首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is to determine the geochemical role of molluscs in the distribution of uranium in the marine ecosystem. Biogeochemical studies are carried out on recent mollusc shells from the Caspian Sea, Sea of Japan, Sea of Marmara, Aegean Sea, Black Sea, Mediterranean Sea, Baltic Sea, and Indian Ocean, which differ from each other in terms of physical, chemical, geographic, and geochemical characteristics. In this study, nine Gastropoda and fifty-four Pelecypoda shells of different species are analyzed to document variations of uranium in seasonal layers, which were formed by the seasonal carbonate-organic phase of molluscs during their entire lives. Shell used in this study principally comprises three layers: upper (outer) prismatic, middle prismatic, and inner (mother-of-pearl) layers. In addition, when possible, the head, the middle, and the lower parts of the shells are used for analyses separately. Also, the biological accumulation rate values for each different mollusc species rel  相似文献   

2.
Possible long-term seismic behaviour of the Northern strand of the North Anatolian Fault Zone, between western extreme of the 1999 İzmit rupture and the Aegean Sea, after 400 AD is studied by examining the historical seismicity, the submarine fault mapping and the paleoseismological studies of the recent scientific efforts. The long-term seismic behaviour is discussed through two possible seismicity models devised from M S ≥ 7.0 historical earthquakes. The estimated return period of years of the fault segments for M1 and M2 seismic models along with their standard deviations are as follows: F4 segment 255 ± 60 and 258 ± 12; F5 segment 258 ± 60 and 258 ± 53; F6 segment 258 ± 60 and 258 ± 53; F7 segment 286 ± 103 and 286 ± 90; F8 segment 286 ± 90 and 286 ± 36. As the latest ruptures on the submarine segments have been reported to be during the 1754–1766 earthquake sequence, and the 1912 mainshock rupture has been evidenced to extend almost all over the western part of the Sea of Marmara, our results imply imminent seismic hazard and, considering the mean recurrence time, a large earthquake to strike the eastern part of the Sea of Marmara in the next two decades.  相似文献   

3.
We have carried out seismological observations within the Sea of Marmara (NW Turkey) in order to investigate the seismicity induced after Gölcük–İzmit (Kocaeli) earthquake (Mw 7.4) of August 17, 1999, using ocean bottom seismometers (OBSs). High-resolution hypocenters and focal mechanisms of microearthquakes have been investigated during this Marmara Sea OBS project involving deployment of 10 OBSs within the Çınarcık (eastern Marmara Sea) and Central-Tekirdağ (western Marmara Sea) basins during April–July 2000. Little was known about microearthquake activity and their source mechanisms in the Marmara Sea. We have detected numerous microearthquakes within the main basins of the Sea of Marmara along the imaged strands of the North Anatolian Fault (NAF). We obtained more than 350 well-constrained hypocenters and nine composite focal mechanisms during 70 days of observation. Microseismicity mainly occurred along the Main Marmara Fault (MMF) in the Marmara Sea. There are a few events along the Southern Shelf. Seismic activity along the Main Marmara Fault is quite high, and focal depth distribution was shallower than 20 km along the western part of this fault, and shallower than 15 km along its eastern part. From high-resolution relative relocation studies of some of the microearthquake clusters, we suggest that the western Main Marmara Fault is subvertical and the eastern Main Marmara Fault dips to south at 45°. Composite focal mechanisms show a strike-slip regime on the western Main Marmara Fault and complex faulting (strike-slip and normal faulting) on the eastern Main Marmara Fault.  相似文献   

