首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kachchh possesses a fault-controlled first-order topography and several geomorphic features indicative of active tectonics. Though coseismic neotectonic activity is believed to be the major factor in the evolution of the landscape, detailed documentation and analysis of vital landscape features like drainage characteristics, bedrock gorges and terraces are lacking. The present study is a site-specific documentation of gorges developed in the central part of the mainland Kachchh. We analyzed and interpreted four gorges occurring on either side of Katrol Hill Fault (KHF). The Khari river gorge is endowed with six levels of bedrock terraces, some of which are studded with large potholes and flutings. Since no active development of potholes is observed along the rivers in the present day hyper-arid conditions, we infer an obvious linkage of gorges to the humid phases, which provided high energy runoff for the formation of gorges and distinct bedrock terraces and associated erosional features. Development of gorges within the miliolites and incision in the fluvial deposits to the south of the KHF indicates that the gorges were formed during Early Holocene. However, ubiquitous occurrence of gorges along the streams to the south of KHF, the uniformly N40‡ E trend of the gorges, their close association with transverse faults and the short length of the exceptionally well developed Khari river gorge in the low-relief rocky plain to the north of KHF suggests an important role of neotectonic movements  相似文献   

2.
赵淼  王欢  徐华  王锡魁 《世界地质》2013,32(2):279-289
南湖-桑家窝堡断层是一条穿越长春市区的北西向隐伏活动断层,该断层对长春地区的地壳稳定性影响较大。利用高分辨率遥感信息解译、探地雷达探测、浅层人工地震勘探和钻孔联合剖面探测等资料,并结合第四纪沉积物的ESR 年龄测定资料,讨论了南湖-桑家窝堡断层的空间展布和运动特征。南湖-桑家窝堡断层沿逯家窝堡、后三家子、南湖公园、长春公园、桑家窝堡、大合隆一线展布,断层产状为45°∠65°,断层线较平直。在断层西北端大合隆一带,南湖-桑家窝堡断层错断了上白垩统嫩江组( K2n) 岩层,并在嫩江组岩层顶部沿断层形成了侵蚀沟谷,但没有错断早更新世和中更新世地层。在断层东南端的逯家窝堡附近,南湖-桑家窝堡断层错断了白垩纪泉头组( Kq) 岩层,但没有错断中更新世和晚更新世地层。南湖-桑家窝堡断层形成于中生代末期,第四纪早期曾经活动,活动方式以左旋走滑运动为主,第四纪中更新世以来断层没有明显的活动迹象。  相似文献   

3.
The central Kutch region of Gujarat, India, experienced a M7.7 earthquake on January 26, 2001, causing large-scale ground deformations including a huge loss of lives and infrastructure. The rupture of a hidden reverse fault was the reason for this intense tectonic activity. The post-seismic ground deformations, attributed to the relaxation phase of a stressed crustal layer, have been analyzed using a pair of Advanced Land Observation Satellite-Phased Array type L-band Synthetic Aperture Radar interferometric synthetic aperture radar (InSAR) images. The InSAR images were obtained in 2007 and 2010, covering an area around Bhuj. It falls on the Kutch Mainland Fault and Katrol Bhuj Fault. Using the ADORE-DORIS software, interferometric imagery has successfully been generated, covering the study area. This allowed making interesting geological inferences. Three different regions in the study area elicited countable visible colored fringes, indicating different amounts of positive and negative ground deformations (surface motion with respect to the satellite). They occurred within the InSAR data acquisition dates. The region around Bhuj and to the north and east of Bhuj showed top surface deformations of about 35, 35, and 24 cm, respectively. The synoptic view of the interferometric image of the study area suggests two crustal fault lines running to the north and south of Bhuj city. The Institute of Seismological Research, geophysical and Global Positioning System data, indicates that huge seismic events occurred during the year 2007–2010 and supports the observational inference of clustering of interferometric fringes to the E and NE of the study area.  相似文献   

