首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this paper, we study the use of virtual element method (VEM) for geomechanics. Our emphasis is on applications to reservoir simulations. The physical processes behind the formation of the reservoirs, such as sedimentation, erosion, and faulting, lead to complex geometrical structures. A minimal representation, with respect to the physical parameters of the system, then naturally leads to general polyhedral grids. Numerical methods which can directly handle this representation will be highly favorable, in particular in the setting of advanced work-flows. The virtual element method is a promising candidate to solve the linear elasticity equations on such models. In this paper, we investigate some of the limits of the VEM method when used on reservoir models. First, we demonstrate that care must be taken to make the method robust for highly elongated cells, which is common in these applications, and show the importance of calculating forces in terms of traction on the boundary of the elements for elongated distorted cells. Second, we study the effect of triangulations on the surfaces of curved faces, which also naturally occur in subsurface models. We also demonstrate how a more stable stabilization term for reservoir application can be derived.  相似文献   

2.
We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.  相似文献   

3.
Accurate geological modelling of features such as faults, fractures or erosion requires grids that are flexible with respect to geometry. Such grids generally contain polyhedral cells and complex grid-cell connectivities. The grid representation for polyhedral grids in turn affects the efficient implementation of numerical methods for subsurface flow simulations. It is well known that conventional two-point flux-approximation methods are only consistent for K-orthogonal grids and will, therefore, not converge in the general case. In recent years, there has been significant research into consistent and convergent methods, including mixed, multipoint and mimetic discretisation methods. Likewise, the so-called multiscale methods based upon hierarchically coarsened grids have received a lot of attention. The paper does not propose novel mathematical methods but instead presents an open-source Matlab? toolkit that can be used as an efficient test platform for (new) discretisation and solution methods in reservoir simulation. The aim of the toolkit is to support reproducible research and simplify the development, verification and validation and testing and comparison of new discretisation and solution methods on general unstructured grids, including in particular corner point and 2.5D PEBI grids. The toolkit consists of a set of data structures and routines for creating, manipulating and visualising petrophysical data, fluid models and (unstructured) grids, including support for industry standard input formats, as well as routines for computing single and multiphase (incompressible) flow. We review key features of the toolkit and discuss a generic mimetic formulation that includes many known discretisation methods, including both the standard two-point method as well as consistent and convergent multipoint and mimetic methods. Apart from the core routines and data structures, the toolkit contains add-on modules that implement more advanced solvers and functionality. Herein, we show examples of multiscale methods and adjoint methods for use in optimisation of rates and placement of wells.  相似文献   

4.
为了充分发挥FLAC3D在数值计算方面的优势,解决在复杂地质体条件下岩体工程开挖存在的计算模型构建难度大、多采用简化模型而影响计算结果可靠性及准确性的问题。提出采用三维表面模型重建方法建立地质体及岩体工程的表面模型,确定岩层、开挖等的封闭空间区域;在此基础上,通过约束德洛内四面体剖分的方法对三维表面模型形成的空间区域进行网格剖分。分析了网格生成器TetGen的输入、输出数据结构,确定表面模型数据至TetGen、TetGen网格划分结果至FLAC3D的对应关系,实现能够准确描述地质体与工程开挖的FLAC3D计算模型的构建。通过某大型深部开采铜矿的多个岩层和首采区3个盘区63个采场的模型构建实例,证明该方法简单、可行、有效并且健壮。  相似文献   

5.
张壹  张双喜  梁青  陈超 《地球科学》2015,40(3):431-440
以3种前人所提出的重磁边界识别方法与笔者提出的归一化偏差法作为技术手段(其中归一化偏差法对于数据噪声有着较好的抵抗力)能够较为准确全面地识别边界位置.在分析对比方法原理及应用特性的基础上,通过理论模型试验证明了方法的可靠性和实用性;并针对断裂和地质体边界深部倾向问题,开展了多方法联合及多尺度识别手段试验,获取了更多地质构造及边界的信息.通过将该技术应用于克拉玛依后山地区实际资料的处理解释之中,获得了研究区域内剖面与平面上的断裂和岩体的位置分布及它们的深部倾向信息,并对主要断裂与岩体三维空间特征进行了描述,为该地区三维地质填图和三维地质模型构建提供了重要依据.   相似文献   

6.
Improved and enhanced oil recovery methods require sophisticated simulation tools to predict the injected flow pass together with the chemical reactions inside it. One approach is application of higher-order numerical schemes to avoid excessive numerical diffusion that is very typical for transport processes. In this work, we provide a first step towards higher-order schemes applicable on general polyhedral and corner-point grids typically used in reservoir simulation. We compare three possible approaches of linear reconstruction and slope limiting techniques on a variety of different meshes in two and three spatial dimensions and discuss advantages and disadvantages.  相似文献   