4.
An extensive rescue excavation has been conducted in the ancient harbor of ?stanbul (Yenikap?) by the Sea of Marmara, revealing a depositional sequence displaying clear evidence of transgression and coastal progradation during the Holocene. The basal layer of this sequence lies at 6 m below the present sea level and contains remains of a Neolithic settlement known to have been present in the area, indicating that the sea level at ~ 8-9 cal ka BP was lower than 6 m below present. Sea level advanced to its maximum at ~ 6.8-7 cal ka BP, drowning Lykos Stream and forming an inlet at its mouth. After ~ 3 cal ka BP, coastal progradation became evident. Subsequent construction of the Byzantine Harbor (Theodosius; 4th century AD) created a restricted small basin and accumulation of fine-grained sediments. The sedimentation rate was increased due to coastal progradation and anthropogenic factors during the deposition of coarse-grained sediments at the upper parts of the sequence (7th-9th centuries AD). The harbor was probably abandoned after the 11th century AD by filling up with Lykos Stream detritus and continued seaward migration of the coastline.  相似文献   

5.
Parke  Minshull  erson  White  McKenzie  Ku&#;çu  Bull  Görür  & &#;engör 《地学学报》1999,11(5):223-227
Turkey is moving westward relative to Eurasia, thereby accommodating the collision between Arabia and Eurasia. This motion is mostly taken up by strike-slip deformation along the North and East Anatolian Faults. The Sea of Marmara lies over the direct westward continuation of the North Anatolian Fault zone. Just east of the Sea of Marmara, the North Anatolian Fault splits into three strands, two of which continue into the sea. While the locations of the faults are well constrained on land, it has not yet been determined how the deformation is transferred across the Sea of Marmara, onto the faults on the west coast of Turkey. We present results from a seismic reflection survey undertaken to map the faults as they continue through the three deep Marmara Sea basins of Çlnarclk, Central Marmara and Tekirdag, in order to determine how the deformation is distributed across the Sea of Marmara, and how it is taken up on the western side of the sea. The data show active dipping faults with associated tilting of sedimentary layers, connecting the North Anatolian Fault to strike-slip faults that cut the Biga and Gallipoli Peninsulas.  相似文献   

6.
The North Anatolian Fault (NAF) zone is 1500 km long, extending almost up to the Greek mainland in the west. It is a seismically active right-lateral strike-slip fault that accommodates the relative motion between the Turkish block and Black Sea plate. The Sea of Marmara lies along the western part of the NAF and shows evidence of subsidence. In this area pure strike-slip motion of the fault zone changes into extensional strike-slip movement that is responsible for the creation of the Sea of Marmara and the North Aegean basins. The northern half of the Sea of Marmara is interpreted as a large pull-apart basin. This basin is subdivided into three smaller basins separated by strike-slip fault segments of uplifted blocks NE-SW. Basinal areas are covered by horizontally layered sedimentary sequences. Uplifted blocks have undergone compressional stress. All the blocks are subsiding and are undergoing vertical motions and rotations relative to one another. The uplifted blocks exhibit positive Bouguer gravity anomalies. According to gravity interpretation, there is relative crustal thinning under the Sea of Marmara. The northern side of the Sea of Marmara is marked by a distinctive deep-rooted magnetic anomaly, which is dissected and shifted southward by strike-slip faulting. The southern shelf areas of the Sea of Marmara are dominated by short-wavelength magnetic anomalies of shallow origin.  相似文献   

7.
Altinok  Y.  Ersoy  Ş 《Natural Hazards》2000,21(2-3):185-205
For centuries, inhabitants of coastal areas have suffered from the effects of tsunamis. Turkey, with a coastline of 8333 km, has experienced many tsunamis.Historical records reveal that, during the observation period over 3000 years, the coastal and surrounding areas of Turkey have been affected by more than ninety tsunamis. These tended to cluster around the Marmara Sea, the city of Istanbul and the gulfs of Izmit, Izmir, Fethiye and Iskenderun. Each of the tsunami occurrences surveyed in this paper deserves further individual study. The most extensive available information concerns the tsunamis associated with the Istanbul Earthquakes of 1509 and 1894, the Eastern Marmara Earthquake in 1963 and that of Izmit in 1999,which disturbed the Marmara Sea; the Earthquake of 1939 in Erzincan ineastern Anatolia; and the 1968 Bartn Earthquake, which affected Fatsa and Amasra on the Black Sea. In addition to these, it is known that a tsunami occurred in 1598 on the shores of the Black Sea in connection with an earthquake at Amasya in northern Anatolia.  相似文献   