4.
The Kachchh region of Western India is a pericratonic basin experiencing periodic high magnitude earthquakes events. In 2001 a catastrophic seismic event occurred at Bhuj measuring Mw = 7.7. The epicenters of both the 1956 and 2001 earthquakes were along the Kachchh Mainland Fault (KMF), proximal to the eastern end of the Northern Hill Range (NHR). The latter is a topographic expression of an active fault related fold on the hanging wall, and is controlled by a south dipping blind thrust.The present study deals with the eastern sector of NHR and uses optical dating to reconstruct the chronology of tectonically caused incisions. Along the backlimb of the NHR, incision ages on, channel fills and valley fill terraces progressively decrease from  12 ka to 4.3 ka. This age progression along with geomorphic evidences (decrease in topographic relief, drainage capture and drainage migration across the fold nose) suggests an active vertical and lateral fold growth along the KMF. Optical ages suggest that during the Late Holocene, the average uplift rate along the eastern NHR was 10 ± 1 mm/a. Recent GPS based estimates on crustal shortening are  12 mm/a.The KMF and the South Wagad Fault (SWF) represent the bounding faults of a transtensional basin that formed during the initial rifting. This basin is termed as the Samakhiali basin. The compressive stresses on account of structural inversion from normal to reverse phase resulted in lobate-shaped anticlines along KMF and SWF zone. These anticlines subsequently coalesced and formed linked and overlap segments. The present study suggests that eastward lateral deformation across the eastern portion of KMF has continued and has now resulted in its interaction with a left step over transfer fault called the South Wagad Master Fault (SWMF). This implies an increasing transpersional deformation of the Samakhiali basin. We therefore, suggest that the eastward NHR ridge propagation along KMF resulted in the thrust faulting on the south dipping SWMF resulting in the Bhuj 2001 event. The increasing strain on this basin may cause enhanced seismicity in the future along the eastern KMF and Wagad region.  相似文献   

5.
Magnetotelluric soundings were obtained along two traverse lines to the north and west of the Century mine in northwest Queensland. The survey was designed to cross the Termite Range Fault, a major structure on the Lawn Hill Platform, and to provide insights into the crustal-scale architecture that may have controlled the location of this world-class zinc deposit. The projected surface trace of the Termite Range Fault is coincident with a major change in resistivity character that extends to a significant depth. A relatively flat-lying, stacked series of resistive/conductive layers occurs on the northeastern side of the fault , while on the southwestern side the resistive/conductive layers are much less evident. The major contrast in resistivity is interpreted as due to a steep northeast-dipping Termite Range Fault that may extend to 20 km depth. To the southwest of the Termite Range Fault, a second major fault, the Riversleigh Lineament, is inferred from geology and gravity data, although there is no corresponding resistivity contrast seen across this fault in the magnetotelluric-derived model. This fault is interpreted as a buried structure, as distinct from the reactivated Termite Range Fault, and the two faults together may have created a wide damage zone (with an associated strike change) in the crust. A regional-scale 3D geological model of the Lawn Hill Platform provides a basis for correlating the resistive/conductive layers with major lithological units in the area. The stacked layers in the 2D resistivity inversion model of the Termite Range Fault hangingwall are reasonably well correlated with lithological units, particularly in the near-surface. A key point is that although similar geological units occur on either side of the Termite Range Fault, the contrasting electrical properties of these units are pronounced and their source is not well constrained; increased carbonaceous material in the Termite Range Fault hangingwall units is implied. In addition, there is a strong gradient in the Bouguer gravity field in the region of the Termite Range Fault and Riversleigh Lineament structures. This gradient provides supporting evidence for a northeast-facing fault structure in the basement and cover architecture. Newly acquired seismic data in the area has yet to be evaluated and compared with the magnetotelluric model. These results demonstrate an important role for magnetotelluric soundings in determining resistivity contrasts relating to the configuration of geological units and the architecture of deep-seated mineralising faults.  相似文献   

