首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   

2.
Ron   《Gondwana Research》2006,10(3-4):207-231
New age, petrochemical and structural data indicate that the Banda Terrane is a remnant of a Jurassic to Eocene arc–trench system that formed the eastern part of the Great Indonesian arc. The arc system rifted apart during Eocene to Miocene supra-subduction zone sea floor spreading, which dispersed ridges of Banda Terrane embedded in young oceanic crust as far south as Sumba and Timor. In Timor the Banda Terrane is well exposed as high-level thrust sheets that were detached from the edge of the Banda Sea upper plate and uplifted by collision with the passive margin of NW Australia. The thrust sheets contain a distinctive assemblage of medium grade metamorphic rocks overlain by Cretaceous to Miocene forearc basin deposits. New U/Pb age data presented here indicate igneous zircons are less than 162 Ma with a cluster of ages at 83 Ma and 35 Ma. 40Ar/39Ar plateau ages of various mineral phases from metamorphic units all cluster at between 32–38 Ma. These data yield a cooling curve that shows exhumation from around 550 °C to the surface between 36–28 Ma. After this time there is no evidence of metamorphism of the Banda Terrane, including its accretion to the edge of the Australian continental margin during the Pliocene. These data link the Banda Terrane to similar rocks and events documented throughout the eastern edge of the Sunda Shelf and the Banda Sea floor.  相似文献   

3.
The palaeontologically rich and lithologically diverse Triassic successions of Timor provide a key stratigraphic and palaeontological link between northwestern Australia and other terranes of former eastern Gondwana (present-day Southeast Asia). Timor is now located in the zone of collision between the northern margin of the Australian continent and island arc terranes bordering the Eurasian plate, with the Triassic successions exposed in a fold-and-thrust belt and an extensive mélange complex. Three formal lithostratigraphic units have been defined previously within the main Triassic succession in Timor (Niof, Aitutu and Babulu formations), with a fourth, the Wai Luli Formation, primarily Jurassic in age but extending down into the Triassic. The Niof Formation (Anisian to Ladinian, possibly also Early Triassic) is a fine-grained deepwater succession, succeeded conformably by the Aitutu and Babulu formations (Ladinian to Norian/Rhaetian), which were deposited contemporaneously, with the Aitutu Formation continuing locally into the Lower Jurassic. The Aitutu Formation consists of deep shelf limestones interbedded with shales and marls, while the Babulu Formation is a deltaic to turbiditic siliciclastic succession. The Late Triassic to Jurassic Wai Luli Formation is characterised by marine shales and marls.Informal stratigraphic units include the Cephalopod Limestone Facies, a Rosso Ammonitico-type deposit, which contains an extremely rich fossil fauna (particularly ammonoids) and ranges through the entire Triassic; and the Fatu Limestone and Pualaca Facies which consists of shallow to marginal marine carbonates (mud mounds, oolitic limestones and reefs) restricted to the Late Triassic. Facies diversity was low during the Early Triassic and Anisian, but became more pronounced from the Ladinian and continuing through the Late Triassic, probably as a consequence of renewed tectonic extension. Triassic extension was not associated with major volcanism, unlike a previous phase of extension in the Early Permian.The Cablac Limestone Formation, originally defined as a Miocene stratigraphic element, is now recognised to be at least partly Late Triassic–Early Jurassic in age, with lithologies comparable to parts of the Fatu Limestone. The stratigraphy of these shallow marine carbonate sequences is clearly in need of rigorous revision, but it is not yet possible to suggest appropriate redefined formations.  相似文献   

4.
Similar lithological and tectonic features indicate that Timor and Sulawesi islands were part of the same continental block. Timor was in the southern part of Sulawesi, then separated during Late Miocene time during the opening of the South Banda Sea basin. At this time Timor evolved as a part of an Upper Miocene volcanic arc that collided the Australian plate at the end of the Lower Pliocene (3.5 Ma). To cite this article: M. Villeneuve et al., C. R. Geoscience 336 (2004).  相似文献   

