首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An anisotropic time-dependent bounding surface model for clays is developed by generalizing a previous time-independent model that adopts a flexible bounding surface. It is based on the framework for coupled elastoplasticity–viscoplasticity for clays and Perzyna’s overstress theory. Three viscoplastic parameters were introduced and explained in detail. The model was validated against undrained creep tests for both isotropically and anisotropically consolidated clays, undrained and drained stress relaxation tests on some undisturbed clays, and undrained triaxial tests with varying strain rates on natural Hong Kong marine deposit clay. The general agreement between the model simulations and test results was satisfactory. The varying effects of lower-level parameters were discussed on the undrained multistage stress relaxation response for normally consolidated soils which had been ignored in literature. The flexibility of the model in capturing the shear strengths, which is the unique feature of the current model, was shown in the simulations of time-dependent triaxial tests on Taipei silty clay. All the simulations show that the proposed model is a relatively practical model considering both anisotropy and time dependency of clays.  相似文献   

2.
This paper presents a two-surface plasticity constitutive model for clays based on critical-state soil mechanics. The model reproduces the mechanical response of clays under multi-axial loading conditions and predicts both drained and undrained behavior at small and large strains. The constitutive model also captures both the strain-rate-dependent behavior of clays and the drop in strength towards a residual value at very large shear strains using novel approaches. The paper also describes a hierarchical process for the determination of the model parameters relying more on simple curve fitting of model equations to experimental data points corresponding to specific soil states instead of trial-and-error simulations of entire experiments. Model parameter values are determined for London Clay, San Francisco Bay Mud, Boston Blue Clay and Lower Cromer Till, and the performance of the model in simulating mechanical response of clays is demonstrated for a variety of initial states and loading conditions.  相似文献   

3.
4.
A delayed plastic model, based on the theory of plasticity, is proposed to represent the time‐dependent behaviour of materials. It is assumed in this model that the stress can lie outside the yield surface and the conjugate stress called static stress is defined on the yield surface. The stress–strain relation is calculated based on the plastic theory embedding the static stress. Thus, the stress–strain relation of the model practically corresponds to that of the inviscid elastoplastic model under fairly low rate deformation. The delayed plastic model is coupled with the Cam‐clay model for normally consolidated clays. The performance of the model is then examined by comparing the model predictions with reported time‐dependent behaviour of clays under undrained triaxial conditions. It is shown that the model is capable of predicting the effect of strain rate during undrained shear and the undrained creep behaviour including creep rupture. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
The paper presents a simple constitutive model for normally consolidated clay. A mathematical formulation, using a single tensor-valued function to define the incrementally nonlinear stress–strain relation, is proposed based on the basic concept of hypoplasticity. The structure of the tensor-valued function is determined in the light of the response envelope. Particular attention is paid towards incorporating the critical state and to the capability for capturing undrained behaviour of clayey soils. With five material parameters that can be determined easily from isotropic consolidation and triaxial compression tests, the model is shown to provide good predictions for the response of normally consolidated clay along various stress paths, including drained true triaxial tests and undrained shear tests.  相似文献   

6.
A shortcoming of the hypoplastic model for clays proposed by the first author is an incorrect prediction of the initial portion of the undrained stress path, particularly for tests on normally consolidated soils at isotropic stress states. A conceptually simple modification of this model, which overcomes this drawback, is proposed in the contribution. The modified model is applicable to both normally consolidated and overconsolidated soils and predicts the same swept-out-memory states (i.e., normal compression lines) as the original model. At anisotropic stress states and at higher overconsolidation ratios the modified model yields predictions similar to the original model.  相似文献   