8.
The seismically active Marmara region, located in NW Turkey, lies on the westward end of the North Anatolian Fault (NAF). The NAF is well defined on land. Previous investigations of its extension in the Marmara Sea include marine bathymetry, seismological activity and seismic profiles. In this study, faults and their configurations identified inland are extended into the Marmara Sea by means of aeromagnetic anomalies, as well as seismic and gravity profiles. The deep structure was resolved by constructing a map of the Tertiary bottom. Shallow Curie isotherm was determined by spectral analysis, indicating a thinner crust in the northern Marmara depression area with respect to the continental crust. A combination of the geophysical data allows us to propose the existence of subsidence and isostatic equilibrium in the northern Marmara Sea. A less-active zone identified in the central high zone dividing the Marmara Sea into two parts may also be deduced from the seismic data. This structural arrangement may play a key role in earthquakes that will affect the surrounding regions.  相似文献   

9.
The restricted environment of the Black Sea is particularly sensitive to climatic and oceanographic fluctuations, owing to its connection with the Mediterranean Sea via the narrow Bosphorus Strait. The exact mechanism and timing of the most recent connection between these water bodies is controversial with debate on the post-glacial history of the Black Sea being dependent on radiocarbon dating for numerical ages. Here we present new 23 accelerator mass spectrometer (AMS) radiocarbon ages on peat and bivalve molluscs, supported by the first amino acid racemization (AAR) dating of bivalve molluscs (n = 66) in the Black Sea. These data indicate infilling of the Black Sea during the early Holocene from an initial depth 107 m below sea-level, and 72 m below that of the Bosphorus Sill. These data combined with a review of previous radiocarbon ages has enabled a unique perspective on the post-glacial Black Sea. A sea-level curve based on conventional and AMS radiocarbon ages on peat and AMS-based ages on Dreissena sp. shells indicate the water-level in the earlier lake phase continued, until the early Holocene, to be lower than the Bosphorus Sill after the Younger Dryas ended. However, the absence of AMS-dated mollusc ages from the shelves of this basin older than the Younger Dryas is suggestive of sub-aerial exposure of the shelves, and comparatively lower water-levels when the Younger Dryas began. Thus post-glacial outflow from the Black Sea occurred through a lowered or open Bosphorus seaway. Basin-wide radiocarbon ages on peat indicate a prompt increase in water-level from that of the pre-existing and unconnected palaeo-lake during the earliest Holocene (9600–9200 cal a BP). Mass colonisation of the Black Sea by Mediterranean taxa did not occur until salinity had risen sufficiently, a process which took 1000 a or more from the initial transgressive event. This gradual change in salinity contrasts with the prompt transgression which would have taken ~400 a to occur.  相似文献   

10.
The Izmit Bay is an elongated semi-enclosed bay in the Marmara Sea. It is being increasingly polluted by both domestic and industrial waste discharge since 1970’s. A monitoring program was conducted between 1999-2000 to document the state of pollution in the bay. This includes the effect of Marmara (Izmit) earthquake (magnitude 7.4) that occurred in August 1999. A stable two-layer ecosystem exists in the bay throughout the year due to continuous inflows of the saltier Mediterranean and brackish Black Sea waters to the Marmara basin. Therefore, the principal biochemical characteristics of the bay are governed by the two-layer flow system over the basin. Dissolved oxygen (DO) is generally at a saturated levels in the surface layer which is 10 to 15 m thick, but it is depleted to 60–70 μM in the lower layer, exhibiting a steep gradient in the sharp halocline. When the earthquake occurred, great loads of industrial wastes were released into the bay surface waters, which enhanced primary production in the upper layer and thus large export of particulate organic matter to lower layer and eventually to the bottom. Accordingly, DO was consumed and anoxic condition was established even in the upper layer/halocline interface, the halocline and bottom waters of the eastern and central bay. In this period, concurrent increases were observed in phosphate and ammonia contents at the halocline and in deep waters whilst the nitrate was almost consumed via denitrification processes in the anoxic water. Recently, the industrial C, N and P loads increased by as much as 8 fold within five years (1995–2000) whilst domestic inputs increased by 50%. Total organic matter discharged to the bay increased more than double within the last 15 years. Besides, most factories in the region release toxic wastes into the bay after only partial treatment.  相似文献   

