale hydrogeological study was conducted in a fractured carbonate-rock aquifer located in a quarry to relate groundwater flow to the fracture network. The field study in the St-Eustache quarry, which integrates structural surveys, well logging and hydraulic tests, showed that the most important features that affect groundwater flow in the sedimentary aquifer are high hydraulic conductivity horizontal bedding planes. Vertical fractures are abundant in the quarry and throughout the region, but they have a minor effect on groundwater flow. To have a significant impact on the flow regime and lead to vertical groundwater flow, the permeability of all vertical joints need to be enhanced compared to what was generally observed at the site. Such an increase in permeability could potentially occur where dissolution and fracturing is more intense or at stress release locations such as near the surface in the quarry.  相似文献   

13.
超高层建筑的桩基础通常会打入到深度较大的承压含水砂土层中;在承压含水层的上方通常会进行超深基坑的开挖构建超高层建筑的地下室。为了保持超深基坑的基底稳定,需要在承压含水层中进行降水施工。由于深基坑存在大量的桩基础,基桩的存在会影响降水时地下水的渗流路径,继而影响土体的渗透性状。应用室内试验研究基桩对含水层渗流阻挡作用的机制。试验采用PVC管模拟基桩,将颗粒较均匀的砂土作为试验土体,通过室内渗流试验来研究基桩对地下水渗流的影响。试验结果表明,基桩对于地下水渗流有明显的阻挡效应:基桩的数量以及布置形式会对渗透效应产生较大的影响。考虑砂土体积置换率的有效介质理论可以用来分析矩形布置的基桩对渗透系数的影响,但对梅花形布置的基桩应用有效介质理论计算所得的渗透系数会有将近20%的偏差;其原因是梅花形布置的基桩,会使渗流路径增加。基于对渗流路径的分析,提出了考虑有梅花形布置的基桩存在时等效渗透系数计算的修正方法。  相似文献   

14.
Deltaic aquifers are complex due to the important heterogeneity of their structure and their hydrogeological functioning. Auger drilling provides localized, but very robust geological and hydrogeological information, while geophysical surveys can provide integrated subsurface information. An effective, easy-to-use and low-cost methodology combining geological/hydrogeological information from Auger drillings and the results from three geophysical techniques (Electromagnetic mapping, Electrical Sounding and Electrical Resistivity Tomography) is being developed to characterize the structure of a typical Mediterranean deltaic aquifer. A first hypothesis about hydrodynamic properties of the aquifer is also obtained. The study area is located in the Rhone delta (Middle Camargue/southern France). Integration of geophysical and geological techniques allowed identifying the presence and lateral extension of the Saint-Ferréol paleochannel, the vertical contact between lagoonal–fluvial deposits and the marine clayed silt that separate the superficial aquifer from the deeper aquifer. Likewise, high north–south heterogeneity and east–west homogeneity were highlighted in the study area. Presence of clay in sandy deposits in the low areas implies changes in lateral hydraulic permeability. This fact, jointed to the low hydraulic gradient, suggests a slow groundwater flow in the local system. The Rhone delta presents a typical configuration of a Mediterranean deltaic aquifer, thus this methodological approach can be used for similar deltaic Mediterranean systems.  相似文献   

15.
Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.  相似文献   

16.
Aquifer vulnerability has been assessed in the Senirkent-Uluborlu Basin within the Egirdir Lake catchment (Turkey) using the DRASTIC method, based on a geographic information system (GIS). There is widespread agriculture in the basin, and fertilizer (nitrate) and pesticide applications have caused groundwater contamination as a result of leaching. According to hydrogeological data from the study area, surface water and groundwater flow are towards Egirdir Lake. Hence, aquifer vulnerability in the basin should be determined by water quality in Egirdir Lake. DRASTIC layers were prepared using data such as rainfall, groundwater level, aquifer type, and hydraulic conductivity. These data were obtained from hydrogeological investigations and literature. A regional-scale aquifer-vulnerability map of the basin was prepared using overlay analysis with the aid of GIS. A DRASTIC vulnerability map, verified by nitrate in groundwater data, shows that the defined areas are compatible with land-use data. It is concluded that 20.8% of the basin area is highly vulnerable and urgent pollution-preventions measures should be taken for every kind of relevant activity within the whole basin.  相似文献   