7.
Towards Stochastic Time-Varying Geological Modeling   总被引:3,自引:1,他引:2  
The modeling of subsurface geometry and properties is a key element to understand Earth processes and manage natural hazards and resources. In this paper, we suggest this field should evolve beyond pure data fitting approaches by integrating geological concepts to constrain interpretations or test their consistency. This process necessarily calls for adding the time dimension to 3D modeling, both at the geological and human time scales. Also, instead of striving for one single best model, it is appropriate to generate several possible subsurface models in order to convey a quantitative sense of uncertainty. Depending on the modeling objective (e.g., quantification of natural resources, production forecast), this population of models can be ranked. Inverse theory then provides a framework to validate (or rather invalidate) models which are not compatible with certain types of observations. We review recent methods to better achieve both stochastic and time-varying geomodeling and advocate that the application of inversion should rely not only on random field models, but also on geological concepts and parameters.  相似文献   

8.
多波地震勘探技术能够同时获得纵波和转换波资料,与常规的纵波勘探相比,能够提供更多的地下介质信息。且转换波对于埋深较浅的小断层、小幅度构造有更高的分辨率,充分利用多分量地震资料可以有效的提高地震勘探的精度。本文将多波地震技术引入到陆域冻土区天然气水合物勘探中,对陆域冻土区水合物进行多波地震数值模拟研究。采用弹性波有限差分方法进行多分量正演模拟,利用仿射坐标转换法将原始的多分量地震数据进行纵横波叠前分离,并通过多波高斯束偏移方法分别对波场分离后的PP波和转换PS波进行叠前深度偏移成像。根据我国祁连山冻土区水合物实际地震地质资料,建立逼近真实地质情况的天然气水合物数值模型。对上述水合物模型进行多波地震数值试算表明,多波地震勘探技术是一种有效的陆域冻土区水合物探测方法,充分利用多波地震资料有利于查明陆域冻土区水合物精细的地质构造,取得更好的勘探效果。  相似文献   

9.
Although a number of methods for calculating dynamic pseudo-functions have been developed over the years, there is still a lack of understanding as to why a certain method will succeed in some cases but fail in others. In this paper, we describe the results of an assessment of several upscaling methods, namely the Kyte and Berry (KB) method, the Stone method, the Hewett and Archer (HA) method and the Transmissibility-Weighted (TW) method. We have analyzed the equations for deriving the methods and investigated the results of numerical simulations of gas displacing oil, in a variety of models to enable us to gain new insights into these, and related, upscaling methods. In particular, some novel observations on methods based on fluid potential are presented and the issue of using predicted fluid mobilities as a criterion of accuracy of an upscaling method is clarified.  相似文献   

10.
Contaminant transport modelling in environmental engineering is generally conducted to evaluate the potential impact of contaminant migration on the subsurface environment or for interpreting tracer tests or groundwater quality data. In the past few decades a number of mathematical models have been established for evaluating the migration of pollution as indicated in the literature. This paper presents a comparison between a number of analytical and numerical models in evaluating pollution transport in soils. Three analytical models and a finite element model developed in this research are used for comparing four numerical examples under different conditions. Four cases of advection dominated problem with line source boundary, advection dominated problem with semi-line source boundary, advection–dispersion–sorption problem with line source boundary and advection–dispersion–sorption problem with semi-line source are considered. Based on the results the best analytical model that has a higher accuracy is recommended for practical applications.  相似文献   

11.
针对我国西部黄土地区特殊的地形地貌、近地表条件和地下浅层目标体,开展了路基下伏地质缺陷地震探测技术的应用研究。为检验不同地震方法的探测能力,设计了一个综合地质地球物理模型,包含凹陷、断层、地裂缝、地下低速体、软弱夹层及滑坡等典型地质缺陷,利用有限差分波场模拟,计算出多分量反射地震记录和面波地震记录,分别进行了反射波成像和高阶面波反演横波速度成像。数值模拟结果表明,反射波成像和高阶面波反演横波速度成像技术对真实模型中的凹陷、断层、浅层低速体、软弱夹层及滑坡等主要地质缺陷均能清晰成像,验证了地震方法探测路基下伏地质缺陷的可行性。数值计算结果表明,不同的地球物理探测方法对地质缺陷的探测效果和适用范围不同。  相似文献   