7.
沈扬  张朋举  闫俊  刘汉龙  张弛 《岩土力学》2012,33(9):2561-2568
为研究主应力轴旋转复杂动应力对偏压固结粉土的性状演变影响,以空心圆柱试样为对象,开展具有不同初始固结比的密实粉土(Dr=70%)在不排水主应力轴循环旋转下的系列试验。结果表明:①初始固结比不大于1.5时,主应力轴旋转导致试样发生中低应变崩塌,进而液化的脆性破坏模式;而固结比大于1.5时,试样变为应变持续稳定开展至高应变,孔压最终进入动态平衡的延性破坏模式,且不同固结比下试样发生崩塌液化和稳态延性破坏的孔压峰值间不存在交叉。②小偏压固结试样的液化峰值孔压和崩塌孔压均随固结比增加而有规律地下降,但受动剪应力水平影响很小,这与等压固结试样的崩塌孔压值受控于剪应力水平有很大差异。③相同初始球应力水平下,崩塌振次反映的小偏压固结试样强度高于等压固结试样,但在偏压条件下强度与固结比不存在单调变化关系,表明小偏压固结试样崩塌除受制初始围压水平外,很大程度上还取决于偏压程度。④基于上述试验结果,提出了主应力轴循环旋转下小偏压固结粉土的孔压预测模型,该模型不仅突显了崩塌状态对相变及液化破坏的重要预测作用,还反映了固结比和动剪应力对孔压开展的综合影响。  相似文献   

8.
The yield locus governing the stress–strain response of a soil may degrade during rebound at high overconsolidation ratios. The cause can be attributed to a breakdown in bonding. A Cam–Clay model is applied to account for the degrading yield locus, and the influence of this degradation is assessed using a theoretical approach for friction pile capacity. Stress changes in the soil continuum due to pile installation and setup are simulated by cylindrical cavity expansion and radial consolidation, anda segment loading model is used to determine the effective stress change in the soil at peak load transfer under undrained conditions. The results indicate that plastic rebound affects peak load transfer to at least the same extent as shear strength.  相似文献   

9.
Prediction of flow liquefaction occurrence in multiaxial stress space is presented in this paper. The closed-form relation analytically attained by means of Dafalias-Manzari constitutive equations gives the flow stress ratio as a function of model parameters, state parameter, direction of undrained loading and especially initial condition of consolidation. These proposed flow condition can predict the occurrence of flow liquefaction initiated by any loadings whether the soil is consolidated isotropically or anisotropically. Suggested predictions are compared with the results of triaxial tests performed on Hostun RF sand. The results show that increasing consolidation stress ratio leads to flow stress ratio increase.  相似文献   

10.
This paper evaluates the performance of a generalized effective stress soil model for predicting the rate independent behaviour of freshly deposited sands, while a companion paper describes model capabilities for clays and silts. Most material parameters can be obtained from standard laboratory data, including hydrostatic or one‐dimensional compression, drained and undrained triaxial shear testing. A compilation of data on compression behaviour allows for estimation of compression parameters when this type of data is not available. Extensive comparisons of model predictions with measured data from undrained triaxial shear tests shows that the model gives excellent predictions of the transition from dilative to contractive shear response as the confining pressure and/or the initial formation void ratio increases. A parametric study of drained response shows that the model describes realistically the variation of peak friction angle and dilation rate as a function of confining pressure and density when compared with an empirical correlation valid for many sands. The proposed formulation predicts a unique critical state locus for both drained and undrained triaxial testing which is non‐linear over the entire range of stresses and is in excellent agreement with recent experimental data. Overall, the model provides excellent predictions of the stress–strain–strength relationships over a wide range of confining pressures and formation densities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
原状和重塑海洋粘土经历动载后的静强度衰减   总被引:5,自引:0,他引:5  
根据海洋粉质粘土原状和重塑土样的动三轴试验结果, 比较和分析了两种土样应力、应变、孔隙水压力和不排水抗剪强度行为, 得到了土样的静不排水抗剪强度衰减与波浪荷载作用下土样产生的动应变以及平均累积孔压之间的关系。 并将波浪荷载作用使土样内孔压升高, 有效应力降低, 形成拟超固结现象的理论, 应用到土样不排水抗剪强度衰减与平均累积孔压之间关系的分析;同时与重塑土样的超固结静态剪切试验结果进行比较, 得到了土样在波浪荷载作用后的归一化不排水抗剪强度与拟超固结比之间的关系式。 建议以少量原状土样, 配合大量重塑土样的动三轴试验结果, 实现对实际海洋粘土地基在波浪荷载作用后的静不排水抗剪强度衰化规律的评估。  相似文献   