6.
Dryland rivers, dominated by short-lived, localised and highly variable flow due to discrete precipitation events, have characteristic preservation potential, which serves as suitable archives towards understanding the climate–tectonic coupling. In the present study, we have investigated the fluvial records of a major, southerly-draining river – the Rukmawati River in the dryland terrain of southern Kachchh, in western India. The sediment records along the bedrock rivers of Kachchh register imprints of the Indian summer monsoon (ISM), which is the major source of moisture to the fluvial system in western India. The Rukmawati River originates from the Katrol Hill Range in the north and flows towards the south, into the Gulf of Kachchh. The field stratigraphy, sedimentology, along with the optical chronology suggests that a braided-meandering system existed during 37 ka period due to an overall strengthened monsoon. A gradual decline in the monsoon strength with fluctuation facilitated the development of a braided channel system between 20 and 15 ka. A renewed phase of strengthened monsoon with seasonality after around 15 ka which persisted until around 11 ka, is implicated in the development of floodplain sequences. Two zones of relatively high bedrock uplift are identified based on the geomorphometry and morphology of the fluvial landform. These zones are located in the vicinity of the North Katrol Hill Fault (NKHF) and South Katrol Hill Fault (SKHF). Geomorphic expression of high bedrock uplift is manifested by the development of beveled bedrock prior to or around 20 ka during weak monsoon. The study suggests that the terrain in the vicinity of NKHF and SKHF is uplifting at around 0.8 and >0.3 mm/a, respectively. Simultaneously, the incision in the Rukmawati River basin, post 11 ka, is ascribed to have occurred due to lowered sea level during the LGM and early Holocene period.  相似文献   

7.
The Term, Lawn, Wide and Doom Supersequences represent tectonically driven, second‐order sedimentary accommodation sequences in the Isa Superbasin. The four supersequences are stacked to form two major depositional wedges or packages extending south from the Murphy Inlier onto the central Lawn Hill Platform. A major intrabasin structure, the Elizabeth Creek Fault Zone separates the two depositional wedges. The Term and Lawn Supersequences each form a thick, crudely fining‐upward sedimentary succession. The basal part of each supersequence comprises sand‐dominated facies, deposited under lowstand conditions. The overlying transgressive deposits comprise thick successions of carbonaceous, shale‐prone sediment that represents times of increased accommodation. Synsedimentary fault activity along the northwest‐trending Termite Range Fault and major northeast‐trending faults including the Elizabeth Creek Fault Zone resulted in overthickened sections of parts of the Term and Lawn Supersequences in regional depocentres. A regional extensional event occurred during Wide Supersequence time, and resulted in strike‐slip deformation, uplift and tilting of fault blocks and erosion of underlying Lawn sequences. This tectonic event created small, fault‐bounded depocentres, where basal silty turbidites of the Wide Supersequence are locally thickened. Denudation of fault blocks in the hinterland provided increasing coarse clastic sediment‐supply forming thick, sand‐dominated, lowstand deposits of the upper Wide Supersequence. Overall, the Wide Supersequence exhibits a coarsening‐upwards facies trend. Tectonic quiescence resulted in the accumulation of siltstone‐dominated transgressive and highstand turbidite deposits in mid‐Wide time. The base of the Doom Supersequence comprises thick, feldspathic, debris‐flow sandstones signalling a new provenance. Decreasing accommodation is reflected by coarsening‐ and shallowing‐upwards facies trends in late Doom time. Declining accommodation and the end of sedimentation in the Isa Superbasin were most likely initiated by deformation at the start of the Isan Orogeny.  相似文献   

8.
On the eastern margin of the Tibetan Plateau, the Anninghe, Zemuhe and Xiaojiang faults comprise a N–S-trending active left-lateral fault system extending more than 700 km. The northernmost Anninghe Fault extends for ∼200 km, consisting of two sub-parallel N–S trending strands. Along the western strand, the fault traces occur almost strictly along the broad and flat Anninghe valley, displacing high terraces, alluvial fans and tributary channels of the Anninghe River. The eastern strand, on the other hand, cuts through the steep mountain slopes, with prominent rectilinear upslope-facing scarps and shutter ridges against pounded fluvial sediments from the east. The displacements along the eastern strand are much larger than that along the western strand, indicating the eastern strand is the major fault absorbing the E–W shortening. This study demonstrates that the Anninghe Fault is now acting as a relief-building boundary fault and absorbing the E–W compression under the eastwards motion of the Tibetan Plateau. Accordingly, the Anninghe region is a topographic transition area from steep relief to low gradient topography. The variation in topographic gradient is consistent with the differing tectonic regime between southern and northern parts of the Tibetan Plateau.  相似文献   