5.
The Malatya Basin is situated on the southern Taurus-Anatolian Platform. The southern part of the basin contains a sedimentary sequence which can be divided into four main units, each separated by an unconformity. From base to top, these are: (1) Permo-Carboniferous; (2) Upper Cretaceous–Lower Paleocene, (3) Middle-Upper Eocene and (4) Upper Miocene. The Upper Cretaceous–Tertiary sedimentary sequence resting on basement rocks is up to 700 m thick.The Permo-Carboniferous basement consist of dolomites and recrystallized limestones. The Upper Cretaceous–Lower Paleocene transgressive–regressive sequence shows a transition from terrestrial environments, via lagoonal to shallow-marine limestones to deep marine turbiditic sediments, followed upwards by shallow marine cherty limestones. The marine sediments contain planktic and benthic foraminifers indicating an upper Campanian, Maastrichtian and Danian age. The Middle-Upper Eocene is a transgressive–regressive sequence represented by terrestrial and lagoonal clastics, shallow-marine limestones and deep marine turbidites. The planktic and benthic foraminifers in the marine sediments indicate a Middle-Upper Eocene age. The upper Miocene sequence consists of a reddish-brown conglomerate–sandstone–mudstone alternation of alluvial and fluvial facies.During Late Cretaceous–Early Paleocene times, the Gündüzbey Group was deposited in the southern part of a fore-arc basin, simultaneously with volcanics belonging to the Yüksekova Group. During Middle-Late Eocene times, the Yeşilyurt Group was deposited in the northern part of the Maden Basin and the Helete volcanic arc. The Middle-Upper Eocene Malatya Basin was formed due to block faulting at the beginning of the Middle Eocene time. During the Late Paleocene–Early Eocene, and at the end of the Eocene, the study areas became continental due to the southward advance of nappe structures.The rock sequences in the southern part of the Malatya Basin may be divided into four tectonic units, from base to top: the lower allochthon, the upper allochthon, the parautochthon and autochthonous rock units.  相似文献   

6.
It is proposed that the Bentong–Raub Suture Zone represents a segment of the main Devonian to Middle Triassic Palaeo-Tethys ocean, and forms the boundary between the Gondwana-derived Sibumasu and Indochina terranes. Palaeo-Tethyan oceanic ribbon-bedded cherts preserved in the suture zone range in age from Middle Devonian to Middle Permian, and mélange includes chert and limestone clasts that range in age from Lower Carboniferous to Lower Permian. This indicates that the Palaeo-Tethys opened in the Devonian, when Indochina and other Chinese blocks separated from Gondwana, and closed in the Late Triassic (Peninsular Malaysia segment). The suture zone is the result of northwards subduction of the Palaeo-Tethys ocean beneath Indochina in the Late Palaeozoic and the Triassic collision of the Sibumasu terrane with, and the underthrusting of, Indochina. Tectonostratigraphic, palaeobiogeographic and palaeomagnetic data indicate that the Sibumasu Terrane separated from Gondwana in the late Sakmarian, and then drifted rapidly northwards during the Permian–Triassic. During the Permian subduction phase, the East Malaya volcano-plutonic arc, with I-Type granitoids and intermediate to acidic volcanism, was developed on the margin of Indochina. The main structural discontinuity in Peninsular Malaysia occurs between Palaeozoic and Triassic rocks, and orogenic deformation appears to have been initiated in the Upper Permian to Lower Triassic, when Sibumasu began to collide with Indochina. During the Early to Middle Triassic, A-Type subduction and crustal thickening generated the Main Range syn- to post-orogenic granites, which were emplaced in the Late Triassic–Early Jurassic. A foredeep basin developed on the depressed margin of Sibumasu in front of the uplifted accretionary complex in which the Semanggol “Formation” rocks accumulated. The suture zone is covered by a latest Triassic, Jurassic and Cretaceous, mainly continental, red bed overlap sequence.  相似文献   