17.
Spatial variations of fluoride concentration in groundwater in the town of Saldungaray, Argentina affect water quality for human supply and decrease the aquifer reserves. The study region is a piedmont area, located near a hill area (west) and the fluvial valley of the Sauce Grande River (east). Two hydrogeological units can be identified: bedrock and clastic sediments. These sediments consist of sandy silt with a variable amount of calcium carbonate. Its greatest thickness occurs near the river where it is 60 m. Groundwater flow coincides with topography. Fresh water is exploited from this unit and it has low salt contents (dissolved solids 400 to 800 mg/l). Fluoride concentration varies between 0.2 and 5 mg/l. The groundwater flow and hydrogeological characteristics related to spatial variations of fluoride content are analyzed. The quality of water is a critical parameter in determining the overall quality of human lives, and the occurrence of high fluoride concentrations can have a pronounced impact on groundwater quality.  相似文献   

18.
Electrical geophysical surveys in the mode of vertical electrical soundings (VES) and continuous vertical electrical soundings (CVES) were conducted in the León-Chinandega plains, northwestern Nicaragua, in order to obtain detailed information about the geometry of the different hydrogeological layers in the aquifer and depth to the basement. A total of 51 VES were carried out within the plains. The results show a complex structure towards the north east of the area, and the southwestern part of the plains presents a smoother stratification. The geoelectrical measurements and borehole information indicate that the basement topography is characterized by hills and deep valleys with highly variable basement depths. Fifty CVES where done in a smaller area in the center of the plain. The resistivity data yielded considerable information revealing the existence of two main geo-electrical units. The combined interpretation of geological and geophysical data shows an environment typical of sedimentary volcanic coastal plains. The information collected during this investigation provides valuable data for estimating the fresh-water resources of the León-Chinandega aquifer system and for development of a groundwater management plan.  相似文献   

19.
岩溶介质具有较强的非均质性,其地表及地下的岩溶结构形态多样。通过对钻孔结构描述、钻孔水物化性质分析,不仅能够掌握区域上岩溶含水层的结构特征,而且对于岩溶地下水演化过程的揭示亦有重要作用。文章以桂林岩溶水文地质试验场西南部峰丛山区与峰林平原交界处的钻孔为例,通过野外便携式多参数仪原位测试钻孔垂向水物化指标(pH值、水温T、电导率EC),探索浅部(地面以下约50 m内)地下岩溶较为发育条件下钻孔水物化指标的垂向变化特征,揭示岩溶介质非均质性对钻孔垂向水物化指标的影响。结果表明:岩溶地区小范围内不同钻孔间的水物化性质有所差异,且岩溶发育相似的钻孔(如ZK4/ZK5、ZK7/ZK8),其水物化指标垂向变化具有一定的相似性,但不同指标(T、pH、EC)的变化幅度存在差异;钻孔水物化性质受到试验场区岩溶介质结构非均质性的控制,即岩溶介质结构影响了地下水的赋存条件和水力联系而导致水物化性质的差异;在对岩溶地区地下水物化性质进行研究时应充分考虑岩溶介质的非均质性特征,根据实际的水文地质条件选取具有代表性的钻孔含水段进行取样和监测。   相似文献   

20.
In arid and semi-arid regions, the groundwater overexploitation caused drawdown in piezometric levels and a degradation of chemical water quality. That is why the groundwater monitoring needs a good comprehension of the hydrogeological aquifer properties. This is specially the case of Zéramdine–Béni Hassen deep aquifer (east-central Tunisia). Seismic profiles interpretation highlights the existence of the Zéramdine fault corridor, the Boumerdès anticline, the Moknine and Mahdia grabens that represent lateral boundaries for the study aquifer. The outcrop of the aquifer is located in the Zéramdine, Béni Hassen and Ain Ben Jannet regions, where two lithostratigraphic sections were realized. The piezometric study shows that the principal groundwater flow is from west to east. A secondary flow is from NW to SE. The hydrochemical study of 22 sample shows that the aquifer is characterized by freshwater, dominated by Na–Ca–Cl–SO4 facies. The salinity increase is from the west to the east, which coincides with the principal water flow direction. The integration of all results deduced from the hydrogeophysic, hydrodynamic and hydrochemical studies is developed to investigate hydrological processes of Zéramdine–Béni Hassen aquifer and consequently to propose a conceptual model, which will help to propose a rescue plan for the studied aquifer and to implement a spatial hydrogeological database using the global information system and then to characterize the complex aquifer system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号