9.
The Mt. Angel Fault is likely one of the most active faults near the Portland metropolitan area, and was probably associated with the 1993 Scotts Mills earthquake. SH-wave seismic techniques used to image the Mt. Angel Fault suggest that the fault offsets late Pleistocene gravel (22 to 34 ka) at several locations. Within the study area, displacement of the late Pleistocene gravel along the strike of the Mt. Angel Fault increases from no obvious displacement on the northwest to approximately 18 m on the southeast. This trend of increasing offset along the strike of the fault is paralleled by topographic and geomorphic trends. A reconnaissance geologic investigation at an anomalous bend in the Pudding River near the projected trace of the Mt. Angel Fault revealed potential tectonic deformation in sediments younger than the late Pleistocene gravel imaged by SH-wave data. The results of this study have contributed to the paleoseismic record of the Mt. Angel Fault, laid the groundwork for future geologic investigations along the Pudding River, and determined potential sites for future paleoseismic trenching investigations.  相似文献   

10.
胶东招平断裂几十年来黄金产量一直位居全国首位,但近十年没有大的找矿成果,其中一个重要原因是多数人认为破头青断裂为招平断裂北段的主干断裂,忽略了对九曲蒋家断裂的找矿。近年来在水旺庄矿区取得深部找矿突破,新增金资源量170余吨。通过水旺庄矿区大量深部钻孔配合地表实测剖面及区域调查研究等手段,系统揭露了控矿断裂深部形迹,揭示了九曲蒋家208断裂与招平断裂的空间关系。按照以往招平断裂尖灭于龙口市颜家沟村的认识分析,尖灭位置距水旺庄矿区直线距离仅1.9km,招平断裂北段的找矿空间已不大。明确了九曲蒋家208断裂为招平断裂北段主干后,招平断裂北段再次展现出巨大的找矿潜力。  相似文献   

11.
The Meuse River crosses the Feldbiss Fault Zone, one of the main border fault zones of the Roer Valley Graben in the southern part of the Netherlands. Uplift of the area south of the Feldbiss Fault Zone forced the Meuse River to incise and, as a result, a flight of terraces was formed. Faults of the Feldbiss Fault Zone have displaced the Middle and Late Pleistocene terrace deposits. In this study, an extensive geomorphological survey was carried out to locate the faults of the Feldbiss Fault Zone and to determine the displacement history of terrace deposits.The Feldbiss Fault Zone is characterized by an average displacement rate of 0.041–0.047 mm a−1 during the Late Pleistocene. Individual faults show an average displacement rate ranging between 0.010 and 0.034 mm a−1. The spatial variation in displacement rates along the individual faults reveals a system of overstepping faults. These normal faults developed by reactivation of Paleozoic strike-slip faults.As fault displacements at the bases of the younger terrace deposits are apparently similar to the tops of the adjacent older terrace, the age of these horizons is the same within thousands of years. This implies that the model of terrace development by rapid fluvial incision followed by slow aggradation does apply for this area.  相似文献   

