首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Eco-restoration of mine overburden (OB) or abandoned mine sites is a major environmental concern. In the present investigation, an integrated approach was used to rejuvenate a high-sulphur mine OB dumping site in the Tirap Collieries, Assam, India, which is situated in the Indo-Burma mega-biodiversity hotspot. A mine OB is devoid of true soil character with poor macro and micronutrient content and contains elevated concentrations of trace and heavy metals. Planting of herbs, shrubs, cover crops and tree species at close proximity leads to primary and secondary sere state succession within a period of 3 to 5 years. A variety of plant species were screened for potential use in restoration: herbs, including Sccharum spontaneum, Cymbopogon winterianus Jowitt (citronella), and Cymbopogon flexuosus (lemon grass) cover plants, including Mimosa strigillosa, M. striata, and M. pigra; shrubs, including Sesbania rostrata (dhaincha) and Cassia streata (cassia); and tree species, including Gmelina arborea (gomari) and Dalbergia sissoo (sissoo). Amendment with unmined soil and bio-organic matter was required for primary establishment of some plant species. Management of these plant species at the site will ensure long term sustainable eco-restoration of the coal mine-degraded land.  相似文献   

2.
FT-IR and XRD analysis of coal from Makum coalfield of Assam   总被引:1,自引:0,他引:1  
High sulphur coal sample from Ledo colliery of Makum coalfield, Assam, India was studied using FT-IR and XRD methods. FT-IR study shows the presence of aliphatic -CH, -CH2 and -CH3 groups, aliphatic C-O-C stretching associated with -OH and -NH stretching vibrations and HCC rocking (single and condensed rings). XRD pattern of the coal shows that it is amorphous in nature. Function of Radial Distribution Analysis (FRDA) indicates that coal is lignite in type and there is no evidence of graphite-like structure. The first maximum in the G(r) plot of FRDA at r = 0.14 nm relates to the aliphatic C-C bond (Type C-CH=CH-C), the second maximum at r = 0.25 nm relates to the distance between carbon atoms of aliphatic chains that are located across one carbon atom. The curve intensity profiles obtained from FRDA show quite regular molecular packets for this coal. The coal was found to be lignite in nature.  相似文献   

3.
丁振华  郑宝山  庄敏 《矿物学报》2005,25(4):357-362
利用低温灰化(LTA)、X衍射粉晶分析(XRD)、扫描电子显微镜(SEM-EDX)、连续浸取实验等方法研究了贵州燃煤型砷中毒地区煤中微量元素的地球化学特征和赋存状态。结果发现:不同元素在高砷煤中的赋存状态不同;同一元素在高砷煤中的存在形式多种多样,可同时以可交换离子、碳酸盐结合态、硅酸盐结合态、硫化物和有机质结合态中几种形式存在;元素的赋存状态与元素的自身性质如元素(或离子)半径、电负性等和成煤作用密切相关。  相似文献   

4.
New mapping at Anglesea coal mine, and coal resource and deep groundwater drilling have provided new perspectives on the economically important Eastern View Group coal bearing sedimentary succession in the onshore Torquay Basin. In the Anglesea Syncline, the upper 35 m thick brown coal seam of the Eastern View Group is overlain by a low angle unconformity. Units overlying the coal seams include high energy, cross cutting sand channels of the Boonah Formation and lower energy channel and interchannel systems of the overlying Salt Creek and Anglesea Formations. The mine section can be correlated from borehole data with the Eastern View Group and Demons Bluff Group exposed in coastal cliff sections along the adjacent Anglesea to Torquay coast. Recently drilled coal and groundwater exploration bores provide new data on the extent of the coal measures in the Anglesea area, and details of the underlying Tertiary succession that include typical Otway Basin units such as the Pember Mudstone and Pebble Point Formations. The stratigraphy below the coal measures suggests that the Otway Ranges were not present during Palaeogene times. The rank of the brown coals on and around the Otway Ranges is higher than any other Tertiary coals in onshore Victoria, and they preserve similar patterns of rank distribution to the high rank black coals in the underlying Lower Cretaceous Otway Group. Evidence for large overburden thicknesses is lacking, and the high ranks may have been augmented by higher than normal geothermal gradients in the Early Tertiary. Comparisons between the observed depositional cycles, sequence stratigraphic cycles, and worldwide coastal onlap curves suggest that the observed disconformity boundaries are sequence boundaries that provide a chronostratigraphic framework. Sequences present may include TB4.1–4.5 in the overburden units, and TB 2.4–3.6 in the coal bearing interval.  相似文献   