7.
The metamorphic rocks of Timor are reinterpreted in the light of reconnaissance mapping of the whole island. All metamorphic rocks that crop out in Timor are allochthonous. Several metamorphic massifs are reported for the first time, the outline of others is revised. On the basis of their grade, three distinct groups can be mapped: lustrous slate, amphibolite-serpentinite, and a granulite-amphibolite-greenschist complex. Each group has distinctive structural relations to other allochthonous elements. The granulite facies meta-anorthosite in Timor must have originated near the boundary between the continental mantle and the crust. These and related high-grade metamorphic rocks may represent slices of an ancient Asian continental basement. These rocks imply that the history of the Mesozoic-Cinozoic fold belt of the Outer Banda Arc extends into the Precambrian Era. The metamorphic rocks of Seram appear to be remarkably similar to those of Timor in grade, distribution and structural relations. The overthrust directions of the metamorphic rocks in Timor is southwards, in Seram it is northwards. As the islands are separated by the 4–5 km deep Banda Sea, these directly opposite thrusts may be explained in terms of the Banda Arc acquiring its sinuosity after the emplacement of the metamorphic rocks.  相似文献   

8.
山西柳林成家庄剖面太原组发育7层灰岩,从下到上依次为半沟灰岩、吴家峪灰岩、庙沟灰岩、下毛儿沟灰岩、上毛儿沟灰岩、斜道灰岩和东大窑灰岩。通过详细的野外观测和室内镜下薄片研究,确定了各层灰岩的沉积相类型,恢复了当时的沉积环境和各层灰岩沉积时相对水体深度的变化。其中庙沟灰岩属中缓坡相沉积,吴家峪灰岩、下毛儿沟灰岩、上毛儿沟灰岩、斜道灰岩和东大窑灰岩均属浅缓坡相沉积,半沟灰岩属后缓坡相沉积。7层灰岩的相对水体深度关系为:庙沟灰岩>斜道灰岩>东大窑灰岩>下毛儿沟灰岩>上毛儿沟灰岩>吴家峪灰岩>半沟灰岩。在太原组内识别出6次沉积间断、7次小型沉积旋回,总体构成2次明显的相对海平面升降旋回。  相似文献   

9.
This work presents the first integral characteristic of the VirgulinellaBed corresponding to the middle part of the Oligocene–Lower Miocene Maikop Group throughout its entire distribution area in the central part of the Eastern Paratethys. It considers lithology, structure, faunal assemblages, and formation settings of carbonate layers with Virgulinellaremains (VirgunellaBed) at the base of the Upper Oligocene clayey sequence that represents the well-expressed marker horizon. It deposited during a brief specific episode in the Oligocene basin development, some features of which remain still unclear.  相似文献   

10.
Recently it has been argued that the structure of the island of Timor can be interpreted without invoking the concept of major overthrust‐faulting. Using evidence from the Maubisse area of eastern Timor, Grady (1975) has suggested that the relationship between contiguous rock units in that area may be interpreted either as an unconformity or as steeply dipping fault‐planes. In the present account interpretations of the structure of Timor are reviewed and the concept of overthrusting is reconsidered. It is concluded that the structure may only be interpreted in terms of a series of overlapping thrust slices resting on folded sediments of the Australian continental shelf. The lowest thrust sheet, the Kolbano thrust sheet is composed of internally deformed deep‐water calcilutites. It is followed to the north by the Lolotoi thrust sheet, made up of a complex group of crystalline rocks varying from granulite to slate, together with unmetamorphosed ophiolites, clastic sediments, and massive Miocene limestones. Overlying this group to the north is the Maubisse‐Aileu thrust sheet composed of Permian crinoidal limestones and volcanics in the south, passing northwards into shales and sandstones. Within this unit there is also a marked increase in deformation and metamorphism from south to north. Slates in the south pass into mica schists, psammites, marbles, and hornblende schists of the amphibolite facies on the north coast of eastern Timor near Manatutu. A further thrust‐slice composed of ophiolites rests on this thrust unit on the north coast of western Timor between Wini and Atapupu.