12.
Experimental evidence has indicated that the critical state line determined from undrained compression tests is not identical to that determined from undrained extension tests. The purpose of this paper is to investigate a modelling method that accounts for the non‐uniqueness of critical state lines in the compression and the extension testing conditions. Conventional elastic–plastic cap models can predict only a unique critical state line for the compression and the extension tests. A new micromechanical stress–strain model is developed considering explicitly the location of critical state line. The model is then used to simulate undrained triaxial compression and extension tests performed on isotropically consolidated samples with different over‐consolidated ratios. The predictions are compared with experimental results as well as that predicted by models with kinematic hardening of yield surface. All simulations demonstrate that the proposed micromechanical approach is capable of modelling the undrained compression and the undrained extension tests. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The results of an experimental study of the undrained behaviour of Changi sand under axisymmetric and plane-strain conditions are presented. K0 consolidated undrained plane-strain tests and K0 or isotropically consolidated triaxial tests on very loose and medium dense specimens were conducted. The undrained behaviour of sand at very loose and medium dense states under plane-strain conditions was characterised and compared with that under axisymmetric conditions. It was observed that the undrained behaviour of very loose and medium dense sand under plane strain is similar to that under axisymmetric conditions. However, because of the formation of shear bands in plane-strain tests, the post-peak behaviour of medium dense sand in plane strain is different from that in triaxial tests. It was also established that an instability line for plane-strain conditions can be defined in a way similar to that for axisymmetric conditions. Using the state parameter, a unified relationship between the normalised slope of instability line and the state parameters can be established for both axisymmetric and plane-strain conditions. Using this relationship, the instability conditions established under axisymmetric conditions can be used for plane-strain conditions.  相似文献   

14.
王树英  阳军生  张学民 《岩土力学》2014,35(7):1849-1854
通过室内三轴试验研究美国中部密西西比河流域低塑性粉土的液化重固结后剪切强度。研究成果表明,正常固结低塑性粉土液化后不排水剪切强度Su随重固结度的增加而提高,而且呈现类固结现象。类似于未受震动的情况,液化完全重固结后不排水剪切强度比Su,OC/Su, NC与固结比OCR呈幂指数关系,只是幂指数相对于未受震动情况稍大。随着OCR的增加,完全重固结引起的不排水剪切强度变化?Su, recon先提高后降低,当OCR =3.42时,?Su, recon达到最大值。液化完全重固结后不排水剪切行为不具有准稳态现象,随着轴应变增加,应力逐渐增加直至达到临界状态。另外,液化完全重固结后不排水剪切应力-应变曲线可被有效固结应力? ′c归一化。最终提出了计算液化完全重固结后低塑性粉土不排水剪切强度的计算公式。  相似文献   

15.
16.
超固结黏土单调和耦合循环的剪切特性研究   总被引:1,自引:0,他引:1  
针对超固结黏土空心试样,利用土工静力-动力液压三轴-扭转多功能剪切仪,在均等固结条件下进行了单调扭剪和三轴-扭转耦合循环剪切试验。试验结果表明:不同超固结比黏土的单调扭剪强度也可由正常固结黏土的单调扭剪强度得到,得到了不同超固结比下饱和黏土的强度及模量的退化规律;随着超固结比的增大,相同破坏循环次数的动应力比和临界循环应力比均线性增大;超固结比对耦合循环剪切的孔隙水压力的发展模式影响显著。参考Yasuhara的测量方法,采用荷载停止后继续采集孔压的方法可以更好地反映黏土在耦合循环荷载下产生的真实孔压和孔压的增长情况。提出的综合应变式同时考虑了剪切变化和正向偏差变形的共同效应,适合作为主应力连续旋转的耦合循环剪切试验的破坏标准。  相似文献   

17.
Tests on specimens of reconstituted illitic clay have examined the influence of temperature on the mechanical behaviour of clay soils. The program involved consolidation to effective confining pressures up to 1.5 MPa, heating to 100°C, and tests on normally consolidated and overconsolidated specimens with OCR = 2. The tests included isotropic consolidation, undrained triaxial compression with pore water pressure measurement, drained tests along controlled stress paths to investigate yielding behaviour, and undrained tests which involved heating and measurement of the resulting induced pore water pressures. The large strain strength envelope is independent of temperature. However, peak undrained strengths increase with temperature because smaller pore water pressures are generated during shearing. An important contribution from the study is a series of results for the yielding of illitic clay at three different temperatures. For the first time, there is clear evidence of yield loci decreasing in size with increasing temperature. An associated flow rule can be assumed without serious error. The results contribute to the confirmation of a thermal elastic-plastic soil model developed by the authors from cam clay following the addition of a small number of extra assumptions. Depending on the initial stress state, heating under undrained conditions may produce shear failure.  相似文献   