5.
This study is related to four Jurassic-age bituminous coal (0.69–1.02 Ro%) samples collected from coal mines from the west, central and east of central, Alborz in northern Iran. Geological settings played key roles in determining the geochemistry and mineralogy of coals from the central Alborz region of northern Iran. The mineralogy of coals from the eastern part of the region is dominated by kaolinite; halloysite; and carbonates such as calcite, dolomite/ankerite, and siderite. The coals were deposited in a lacustrine environment. In the western part of the region, where the depositional setting was also lacustrine with volcanic input and tonstein deposition (glass shards present), the coal primarily contains kaolinite (68%) and fluorapatite (26%). In contrast, coal from the central part of the region, which was deposited in a terrestrial environment and on eroded limestone and dolomite rocks, is dominated by dolomite (98%) with little input by kaolinite. These coals have low sulphur (0.35–0.70 wt.%), which is mostly in the organic form (0.34–0.69 wt.%). Pyritic sulphur is detected only in one coal and in small quantities. The boron contents of these coals range from 9 to 33 mg/kg, indicating that deposition occurred in a fresh water environment. Coal with higher concentrations of Ba, Sr, and P contain fluorapatite and goyazite–gorceixite series [BaAl3 (PO4)2 (OH)5, H2O] minerals, which indicates volcanoclastic input. Compared to world coal averages, these coals exhibit low concentrations of elements of environmental concern, such as As (1.3–5.9 mg/kg), Cd (< 0.02–0.06 mg/kg), Hg (< 0.01–0.07 mg/kg) Mo (< 0.6–1.7 mg/kg), Pb (4.8–13 mg/kg), Th (0.5–21 mg/kg), Se (< 0.2–0.8 mg/kg) and U (0.2–4.6 mg/kg). Two of the northern Iranian coals have concentrations of Cl (2560 and 3010 mg/kg) that are higher than world coal average.  相似文献   

6.
The occurrence and distribution of major and trace elements have been investigated in two coal-bearing units in the Chonqing mining district (South China): the Late Permian and Late Triassic coals.The Late Permian coals have higher S contents than the Late Triassic coals due to the fixation of pyrite in marine-influenced coal-forming environments. The occurrence of pyrite accounts for the association of a large number of elements (Fe, S, As, Cd, Co, Cu, Mn, Mo, Ni, Pb, Sb, Se, and Zn) with sulphides, as deduced from the analysis of the density fractions. The marine influence is probably also responsible for the organic association of B. The REEs, Zr, Nb, and Hf, are enriched by a factor of 2–3 with respect to the highest levels fixed for the usual worldwide concentration ranges in coal for these elements. The content of these elements in the Late Permian coal is higher by a factor of 5–10 with respect to the Late Triassic coal. Furthermore, other elements, such as Cu, P, Th, U, V, and Y, are relatively enriched with respect to the common range values, with maximum values higher than the usual range or close to the maximum levels in coal. The content of these elements in the Late Permian coal is higher than the Late Triassic coal. These geochemical enrichments are the consequence of the occurrence, in relatively high levels, of phosphate minerals, such as apatite, xenotime, and monazite, as deduced from the study of the density fractions obtained from the bulk coal.The Late Triassic coal has a low sulphur content with a major organic affinity. The trace element contents are low when compared with worldwide ranges for coal. In this coal, the trace element distribution is governed by clay minerals, carbonate minerals, and to a lesser extent, by organic matter and sulphide minerals.Major differences found between late Permian and Triassic coals are probably related to the source rocks, given that the main source rock of the late Permian epicontinental marine basin is the Emeishan basalt formation, characterised by a high phosphate content.  相似文献   

7.
煤地质学是以煤的形成、组成、煤系伴生矿产、煤层瓦斯和煤层气为主要研究内容的地质学分支。近年来随着我国和世界对煤炭资源安全开采、洁净利用的要求逐渐提高,煤及煤层气资源的勘探与开发,煤地质学的研究重点也在逐渐发生变化。通过分析2011-2015年《国际煤地质学》杂志发表的717篇学术论文,总结了近期煤地质学最新的研究热点与前沿。研究发现:煤层气资源评价以及与煤层气开发关系最为紧密的煤储层物性研究是各国煤地质科技工作者最为关注的热点;煤中的矿物质和元素地球化学一直为人们所重视;与煤的形成、开采和利用相关的煤岩学及有机地球化学,煤的自燃、燃烧与环境,沉积环境与煤炭演化,地理信息系统与矿区环境监测,矿井瓦斯,矿井构造,矿井水和煤的热解等方面的研究一直在持续开展;页岩气资源评价与开发越来越受到人们重视。   相似文献   