11.
Between 1939 and 1999 the North Anatolian fault (NAF) experienced a westward progression of eight large earthquakes over 800 km of its morphological trace. The 2000-km-long North Anatolian transform fault has also grown by westward propagation through continental lithosphere over a much longer timescale (∼10 Myr). The Sea of Marmara is a large pull-apart that appears to have been a geometrical/mechanical obstacle encountered by the NAF during its propagation. The present paper focuses on new high-resolution data on the submarine fault system that forms a smaller pull-apart beneath the Northern Sea of Marmara, between two well-known strike-slip faults on land (Izmit and Ganos faults). The outstandingly clear submarine morphology reveals a segmented fault system including pull-apart features at a range of scales, which indicate a dominant transtensional tectonic regime. There is no evidence for a single, continuous, purely strike-slip fault. This result is critical to understanding of the seismic behaviour of this region of the NAF, close to Istanbul. Additionally, morphological and geological evidence is found for a stable kinematics consistent both with the long-term displacement field determined for the past 5 Myr and with present-day Anatolia/Eurasia motion determined with GPS. However, within the Sea of Marmara region the fault kinematics involves asymmetric slip partitioning that appears to have extended throughout the evolution of the pull-apart. The loading associated with the westward propagation process of the NAF may have provided a favourable initial geometry for such a slip separation.  相似文献   

12.
Pseudoemiliana lacunosa, Gephyrocapsa oceanica and Emiliania huxleyi (Ionian) (Pleistocene–Holocene) calcareous nannoplankton zones were identified from 82 samples of 14 cores taken from 8 locations in the northeastern Sea of Marmara. The investigation indicates that the identified biozones have been alternated by tectonic activity in the 1, 5 and 6 core locations. The study area has been affected three times by tectonic activity during the Pleistocene–Holocene time interval. The first activity occured during the Early Pleistocene and the others during Holocene.  相似文献   

13.
Recent methane inventories have revealed the potential impact of gas hydrates on the global carbon cycle, and hence in climate change (Milkov, 2004). However, only a few studies have traced methane release in the geologic record. Here, we show geochemical evidence for a large scale methane release at mid-latitudes during the last deglaciation. The Sea of Marmara, an enclosed sea between the Mediterranean and Black Seas, is located in a tectonically active basin with gas hydrate expulsion and the formation of shallow gas hydrates. Since depths in the basin are shallower than 1100 m, future global temperatures are expected to have a great influence in destabilizing methane clathrates. Among the suite of biomarkers, we have focused on diplopterol and diploptene profiles in core MD012430, retrieved from the central basin in the Marmara Sea. Our results indicate that during the last 15,000 years, hopanoids showed important concentration variations with a pronounced peak during the deglaciation.The lack of a relationship between diplopterol/diploptene and phytoplanktonic biomarker concentrations, as well as a depleted isotopic composition, have linked the hopanoid maxima to methanotrophic activity, suggesting that an intense methane release occurred at the onset of deglaciation in the Marmara Sea. The vulnerability of the hydrate stability zone to changes in temperature and pressure under this range of shallow water depths, as well as the relative timing of the hopanoid maxima and sea surface temperature rise, points to thermal destabilization of hydrates as a trigger for methane release in the water column.  相似文献   