12.
The North Anatolian Fault (NAF) is a 1200 km long dextral strike-slip fault which is part of an east-west trending dextral shear zone (NAF system) between the Anatolian and Eurasian plates. The North Anatolian shear zone widens to the west, complicating potential earthquake rupture paths and highlighting the importance of understanding the geometry of active fault systems. In the central portion of the NAF system, just west of the town of Bolu, the NAF bifurcates into the northern and southern strands, which converge, then diverge to border the Marmara Sea. At their convergence east of the Marmara Sea, these two faults are linked through the Mudurnu Valley. The westward continuation of these two fault traces is marked by further complexities in potential active fault geometry, particularly in the Marmara Sea for the northern strand, and towards the Biga Peninsula for the southern strand. Potential active fault geometries for both strands of the NAF are evaluated by comparing stress models of various fault geometries in these regions to a record of focal mechanisms and inferred paleostress from a lineament analysis. For the Marmara region, the best-fit active fault geometry consists of the northern and southern bounding faults of the Marmara basin, as the model representing this geometry better replicated primary stress orientations seen in focal mechanism data and stress field interpretations. In the Biga Peninsula region, the active geometry of the southern strand has the southern fault merging with the northern fault through a linking fault in a narrow topographic valley. This geometry was selected over the other two as it best replicated the maximum horizontal stresses determined from focal mechanism data and a lineament analysis.  相似文献   

13.
The Bekten Fault is 20-km long N55°E trending and oblique-slip fault in the dextral strike-slip fault zone. The fault is extending sub-parallel between Yenice-Gönen and Sar?köy faults, which forms the southern branch of North Anatolian Fault Zone in Southern Marmara Region. Tectonomorphological structures indicative of the recent fault displacements such as elongated ridges and offset creeks observed along the fault. In this study, we investigated palaeoseismic activities of the Bekten Fault by trenching surveys, which were carried out over a topographic saddle. The trench exposed the fault and the trench stratigraphy revealed repeated earthquake surface rupture events which resulted in displacements of late Pleistocene and Holocene deposits. According to radiocarbon ages obtained from samples taken from the event horizons in the stratigraphy, it was determined that at least three earthquakes resulting in surface rupture generated from the Bekten Fault within last ~1300 years. Based on the palaeoseismological data, the Bekten Fault displays non-characteristic earthquake behaviour and has not produced any earthquake associated with surface rupture for about the last 400 years. Additionally, the data will provide information for the role of small fault segments play except for the major structures in strike-slip fault systems.  相似文献   

14.
The crustal architecture of the Southern Urals is dominated by an orogenic wedge thrusted westward upon the subducted East European continental margin. The N–S trending wedge constitutes an antiformal stack composed mainly of the high-P Maksyutov Complex, the overlying Suvanyak Complex and the allochthonous synformal Zilair flysch further west. These tectono-metamorphic units are separated by tectonic contacts and record discontinously decreasing metamorphic conditions from bottom to top. In the east, the E-dipping Main Uralian Normal Fault cross-cuts the metamorphic footwall and juxtaposes the non metamorphic Magnitogorsk island arc. This syncollisional normal fault compensated crustal thickening and exhumation of the high-P rocks. Orogenic shortening was accommodated by the Main Uralian Thrust, a W-vergent crustal-scale shear zone at the base of the wedge. Geological investigations and reflection seismics (URSEIS '95) argue in favour of a geodynamic evolution integrating subduction and basal accretion of high-P rocks during sinistral oblique thrusting along the Main Uralian Thrust and coeval normal-faulting along the Main Uralian Normal Fault.  相似文献   

15.
In this study, soil radon levels have been measured for the first time across the Ganos fault (GF), which is known as the western part of the North Anatolian Fault Zone. LR 115 Type 2 Solid State Nuclear Track Detectors (time integrated) have been applied to determine soil gas radon levels, and the survey was performed in 16 stations along the fault line. The results showed that soil gas radon concentrations and variation of concentration levels are comparable high along the fault line. It is also observed that in the middle of the Ganos Fault, fairly elevated radon levels were detected. These can be related to the activity of the fault lines. It is confirmed that the study area has a very active tectonic structure and is great location for analyzing radon variations.  相似文献   