The composition, structural state, and metamorphic grade of the rocks composing each of these thrust slices is described. The detailed relationships of the thrust units, including those of the Maubisse area, in the neighbourhood of the thrust planes is reconsidered. The case for the concept of major overthrusting is restated, both from regional considerations and from new evidence obtained during recent field mapping. This interpretation is placed in the context of a collision between the Australian continental margin and a detached portion of the Asiatic continental margin during the Cainozoic Era.  相似文献   

11.
长江三峡东部地区震旦纪事件沉积?   总被引:1,自引:0,他引:1       下载免费PDF全文
长江三峡东部地区震旦纪先后发生了热事件、冷事件、重力事件等突发性灾变沉积。早震旦世发育由河流作用与陆地冰川作用形成的陆源碎屑沉积;晚震旦世则发育由两次台地-盆地-台地的海进-海退旋回形成的巨厚海相碳酸盐沉积。热事件沉积产物见于下震旦统莲沱组,夹于河流相沉积的砂岩及粉砂岩中。根据凝灰碎屑的岩石学特征,可将其分为降落型凝灰碎屑和水携型凝灰碎屑两类。冷事件沉积产物为下震旦统南沱冰碛层,属低纬度低高程的大陆冰川沉积。重力事件可分为滑塌事件和浊流事件,其沉积产物均分布于上震旦统,夹在大套的深水碳酸盐岩中。其中滑塌事件的沉积产物主要为滑塌角砾白云岩(石灰岩),浊流事件的沉积产物主要为浊积颗粒石灰岩(白云岩)。  相似文献   

12.
The microfacies assemblages and their distribution within the Middle Devonian Timor Limestone, exposed in the Timor Valley of northeastern New South Wales, Australia are described, and a depositional model for the carbonate buildup presented.Two broad lithological divisions are clearly recognizable within this thick (345 m) but lensoidal mass. Lime wackestones/packstones dominate the lower 200–215 m of the buildup while lime grainstones characterize the upper 130 m. Using cluster-sorting techniques on 697 modally analysed limestone samples, five microfacies and several subgroups each characterized by a unique combination of allochems have been recognized within this gross subdivision.The microfacies data and field observations suggest that carbonate sedimentation was initiated in an open marine shelf environment. It began simply because local conditions were favourable for calcareous organisms to become established. The benthos flourished ultimately spreading out over an area of 25 km2. Although reefal in outline, the limestone is a bedded deposit containing chiefly comminuted skeletal debris and never had the ecologic potential to form a wave-resistant mass.Lime mud sedimentation began in a sublittoral environment. Abundant calcareous algae throughout most of the lower two-thirds of the buildup suggest that deposition occurred within the photic zone. In succeeding horizons, pellet and intraclast lime grainstones gradually replace the lime mud dominated microfacies, indicating that carbonate deposition slowly outpaced basin subsidence and shoal-water conditions developed over the buildup. During the buildup's final stage, a transgression occurred resulting in quieter marine conditions and the deposition of coral lime wackestones in the former shoal area.Carbonate sedimentation was terminated by an extensive marine tuff killing the calcareous benthos. No further extensive carbonate sedimentation during the Middle Devonian is recorded in the Timor Valley.  相似文献   

13.
The anomalous updomed morphological expression of Sumba island, its enigmatic lack of strong Neogene deformation and the northward morphological indentation of southern Sumbawa and Flores require explanation.The stratigraphy of Sumba may be correlated with the Cretaceous to Miocene part of the Timor allochthon. The sedimentary and eruptive rock succession in Sumba shows remarkable similarities with the allochthonous Palelo, Wiluba and Cablac deposits of Timor. In both islands the Cretaceous parts of these sequences are regarded as characteristic of fore-arc deposits built on thin continental crust.The Timor nappe is interpreted as a 5 km thick tectonic flake of the Banda fore-arc thrust onto the Australian continental margin in the mid-Pliocene collision. The postulated Sumba nappe has not yet been thrust onto the Australian margin which, in the Sumba region, has not yet converged as close to the arc as in the Timor area. The postulated Sumba nappe is interpreted as a diapiric elongated dome of the Sunda fore-arc that is being squeezed by the converging margin of Australia against the volcanic islands of Sumbawa and Flores.The absence of indications on the seismic reflection profiles for the presence of the thrust fault of the Sumba nappe may perhaps be explained by the thrusts being nearly horizontal within flat-lying strata.The Savu thrust is correlated with the probably older (pre-Late Pliocene) Wetar Suture as a major southward dipping lithospheric rupture. East of 124°E, this suture does not seem to have moved much since the mid-Pliocene collision that emplaced the nappes on Timor. However, microearthquake data suggest some activity is continuing.  相似文献   