14.
《Quaternary Science Reviews》1999,18(4-5):531-540
A sapropelic layer, having an age of ca 4750 and 3500 14C y BP, was discovered at 0.90–2.35 m below the sea floor (mbsf) in gravity cores from the southern shelf of the Marmara Sea. It is a 15–50 cm thick, phosphorescent green to grey, plastic, clayey hemipelagic mud horizon, containing 1.5–2.9% organic carbon (Corg). The increase in Corg and biogenic carbonate, together with a rich planktonic foraminiferal fauna, indicate increased organic productivity and warm surface waters during the deposition of the sapropelic layer. The down-core profiles of Mn, Fe, Cu, Zn, Pb, Cr, Ni and Co suggest that the sapropelic layer was deposited through an essentially oxic water column. The benthonic foraminiferal fauna indicates reduced oxygen levels in bottomwaters. The sapropelic unit was deposited during a high stand of global sea level. Its deposition was initiated by a large input of terrestrial organic matter and nutrient-rich fresh waters under a relatively warm and wet climate. The fresh water supply caused a strong water stratification, which, in turn, together with high organic matter input, resulted in reduced oxygen levels in the bottomwaters.  相似文献   

15.
The North Anatolian Fault (NAF) is a 1200 km long dextral strike-slip fault which is part of an east-west trending dextral shear zone (NAF system) between the Anatolian and Eurasian plates. The North Anatolian shear zone widens to the west, complicating potential earthquake rupture paths and highlighting the importance of understanding the geometry of active fault systems. In the central portion of the NAF system, just west of the town of Bolu, the NAF bifurcates into the northern and southern strands, which converge, then diverge to border the Marmara Sea. At their convergence east of the Marmara Sea, these two faults are linked through the Mudurnu Valley. The westward continuation of these two fault traces is marked by further complexities in potential active fault geometry, particularly in the Marmara Sea for the northern strand, and towards the Biga Peninsula for the southern strand. Potential active fault geometries for both strands of the NAF are evaluated by comparing stress models of various fault geometries in these regions to a record of focal mechanisms and inferred paleostress from a lineament analysis. For the Marmara region, the best-fit active fault geometry consists of the northern and southern bounding faults of the Marmara basin, as the model representing this geometry better replicated primary stress orientations seen in focal mechanism data and stress field interpretations. In the Biga Peninsula region, the active geometry of the southern strand has the southern fault merging with the northern fault through a linking fault in a narrow topographic valley. This geometry was selected over the other two as it best replicated the maximum horizontal stresses determined from focal mechanism data and a lineament analysis.  相似文献   

16.
Petrochemistry of the south Marmara granitoids, northwest Anatolia, Turkey   总被引:1,自引:1,他引:0  
Post-collision magmatic rocks are common in the southern portion of the Marmara region (Kap?da?, Karabiga, Gönen, Yenice, Çan areas) and also on the small islands (Marmara, Av?a, Pa?aliman?) in the Sea of Marmara. They are represented mainly by granitic plutons, stocks and sills within Triassic basement rocks. The granitoids have ages between Late Cretaceous and Miocene, but mainly belong to two groups: Eocene in the north and Miocene in the south. The Miocene granitoids have associated volcanic rocks; the Eocene granitoids do not display such associations. They are both granodioritic and granitic in composition, and are metaluminous, calc-alkaline, medium to high-K rocks. Their trace elements patterns are similar to both volcanic-arc and calc-alkaline post-collision intrusions, and the granitoids plot into the volcanic arc granite (VAG) and collision related granite areas (COLG) of discrimination diagrams. The have high 87Sr/86Sr (0.704–0.707) and low 143Nd/144Nd (0.5124–0.5128). During their evolution, the magma was affected by crustal assimilation and fractional crystallization (AFC). Nd and Sr isotopic compositions support an origin of derivation by combined continental crustal AFC from a basaltic parent magma. A slab breakoff model is consistent with the evolution of South Marmara Sea granitoids.  相似文献   