12.
We consider conjunctive surface-subsurface flow modeling, where surface water flow is described by the shallow water equations and ground water flow by Richards’ equation for the vadose zone. Coupling between the models is based on the continuity of flux and water pressure. Numerical approximation of the coupled model using the framework of discontinuous Galerkin (DG) methods is formulated. In the subsurface, the local discontinuous Galerkin (LDG) method is used to approximate ground water velocity and hydraulic head; a DG method is also used to approximate surface water velocity and elevation. This approach allows for a weak coupling of the models and the use of different approximating spaces and/or meshes within each regime. A simplified LDG method based on continuous approximations to water head is also described. Numerical results that investigate physical and numerical aspects of surface–subsurface flow modeling are presented. This work was supported by National Science Foundation grant DMS-0411413.  相似文献   

13.
Electrical Resistivity Tomography is a versatile, fast and cost effective technique for mapping the shallow subsurface anomaly. It covers a wide spectrum of resistivity ranging from <1 Ohm.m to several thousands of Ohm.m. In this paper applications and utility of two-dimensional Electrical Resistivity Tomography (ERT) technique are discussed to look into huge data density coverage, different signal strengths of data from subsurface and their implications in resolving the aquifer zones, related geological structures etc. of the substratum ranging from alluvium to tectonically disturbed hard rock ridge region of the country. The major advantages and flexibility of ERT over conventional resistivity methods are also discussed.  相似文献   

14.
Ensemble methods present a practical framework for parameter estimation, performance prediction, and uncertainty quantification in subsurface flow and transport modeling. In particular, the ensemble Kalman filter (EnKF) has received significant attention for its promising performance in calibrating heterogeneous subsurface flow models. Since an ensemble of model realizations is used to compute the statistical moments needed to perform the EnKF updates, large ensemble sizes are needed to provide accurate updates and uncertainty assessment. However, for realistic problems that involve large-scale models with computationally demanding flow simulation runs, the EnKF implementation is limited to small-sized ensembles. As a result, spurious numerical correlations can develop and lead to inaccurate EnKF updates, which tend to underestimate or even eliminate the ensemble spread. Ad hoc practical remedies, such as localization, local analysis, and covariance inflation schemes, have been developed and applied to reduce the effect of sampling errors due to small ensemble sizes. In this paper, a fast linear approximate forecast method is proposed as an alternative approach to enable the use of large ensemble sizes in operational settings to obtain more improved sample statistics and EnKF updates. The proposed method first clusters a large number of initial geologic model realizations into a small number of groups. A representative member from each group is used to run a full forward flow simulation. The flow predictions for the remaining realizations in each group are approximated by a linearization around the full simulation results of the representative model (centroid) of the respective cluster. The linearization can be performed using either adjoint-based or ensemble-based gradients. Results from several numerical experiments with two-phase and three-phase flow systems in this paper suggest that the proposed method can be applied to improve the EnKF performance in large-scale problems where the number of full simulation is constrained.  相似文献   

15.
16.
The study of surface waves (Rayleigh wave) finds their virtuous applications in a numerous geological and geophysical fields including water, oil, gas, and other subsurface geological probing and exploration. The present paper efforts to investigate the influence of initial stress, Earth magnetism, and gravity on propagation of Rayleigh waves. Considered model is consist of a liquid layer lying over a magnetoelastic orthotropic half-space under self-weight and initial stress. Method of separation of variable is used to solve the equation of motion. Solutions of governing equations are obtained in terms of displacement. Frequency relation for Rayleigh wave has been obtained and matched with classical Rayleigh wave equation. In addition to classical case, some existing results have been deduced as particular case of the present study. Obtained results have been shown through numerical illustrations. It is found that the considered parameters (initial stress, Earth magnetism, and gravity) have prominent effect on phase velocity of Rayleigh wave. Graphical representations have been made to exhibit the velocity profile of Rayleigh waves for different cases with the help of MATHEMATICA. The present study may be useful for seismologists and engineers who are concern with applications of wave propagation in magnetoelastic orthotropic medium.  相似文献   