8.
鸡西煤田是东北地区重要的炼焦煤基地,由于受成煤环境的影响,原煤灰分较高,影响了煤炭精细加工利用和环境。采用X射线衍射、红外光谱等分析方法对鸡西煤的无机地球化学特征研究显示,煤中的主要矿物为石英、方解石、粘土矿物、黄铁矿和菱铁矿等,它们分别以不同的状态赋存于有机质中。煤灰的主要成分为SiO2和Al2O3,其主要源自流水带入泥炭沼泽的石英和粘土等同生矿物。元素分析表明,煤中硫、磷及微量元素锗和镓等含量较低。  相似文献   

9.
淮南煤田煤矸石中环境意义微量元素的丰度   总被引:11,自引:0,他引:11  
淮南煤田矿区开采历史长,煤矸石累计堆存量大,从环境意义角度研究该矿区煤矸石具有其典型性和现实性.根据煤矸石来源、矿区主采煤层和岩性特征,在井下煤系地层系统采集原始煤矸石样品44件,运用现代环境微量元素分析技术(INAA和ICP-MS)测定了煤矸石中46种微量元素,并用冷原子吸收法分析Hg、选择性电极法分析F.进而筛选出11种具有环境意义的有害元素:10种金属元素(Cd、Cu、Ni、Sn、Hg、Mn、As、Cr、Pb、Zn)和1种非金属元素F.并以总量法初步预测和评估这些元素的含量水平和潜在的环境影响.与淮南煤及其土壤、世界煤、华北泥岩的对比可知,煤矸石中Cd、Cu、Mn、Ni、Pb、Sn等超出土壤背景值,有必要对这些元素在矿区环境污染迁移性和累积件的环境效应进行深入调查研究.  相似文献   

10.
多煤层开采条件下煤层覆岩破坏具有独特的特征,影响矿井生产布置。以陕北某矿为例,以该矿地质采矿条件为基础,采用相似材料模拟实验与数值模拟相结合的方法,通过建立模拟模型,开展了双煤层开采对覆岩的破坏影响研究。结果显示:留设不同宽度的煤柱,采用相似材料模拟和数值模拟2种方法得到的煤层覆岩垮落带高度、裂隙带高度都基本一致;在双煤层开采时,留设的煤柱宽度越大,两个煤层的叠置区域就越小,煤层开采对覆岩的破坏程度就越小。在工作面布置时,建议增大两个煤层的开采距离,并尽量增加煤柱宽度,以减缓覆岩移动破坏范围和破坏程度。研究成果为类似双煤层开采工作面的设计及覆岩破坏控制提供技术支撑。   相似文献   

11.
The paper reports the presence of carbon nano-balls and nano-tubes in the clean coal product during our experiments on desulfurization and deashing of northeast Indian high-sulfur Tertiary coal by molten caustic leaching (MCL) method. The Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HR-TEM), X-ray Diffraction (XRD), Raman and Fourier Transform Infrared (FT-IR) spectroscopy analyses revealed the formation of varied sizes of carbon nanomaterials in the clean coal product (MCL product). The nano-balls are in the range of 5–10 nm with nominal areas in the range of 40–100 nm2, 160–220 nm2, and 550–650 nm2. The diameters of the carbon nano-tubes (CNTs) formed are in the range of 18–24 nm. The diameters of the branch carbon nano-tubes (BCNTs) are in the range of 35–92 nm. It is further observed that the alkaline treatment followed by acid treatment favored the formation of the carbon nano-balls, carbon nano-tubes (CNTs), and branch carbon nanotubes (BCNTs) in the coal product. The low-grade coals could also be used for the preparation of nano-carbon-based high value added products.  相似文献   