17.
Turkey often suffers from flood-related damages and causalities as a result of intense and prolonged storms that are usually convective or cyclonic in origin. The impact is more distinctive in Aegean and Mediterranean coasts of the country where quantity and distribution of rainfall is influenced by Mediterranean cyclones, especially in late autumn and early winter. The floods sometimes became very hazardous when combined with urbanization effects, especially in the densely populated coastal communities and major cities. Severe weather was marked in the early parts of September 2009 that produced record-setting rainfall amounts across the Marmara region of Turkey and led a series of flash floods which affected ?stanbul and Tekirda? provinces especially. The overall flooding was the result of successive and persistent intense rainfall episodes over a 3-day period which produced more than 250-mm rainfall over portions of the region. The floods resulted in death of 32 people and caused extensive environmental and infrastructural damage in the region. This study provides in-depth analysis of hydrometeorological conditions that led to the occurrence of flash floods in Marmara region during 7–10 September 2009 period and also discusses non-meteorological factors that exacerbated the flooding conditions. Main meteorological settings that led to intense storms were presence of cold air in the upper atmosphere, a slow-moving quasi-stationary trough, and continuous resupply of moisture to the surface low from the warm Aegean Sea. Radar images showed the development of clusters of convective cells that remained quasi-stationary over portions of the region. The 24-h rainfall amounts varied between 100 and 253 mm in most parts of the region during the flooding period with diverse spatial patterns. The southern locations received the highest amount of the rainfall as compared to stations located in northern slopes of the region. Typical effects of orography that enhance rainfall in the coastal areas, however, were not observed during the Marmara flood. Some features of the synoptic pattern observed prior and during the flooding period, supported the back door cold front concept. This is characterized with easterly to northeasterly surface flows forced by an anticyclone, advection of cold continental air over the warm Black Sea which provided anomalous moisture to trigger cyclogenesis over the Marmara region, and falling of core of the intense rainfall over the Marmara Sea. The study concluded that although the meteorological settings were favorable for the convective rainfalls, urbanization factors, such as land use changes and occupation of flood plains, played major role in aggravating the worst flood observed in the region in recent decades.  相似文献   

18.
对珠江口和南黄海近海海域10个站位的表层沉积物中67种元素进行分析,试图揭示两海域近海表层沉积物中主要元素的地球化学特征,包括分布特征及其控制因素,并通过两海域元素地球化学特征,初步探讨近海沉积环境特征。通过总结两海域表层沉积物中元素含量及分布特征,可以发现,近海海域总体上以陆源沉积为主,除Ca和Sr之外,大多数元素表现出明显的亲陆性。珠江口海域和南黄海海域沉积物元素含量的对比研究显示,前者相对富集As、Cd、Hg、Sb、Sr、Ca、Rb、C,后者相对富集Al2O3、Zr、Hf、Sc、Rb、Ga、Cs、V、Co、Cr、Cu、Mn、Ni、K2O、Na2O、B、Ba、I等。与上地壳相比,Ag、As、Bi、Hg、Li、N、Pb、Sb、Se、Cl、Br、I在两海域表层沉积物中均发生明显富集;Mo、Sn均呈现分散趋势;Sr、CaO在南黄海海域明显贫化,K2O、Na2O、Ba则在珠江口海域表现出贫化;其他元素与上地壳元素丰度相近。  相似文献   

19.
Doklady Earth Sciences - Peculiarities and negative consequences of an anomalous algal bloom that occurred in the Sea of Marmara in the spring–summer period of 2021 were estimated based on a...  相似文献   

20.
Formerly the world's fourth largest lake by area, the Aral Sea is presently undergoing extreme desiccation due to large-scale irrigation strategies implemented in the Soviet era. As part of the INTAS-funded CLIMAN project into Holocene climatic variability and the evolution of human settlement in the Aral Sea basin, fossil diatom assemblages contained within a sediment core obtained from the Aral Sea have been applied to a diatom-based inference model of conductivity (r2 = 0.767, RMSEP = 0.469 log10 μS cm 1). This has provided a high-resolution record of conductivity and lake level change over the last ca. 1600 yr. Three severe episodes of lake level regression are indicated at ca. AD 400, AD 1195–1355 and ca. AD 1780 to the present day. The first two regressions may be linked to the natural diversion of the Amu Darya away from the Aral Sea and the failure of cyclones formed in the Mediterranean to penetrate more continental regions. Human activity, however, and in particular the destruction of irrigation facilities are synchronous with these early regressions and contributed to the severity of the observed low stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号