16.
The Pinjore Garden Fault (PGF) striking NNW-SSE is now considered one of the active faults displacing the younger Quaternary surfaces in the piggyback basin of Pinjore Dun. This has displaced the older Kalka and Pinjore surfaces, along with the other younger surfaces giving rise to WSW and SW-facing fault scarps with heights ranging from 2 to 16 m. The PGF represents a younger branch of the Main Boundary Thrust (MBT) system. An ~ 4m wide trench excavated across the PGF has revealed displacement of younger Quaternary deposits along a low angle thrust fault. Either side of the trench-walls reveals contrasting slip-related deformation of lithounits. The northern wall shows displacement of lithounits along a low-angle thrust fault, while the southern wall shows well-developed fault-related folding of thick sand unit. The sudden change in the deformational features on the southern wall is an evidence of the changing fault geometry within a short distance. Out of five prominent lithounits identified in the trench, the lower four units show displacement along a single fault. The basal unit ‘A’ shows maximum displacement of aboutT o = 2.85 m, unit B = 1.8 m and unit C = 1.45 m. The displacement measured between the sedimentary units and retro-deformation of trench log suggests that at least two earthquake events have occurred along the PGF. The units A and D mark the event horizons. Considering the average amount of displacement during one single event (2 m) and the minimum length of the fault trace (~ 45 km), the behaviour of PGF seems similar to that of the Himalayan Frontal Fault (HFF) and appears capable of producing large magnitude earthquakes.  相似文献   

17.
鲜水河断裂带是青藏高原东部川滇地块的一条重要边界断裂,全新世以来活动强烈,断裂带沿线岩土体结构破碎强烈,在断裂活动诱发地震、断裂蠕滑和强降雨等因素作用下,断裂带沿线滑坡、泥石流等地质灾害发育密度大,危害严重。在前人研究的基础上,采用短基线集(SBAS InSAR)的方法,基于日本对地观测卫星(ALOS 1)所获得的2007—2011年期间15景PALSAR数据,对鲜水河断裂带道孚至炉霍段的活动速率进行分析计算,获取了该段断裂带内蠕滑型滑坡5年间的时间序列形变特征。研究结果表明:鲜水河断裂带道孚至炉霍段近年来以蠕滑滑动为主,蠕滑速率为(94±078) mm/a,断裂的蠕滑作用对区域构造应力场和断裂带内滑坡具有重要的控制作用,表现为距离鲜水河断裂带越近,影像间相干性越强,稳定的相干点越多,干涉效果越好,滑坡滑动累计位移越大。沿鲜水河断裂道孚至炉霍段,共识别出98个蠕滑型滑坡,沿鲜水河断裂带两侧呈线性展布,并分析了典型蠕滑型滑坡的地表形变特征。基于SBAS InSAR的雷达数据处理方法,可以有效地分析地表的缓慢变形以及区域性蠕滑型滑坡的发育发展变化规律,研究结果对于鲜水河断裂带沿线防灾减灾及类似构造活动地区的地质灾害研究具有一定的指导作用。  相似文献   

18.
汶川地震断裂带结构特征与龙门山隆升的关系   总被引:7,自引:2,他引:5  
王焕  李海兵  司家亮  黄尧 《岩石学报》2013,29(6):2048-2060
2008年汶川地震(MW7.9)发生在青藏高原东缘龙门山断裂带上,并沿映秀-北川断裂和灌县-安县断裂分别产生约270km和80km的不同性质的地表破裂带。断裂岩是断裂活动的产物,是断裂带的物质组成,其结构特征记录了断裂活动演化的历史。本文以汶川地震发震断裂映秀-北川断裂带中虹口八角庙地区地表露头和汶川地震科学钻探一号孔(WFSD-1)岩心为主要研究对象,通过详细的野外调研、显微结构及XRD分析等,识别出映秀-北川断裂带由五个次级单元组成,分别为:碎裂岩带、黑色断层泥和角砾岩带、灰色断层角砾岩带、深灰色断层角砾岩带以及断层泥和角砾岩带。断裂岩组合显示映秀-北川断裂带具有多核断裂结构特征。映秀-北川断裂带在地表出露的宽度约为240m,岩心中厚度约为105m,碎裂岩、断层角砾岩、断层泥在地表及岩心中均发育,而假玄武玻璃仅在地表碎裂岩部分出现。汶川地震主滑移带斜切了映秀-北川断裂带,不完全沿袭古地震滑移带,暗示汶川地震断裂带与映秀-北川断裂带可能不是同一个断裂体系。通过断裂岩的研究确定了映秀-北川断裂带存在着摩擦熔融、热增压、动态润滑和机械润滑等多种断裂滑移机制。低温热年代学的研究推断映秀-北川断裂带的形成时代为15~10Ma,自形成以来,映秀-北川断裂带的长期活动控制着龙门山的快速隆升。断裂带五个不同断裂岩组合的内部结构带,可能与龙门山不同的隆升速率期有着一定的联系。  相似文献   