12.
宁夏鸳鸯湖矿区煤的可选性特征   总被引:1,自引:0,他引:1  
鸳鸯湖矿区以不粘煤为主,长焰煤次之,是良好的煤化工和动力用煤。从煤岩特征,煤的筛分、浮沉、煤及矸石的泥化程度试验等方面,对矿区及各井田煤的可选性特征进行了研究,研究表明:清水营井田煤中粘土类矿物较多,可选性较差,其它井田可选性相对较好;矿区煤中粘土矿物多呈细胞充填状,惰质组含量较高,难选出灰分很低的煤;当浮煤灰分控制在6.00%~11.00%,浮煤产率大于80%,煤为中等可选-易选;煤遇水易泥化,矸石为高泥化程度。研究结果可为煤的洗选工艺设计提供依据。  相似文献   

13.
The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that a number of elements in the Pernik coals (F, V, As, Pb, Mo, Li, Sr, Ti, Ga, Ni, Ge, Cr, Mn, etc.) reveal mobility in water and could have some environmental concerns.  相似文献   

14.
Coal mine rejects and sulfide bearing coals are prone to acid mine drainage (AMD) formation due to aqueous weathering. These acidic effluents contain dissolved trace and potentially harmful elements (PHEs) that have considerable impact on the environment. The behavior of these elements in AMD is mainly controlled by pH. The focus of the present study is to investigate aqueous leaching of mine rejects for prediction of acid producing potential, rates of weathering, and release of PHEs in mine drainage. Mine reject (MR) and coal samples from the active mine sites of Meghalaya, India typically have high S contents (1.8–5.7% in MR and 1.7–4.7% in coals) with 75–90% of the S in organic form and enrichment of most of the PHEs in rejects. Aqueous kinetic leaching experiments on mine rejects showed high acid producing potential and release of trace and potentially harmful elements. The elements (Sb, As, Cd, Cr, Co, Cu, Pb, Mn, Ni, V and Zn) in mine sample leachates are compared with those in mine waters. The concentrations of Al, Si, P, K, Ti, Mn, Fe, Co, Ni, Cu, Zn and Pb are found to increase with leaching time and are negatively correlated with pH of the solution. The processes controlling the release of these elements are acid leaching, precipitation and adsorption. The critical loads of PHEs in water affected by AMD are calculated by comparing their concentrations with those of regulatory levels. The Enrichment Factors (EFs) and soil pollution indices (SPIs) for the elements have shown that PHEs from coal and mine reject samples are mobilized into the nearby environment and are enriched in the associated soil and sediment.  相似文献   

15.
This paper demonstrates capabilities of microfocus X-ray computed tomography (µCT) in characterizing the development of coal porosity and fractures. For the investigated coals, the CT number of minerals, pores and coal matrix are approximately 3000, < 600 and 1000–1600 Hounsfield unit (HU), respectively. The total CT number of analyzed coals mainly relate to the density, coal maceral composition, and proportion of minerals and pores. Although the estimated porosities by segmentation method show some uncertainty, the results correlate well with the analyzed porosities by helium gas method and water-saturated method. The aperture, spacing and spatial distribution of fractures, and mineral morphology are semi-quantitatively evaluated by µCT using a computer-aided design. The slicing analyses of coals demonstrated that distributions of porosity in coals are highly anisotropic. The spatial disposition of pores, fractures and minerals is the most important factor that influences coal porosity and permeability. In spite of the limitation of low spatial resolution (70 μm) and some ring artifacts of X-ray, µCT has major advantages in non-destructive detection and 3D visualized characterization of pores, fractures and minerals compared to traditional methods.  相似文献   

16.
The Oligocene coals from the northeastern part of the Assam-Arakan basin show a gradual decrease in the content of moisture, volatile matter and oxygen with corresponding increase in carbon content and calorific value from the Foreland Shelf to the deeper part of the geosyncline, reflecting the coalification trends in this basin. It has been suggested that the oxygen was replaced by organic sulphur, thereby lowering the oxygen content in the coals. The coals are perhydrous in nature with a high sulphur content. The high volatile content, perhydrous nature and high sulphur content in the Oligocene coals, as well as the presence of streaky facies and a very fine clastics unit, indicate that they were probably deposited in a marine-influenced deltaic and lagoonal environment.The plots of carbon versus hydrogen on Seyler's coal band follow a trend which differs from that of Seyler's band of Carboniferous bright coals. The coalification of the Oligocene coals represents the lignitic stage, in the case of the Foreland Shelf, and near subbituminous stage in the deeper geosynclinal part of the basin. A more intense, and probably sudden, dynamic process was involved in bringing about higher coalification in Oligocene coal of the geosynclinal facies than in Foreland Shelf area. This is possibly due to intense mountain-building forces acting from the southeastern direction of the basin.  相似文献   