18.
A new constitutive model for soft structured clays is developed based on an existing model called S‐CLAY1S, which is a Cam clay type model that accounts for anisotropy and destructuration. The new model (E‐SCLAY1S) uses the framework of logarithmic contractancy to introduce a new parameter that controls the shape of the yield surface as well as the plastic potential (as an assumed associated flow rule is applied). This new parameter can be used to fit the coefficient of earth pressure at rest, the undrained shear strength or the stiffness under shearing stress paths predicted by the model. The improvement to previous constitutive models that account for soil fabric and bonding is formulated within the contractancy framework such that the model predicts the uniqueness of the critical state line and its slope is independent of the contractancy parameter. Good agreement has been found between the model predictions and published laboratory results for triaxial compression tests. An important finding is that the contractancy parameter, and consequently the shape of the yield surface, seems to change with the degree of anisotropy; however, further study is required to investigate this response. From published data, the yield surface for isotropically consolidated clays seems ‘bullet’ or ‘almond’ shaped, similar to that of the Cam clay model; while for anisotropically consolidated clays, the yield surface is more elliptical, like a rotated and distorted modified Cam clay yield surface. © 2015 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.  相似文献   

19.
基于试验基础上建立的经典弹塑性模型--剑桥模型能够准确描述正常固结土的应力-应变关系。当土体的应力历史上经历过卸载或受到循环交变荷载作用即进入超固结状态,它作为土的应力历史的反映,相比正常固结土受力特性有着显著的差异。为研究超固结因素对土体加载特性的影响,在引入能考虑超固结状态影响的下负荷面剑桥模型后,通过三轴压缩和剪切试验对处于超固结状态下土体的受力特性进行了对比分析,并对循环剪切加载下的应力-应变关系以及超固结比的演化规律进行了研究。结果表明,下负荷面剑桥模型能准确反映超固结因素对土体力学特性的影响,相比原状土有着更高的屈服强度。而通过数值模拟自由场地基在地震作用下的动力响应可以看出,超固结因素对地基的动力响应起到了不可忽略的影响,尤其在强震下更需要考虑其影响。在自由场地基地震动力响应基础上,通过对桩柱结构桩-土耦合系统在地震作用下非线性动力响应的模拟对土体非线性以及超固结因素的影响进行了对比研究,研究表明:土体的非线性因素能显著降低结构振动响应中的高频成分,由于土体在交变加载下很快进入超固结状态,相对于剑桥模型,下负荷面剑桥模型在考虑超固结因素后土体的承载性能显著提高,尤其在强震作用下超固结因素带来的影响更加明显,因此,建议对桩基结构物地震响应研究考虑超固结因素影响,以提高桩基结构物地震响应模拟的精确度和可靠性。  相似文献   

20.
A critical state model for overconsolidated structured clays   总被引:1,自引:0,他引:1  
This paper presents a generalised critical state model with the bounding surface theory for simulating the stress–strain behaviour of overconsolidated structured clays. The model is formulated based on the framework of the Structured Cam Clay (SCC) model and is designated as the Modified Structured Cam Clay with Bounding Surface Theory (MSCC-B) model. The hardening and destructuring processes for structured clays in the overconsolidated state can be described by the proposed model. The image stress point defined by the radial mapping rule is used to determine the plastic hardening modulus, which varies along loading paths. A new proposed parameter h, which depends on the material characteristics, is introduced into the plastic hardening modulus equation to take the soil behaviour into account in the overconsolidated state. The MSCC-B model is finally evaluated in light of the model performance by comparisons with the measured data of both naturally and artificially structured clays under compression and shearing tests. From the comparisons, it is found that the MSCC-B model gives reasonable good simulations of mechanical response of structured clays in both drained and undrained conditions. With its simplicity and performance, the MSCC-B model is regarded as a practical geotechnical model for implementation in numerical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号