19.
The Kachchh Mainland Fault (KMF) is a major E–W trending seismically active fault of the Kachchh palaeorift basin whose neotectonic evolution is not known. The present study deals with the eastern part of the KMF zone where the fault is morphologically expressed as steep north facing scarps and is divisible into five morphotectonic segments. The Quaternary sediments occurring in a narrow zone between the E–W trending KMF scarps and the flat Banni plain to the north are documented. The sediments show considerable heterogeneity vertically as well as laterally along the KMF zone. (The Quaternary sediments for a northward sloping and are exposed along the north flowing streams which also show rapid decrease in the depth of incision in the same direction.) The deposits, in general, comprise coarse as well as finer gravelly deposits, sands and aeolian and fluvial miliolites. The Quaternary sediments of the KMF zone show three major aggradation phases. The oldest phase includes the colluvio-fluvial sediments occurring below the miliolites. These deposits are strikingly coarse grained and show poor sorting and large angular clasts of Mesozoic rocks. The sedimentary characteristics indicate deposition, dominantly by debris flows and sediment gravity flows, as small coalescing alluvial fans in front of the scarps. These deposits suggest pre-miliolite neotectonic activity along the KMF. The second aggradation phase comprises aeolian miliolites and fluvially reworked miliolites that have been previously dated from middle to late Pleistocene. The youngest phase is the post-miliolite phase that includes all deposits younger than miliolite. These are represented by comparatively finer sandy gravels, gravelly sands and sand. The sediment characteristics suggest deposition in shallow braided stream channels under reduced level of neotectonic activity along the KMF during post-miliolite time evidenced by vertical dips of miliolites and tilting of gravels near the scarps. The tectonically controlled incision and dissection of the Quaternary deposits is the result of neotectonic activity that continues at present day. The overall nature, sedimentary characteristics and geomorphic setting of the sediments suggest that the KMF remained neotectonically active throughout the Quaternary period.  相似文献   

20.
We have identified a 50-km-long active fault scarp, called herewith the Lourdes Fault, between the city of Lourdes and Arette village in the French Pyrénées. This region was affected by large and moderate earthquakes in 1660 (Io = VIII–IX, MSK 64,), in 1750 (Io = VIII, MSK 64) and in 1967 (Md = 5.3, Io = VIII, MSK 64). Most earthquakes in this area are shallow and the few available focal mechanism solutions do not indicate a consistent pattern of active deformation. Field investigations in active tectonics indicate an East–West trending and up to 50-m-high fault scarp, in average, made of 3 contiguous linear fault sub-segments. To the north, the fault controls Quaternary basins and shows uplifted and tilted alluvial terraces. Deviated and abandoned stream channels of the southern block are likely due to the successive uplift of the northern block of the fault. Paleoseismic investigations coupled with geomorphic studies, georadar prospecting and trenching along the fault scarp illustrate the cumulative fault movements during the late Holocene. Trenches exhibit shear contacts with flexural slip faulting and thrust ruptures showing deformed alluvial units in buried channels. 14C dating of alluvial and colluvial units indicates a consistent age bracket from two different trenches and shows that the most recent fault movements occurred between 4221 BC and 2918 BC. Fault parameters and paleoseismic results imply that the Lourdes Fault and related sub-segments may produce a MW 6.5 to 7.1 earthquake. Fault parameters imply that the Lourdes Fault segment corresponds to a major seismic source in the western Pyrénées that may generate earthquakes possibly larger than the 1660 historical event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号