17.
煤系关键金属的开发利用对于缓解我国战略性矿产资源紧缺具有重要意义。内蒙古胜利煤田乌兰图嘎低阶煤中除富集关键金属Ge以外,同时富集有害元素Be、F、As、Hg、Sb和W,出于对关键金属的提取利用及环境保护2个方面考虑,须对研究区煤炭进行洗选处理。基于前期研究认识,浮选对于乌兰图嘎煤中As、Sb和W脱除效果相对较好,对于F和Hg的脱除效果较差,基于此,采用浮沉实验(重选法)以及XRD、XRF、SEM-EDS和EMPA等实验方法和测试手段,研究关键金属Ge以及Be、F、As、Hg等有害元素在不同密度级煤中的分布特征,结果表明:(1) 乌兰图嘎煤中矿物主要包括石膏、石英、黄铁矿、高岭石等,矿物含量随煤密度级增大而增加,电子探针分析结果表明,Co、As、Sb和Hg赋存在黄铁矿中。(2) 经过重选,低密度精煤中Ge元素富集,表明Ge主要以有机态存在,Be、F、As等可能与有机质相关,或者赋存在嵌布于有机质中的微细粒矿物中,煤中Hg和大部分亲石性元素在高密度级煤中含量较高,表明其赋存在矿物中。(3) 重选对于Hg元素的脱除效果较好,对Be、F、As和一些亲硫或亲铁性元素浮选脱除效果优于重选。建议乌兰图嘎低阶煤使用重选?浮选联合脱除法进行有害元素的脱除。   相似文献   

18.
The mineralogy and geochemical studies of the coal-mine shale collected from the Tirap opencast coal-mine (Makum coalfield, Northeast India) are reported in this paper. Thermo-chemical conversion (pyrolysis) of coal-mine shale has been studied to see its hydrocarbon potential. A combined approach using X-Ray diffraction (LTA-XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectrophotometer (EDS), X-ray fluorescence spectrometry (XRF), thermogravimetry-derivative and differential thermogravimetric (TG-DTG and DTA) analysis is made to obtain new information on the mineralogical and geochemical studies of a coal-mine shale (CMS) sample. Gas chromatography-mass spectrometry (GC-MS) analysis is performed to evaluate the quality of the liquid fraction (tar) obtained after pyrolysis at 600°C. The shale sample is dominated by quartz, clay minerals (kaolinite and illite), sulphate bearing phase like gypsum with minor proportion of anatase, probably as artifacts of the plasma-ashing process. GC-MS analysis illustrates the presence of highly oxygenated organic components (M.W. around 94-108) and high molecular weight (M.W. 256) cyclic sulphur (e.g. octathiocane with molecular formula S8) compounds along with the complex N-containing organic sulphur compounds (M.W. around 255-486) in the tar produced.  相似文献   

19.
不同变质类型煤的XRD结构演化特征   总被引:6,自引:0,他引:6  
通过对大别造山带前陆盆地石炭纪含煤岩系高煤级煤的X射线衍射分析,探讨了高煤级煤基本结构单元的演化特征及其影响因素。结果表明,构造应力作用提高了“煤晶核”BSU的延展度和堆砌度,使面网间距减小。   相似文献   

20.
Rare Earth Element Geochemistry of Late Palaeozoic Coals in North China   总被引:7,自引:0,他引:7  
Instrumental Neutron Activation Analysis (INAA) was done to determine the abundances of rare earth elements (REE) of 58 samples of Late Palaeozoic Carboniferous-Permian coals and related rocks in North China. Detailed study of REE geochemistry shows that the ∑REE of most coals studied in this paper is in a normal range between 30×10-6 and 80×10-6 with a mean of 56×10-6. The REE in the Taiyuan Formation in the northern part of North China are much richer than those in the southern part. This is due to the shorter distance to the source area in the north. Moreover, the IREE is in positive correlation to coal ash, especially closely related to the content of clay minerals <2μm in size. This reveals that most REE were carried by terrigenous clastic materials, especially fine clay minerals. In the coals the light REE (LREE) are much richer than the heavy REE (HREE), and the LREE/HREE ratio in coals generally varies from 2 to 8. The LREE/HREE ratio of high-ash, low-sulphur coals is higher than that of lo  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号