17.
开展地下水数值模拟研究是高放废物处置场地安全评价的重要组成部分,然而深地质处置介质类型的复杂性、基岩深部资料的相对匮乏性导致模拟结果存在不确定性,如何刻画深部地下水动力场并评估可能引起的风险已成为高放废物处置安全评价中重点关注的问题。在大量文献调研的基础上,综述了世界典型国家高放废物深地质处置场地的地下水数值模拟与不确定性分析应用,并归纳总结该领域研究经验,得到以下认识:(1)深地质处置场深部构造、裂隙的发育与展布决定了地下水循环条件,探究适用于基岩裂隙地区新的水文地质试验方法是提高地下水数值模型仿真性的基础;(2)不同尺度模型融合是解决深地质处置地下水模拟的有效技术方法,区域尺度多采用等效连续介质法,场地尺度使用等效连续多孔介质和离散裂隙网络耦合模型,处置库尺度使用离散裂隙网络方法,其次需重点关注未来大时间尺度下放射性核素在地质体中的迁移转化规律,模拟预测场址区域地下水环境长期循环演变对核素迁移的潜在影响;(3)考虑到不同的处置层主岩岩性以及在多介质中发生的THMC(温度场—渗流场—应力场—化学场)过程,目前国内外常用的地下水模拟软件有:Porflow、Modflow、GMS及MT3DMS等用于模拟孔隙或等效连续介质,Connectflow、Feflow及FracMan等用于模拟地下水和核素在结晶岩、花岗岩等裂隙中的迁移,TOUGH系列软件主要应用于双重介质的水流、溶质及热运移模拟;(4)指导开展有针对性的模型和参数的不确定性分析工作,减少投入工作量,提高模型精度,并可针对处置库长期演变、废物罐失效、极端降雨等多情景预测模拟,为处置库安全评价及设计提供基础数据支撑;(5)针对我国深地质处置地下水数值模拟研究现状,下一步应加强区域地质、水文地质、裂隙测量以及现场试验等相关的调查及监测工作,多介质耦合、多场耦合模拟及不确定性分析研究将会是未来的研究重点。  相似文献   

18.
为了防止核废料及有毒化学废料进入生物圈污染人类所赖以生存的环境,自从70年代末以来,对核废料和有毒化学废料的地质处理发生了很大的兴趣。文中讨论了几种有关的溶质运移模型。并指出这些模型应用于实际野外问题时的主要困难在于各种参数的现场测定。同时,文中也指出了在这个领域中的数学模型技术和野外测试技术正在迅速发展之中,本文讨论的范围仅限于多孔介质及等价多孔介质中的溶质运移问题。  相似文献   

19.
Geophysical methods have been applied to a wide range of hydrogeological problems. With improvement in geophysical inversion algorithms and measurement tools, significant achievements have been made in the characterization of subsurface architecture, time-lapse monitoring of hydrogeological process and contaminant plumes delineation. In this paper, we summarize the geophysical methods that are most widely used in hydrogeology including Electrical Resistivity Tomography (ERT), Induced Polarization (IP), Ground Penetrating Radar (GPR) and Electromagnetic Induction (EMI). Three examples including lab and field works are used to demonstrate current application of geophysical methods for characterizing subsurface architecture and contaminant plumes. Though great progress has been made in hydrogeohysics over the last few decades at home and abroad, challenges still remain in practical applications. More recently, hydrogeophysics continues to develop in the areas of establishment of hydrogeophysical models, large-scale architecture characterization, uncertainty analysis, biogeochemical process monitoring and ecosystem science.  相似文献   

20.
The subsurface data are a basic requirement for the set up of hydrogeological framework. Geographic information systems (GIS) tools have proved their usefulness in hydrogeology over the years which allow for management, synthesis, and analysis of a great variety of subsurface data. However, standard multi-layered systems are quite limited for modeling, visualizing, and editing subsurface data and geologic objects and their attributes. This paper presents a methodology to support the implementation of hydrogeological framework of the multi-layered aquifer system in Nabeul–Hammamet (NH) coastal region (NE, Tunisia). The methodology consists of (1) the development of a complete and generally accepted hydrogeological classification system for NH aquifer system (2) the development of relational databases and subsequent GIS-based on geological, geophysical and hydrogeological data, and (3) the development of meaningful three-dimensional geological and aquifer models, using GIS subsurface software, RockWorks 2002. The generated 3-D geological models define the lithostratigraphy and the geometry of each depositional formation of the region and delineate major aquifers and aquitards. Where results of the lithologic model revealed that there is a wide range of hydraulic conductivities in the modeled area, which vary spatially and control the groundwater flow regime. As well, 17 texturally distinct stratigraphic units were identified and visualized in the stratigraphic model, while the developed aquifer model indicates that the NH aquifer system is composed of multi-reservoir aquifers subdivided in aquifers units and separated by sandy clay aquitards. Finally, this study provides information on the storing, management and modeling of subsurface spatial database. GIS has become a useful tool for hydrogeological conceptualization and groundwater management purposes and will provide necessary input databases within different groundwater numerical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号