14.
A spinel lherzolite body outcrops as a fault block on the north coast of East Timor. The most common rock‐type in this body is a clinopyroxene‐poor lherzolite, but there are smaller proportions of clinopyroxene‐rich lherzolite and harzburgite. The dominant mineral assemblage is olivine, orthopyroxene, clinopyroxene, spinel and calcic amphibole. Low‐temperature hydrous minerals are restricted in distribution.

The chemical composition of the peridotite is closely similar to mantle‐derived spinel lherzolite nodules and some alpine peridotites. The internal variation of the peridotite suggests variable depletion by some combination of partial melting and liquid contamination of the residua, in a CO2‐rich system at 10–15 kb (1000–1500 MPa).

Three solid‐state events are indicated by geothermometry. The earliest event is recorded by coarse exsolution lamellae of orthopyroxene in clinopyroxene porphyro‐clasts. These grains formed at 1250°C. A later granoblastic texture equilibrated at 1100°C, and finally the rocks were mylonitised at 800–1000°C and 8–20 kb (800–2000 MPa).

The peridotite is probably a sample of the oceanic mantle trapped between the Java Trench and the Inner Banda Arc. Its emplacement on Timor is not related to obduction, but may be due to transcurrent faulting between the Asian and Australian plates.  相似文献   

15.
Mud volcanism is a natural phenomenon well-known for on-shore and off-shore environments. Its major driving forces are deeply seated fluid accumulations and lithology and tectonism favorable for creating overpressure within deep strata with subsequent breakthrough of solid, liquid, and gaseous products of mud volcanism towards a ground surface. The mud breccia clasts provide information about the sedimentary section (up to several kilometers thick) through which the mud volcano erupted. Geochemical investigation of mud breccia clasts with characteristics of source rocks can help in understanding the petroleum potential of entire basin prior to expensive offshore exploration drilling. This is an especially important and useful method for initial estimation of petroleum potential of deep continental margin basins. The method of geochemical investigation of organic matter in the mud breccia clasts allowed to identify the Miocene and Upper Cretaceous clayey and carbonate deposits in the sedimentary sequence in the deep part of the Gulf of Cadiz as having the highest petroleum potential.  相似文献   

16.
The results from a recent North—South gravity traverse across eastern Timor show that the Bouguer gravity field is characterized by a strong, 6 mGal/km, gradient on the north coast. This gradient appears to be a fundamental feature of Timor and of the Outer Banda Arc. Preliminary computer models suggest that, to a first approximation, the gradient is due to a vertical fault at the north coast of Timor separating oceanic crust from continental crust. The fit between the computed and observed gradient can be improved significantly by assuming a northward-dipping lithospheric slab, north of Timor. The model further indicates that the Australian continental crust extends at least as far as the north coast of Timor.  相似文献   

17.
More than 1400 km of two-dimensional seismic data were used to understand the geometries and structural evolution along the western margin of the Girardot Basin in the Upper Magdalena Valley. Horizons are calibrated against 50 wells and surface geological data (450 km of traverses). At the surface, low-angle dipping Miocene strata cover the central and eastern margins. The western margin is dominated by a series of en echelon synclines that expose Cretaceous–Oligocene strata. Most synclines are NNE–NE trending, whereas bounding thrusts are mainly NS oriented. Syncline margins are associated mostly with west-verging fold belts. These thrusts started deformation as early as the Eocene but were moderately to strongly reactivated during the Andean phase. The Girardot Basin fill records at least four stratigraphic sequences limited by unconformities. Several periods of structural deformation and uplifting and subsidence have affected the area. An early Tertiary deformation event is truncated by an Eocene unconformity along the western margin of the Girardot Basin. An Early Oligocene–Early Miocene folding and faulting event underlies the Miocene unconformity along the northern and eastern margin of the Girardot Basin. Finally, the Late Miocene–Pliocene Andean deformation folds and erodes the strata along the margins of the basin against the Central and Eastern Cordilleras.  相似文献   

18.
The Hili Manu peridotite occupies a key position at the outer limit of continental crust on the north coast of East Timor. Most models for the tectonic evolution of the Outer Banda Arc interpret peridotite bodies on Timor, such as Hili Manu, as fragments of young oceanic lithosphere from the Banda Arc (upper plate). However, recent workers have used major-element geochemistry to argue that the peridotite bodies on Timor were derived from the Australian subcontinental lithosphere. Our major, trace and isotopic geochemical study of the Hili Manu peridotite body supports a supra-subduction origin from either a forearc or backarc position for the Hili Manu peridotite. In particular, the wide range in Nd and Sr isotopic compositions, overlapping that of arc volcanics from the Sunda – Banda Island arc, and highly fractionated Nb/Ta values indicate a supra-subduction setting. As there is no evidence for subduction beneath the rifted Australian continental margin, it is unlikely that the Hili Manu peridotite is Australian subcontinental lithosphere. This result, along with the clear supra-subduction setting of the Ocuzzi peridotite and associated volcanics in West Timor, gives support to the interpretation that the Miocene collision between the Banda Arc and the Australian continental margin has produced widespread ‘Cordilleran’-style ophiolites on Timor.  相似文献   

19.
This study analyses and discusses well preserved examples of Late Jurassic structures in the Northern Calcareous Alps, located at the Loferer Alm, about 35 km southwest of Salzburg. A detailed sedimentary and structural study of the area was carried out for a better understanding of the local Late Jurassic evolution. The Grubhörndl and Schwarzenbergklamm breccias are chaotic, coarse-grained and locally sourced breccias with mountain-sized and hotel-sized clasts, respectively. Both breccias belong to one single body of breccias, the Grubhörndl breccia representing its more proximal and the Schwarzenbergklamm breccia its more distal part, respectively. Breccia deposition occurred during the time of deposition of the Ruhpolding Radiolarite since the Schwarzenbergklamm breccia is underlain and overlain by these radiolarites. Formation of the breccias was related to a major, presumably north-south trending normal fault scarp. It was accompanied and post-dated by west-directed gravitational sliding of the Upper Triassic limestone (“Oberrhätkalk”), which was extended by about 6% on top of a glide plane in underlying marls. The breccia and slide-related structures are sealed and blanketed by Upper Jurassic and Lower Cretaceous sediments. The normal fault scarp, along which the breccia formed, was probably part of a pull-apart basin associated with strike slip movements. On a regional scale, however, we consider this Late Jurassic strike-slip activity in the western part of the Northern Calcareous Alps to be synchronous with gravitational emplacement of “exotic” slides and breccias (Hallstatt mélange), triggered by Late Jurassic shortening in the eastern part of the Northern Calcareous Alps. Hence, two competing processes affected one and the same continental margin.  相似文献   

20.
Based on investigation of more than 170 samples taken from natural outcrops of the Maikop Formation (Oligocene–Lower Miocene) in eastern Azerbaijan, the genetic hydrocarbon potential and the organic matter (OM) maturity of these rocks were estimated. In the study region, sedimentary rocks of this formation were deposited under reductive or weakly oxidative conditions. Possessing a relatively high (1.9%, on the average) content of organic matter of a mixed (continental–marine) OM, these rocks are able to generate both liquid and gaseous hydrocarbons under favorable conditions. Contributions of both the continental and marine components to the total organic carbon (TOC) varied in time and space. The upper and lower subformations of the Maikop Formation differ in the qualitative and quantitative compositions of OM. Oligocene rocks have a relatively lower OM content and are characterized by better oil-generating properties, as compared to lower Miocene rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号