首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
磁铁矿和赤铁矿是自然界铁氧化物的两种主要存在形式,也是弓长岭铁矿区的主要矿石矿物,二者之间的转化曾经 被认为是氧化还原反应的结果。文中根据近几年提出的非氧化还原反应成矿理论,对弓长岭铁矿区内磁铁矿/赤铁矿之间的 转化关系进行新的解释。通过对弓长岭矿区矿石样品进行偏光显微镜和扫描电镜背散射等实验研究,发现了赤铁矿交代磁 铁矿、针铁矿交代赤铁矿、黄铁矿与磁铁矿、赤铁矿共生等现象。结合前人研究成果,从矿物组合、矿石结构以及矿物转 化前后体积变化等方面,论证了部分后生的赤铁矿是在缺氧的环境下由磁铁矿经非氧化反应转变而成,为该区后生赤铁矿 的形成现象提供了一种新的解释。  相似文献   

2.
氧化铁矿物催化分解苯酚的动力学速率及其产物特征   总被引:3,自引:0,他引:3  
本文研究了针铁矿、纤铁矿、赤铁矿和磁铁矿在过氧化氢参与下催化分解苯酚的动力学速率与溶液pH值的关系,并用紫外吸收谱测定了反应产物的谱学特征。结果表明,纤铁矿反应体系催化分解苯酚的速率常数(k)最大,其余依次为磁铁矿、针铁矿和赤铁矿。在纤铁矿反应体系中又以pH=3.8时反应速率常数最大。除赤铁矿反应体系外,当溶液pH=3~4时苯酚被完全分解,并有50%~65%的有机碳(TOC)被矿化。在pH=3.25的赤铁矿反应体系中,苯酚大多仅被转化为多酚,小部分苯环被打开形成己烯酸。当溶液pH=4~5时,苯酚一般仅被转化为多酚类化合物,但TOC基本不变。当溶液pH>5时,苯酚没有发生明显的转化和矿化现象。  相似文献   

3.
为探究香港冬季气溶胶消光特征以及细颗粒物(PM2.5)的化学组分对消光系数的贡献,本次研究利用2013年1月在香港科技大学站点测定的高时间分辨率大气气溶胶消光系数以及PM2.5化学组分的观测数据重建本地化消光系数与颗粒物化学组分浓度的经验关系式——IMPROVE公式.结果表明,观测期间PM2.5质量浓度与散射系数的日均值分别为(43.31±16.80)μg/m3和(191.57±85.34)Mm?1,散射系数与PM2.5质量浓度的相关系数R2达到0.90,对其贡献达到85.81%.散射系数在高污染和低污染阶段均是夜间高于白天,吸收系数主要在低污染阶段表现出夜间高于白天.分别对整个观测期间高污染和低污染阶段重建IMPROVE公式,发现1月的硫酸盐、硝酸盐、海盐和有机物的质量散射效率分别为2.02 m2/g、2.41 m2/g、0.41 m2/g和5.07 m2/g,元素碳和NO2的质量吸收效率分别为15.97 m2/g和0.79 m2/g,而高污染阶段,硝酸盐的质量散射效率(2.51 m2/g)相比于低污染阶段(2.03 m2/g)有明显提高.观测期间,硫酸盐对散射系数的贡献最高((54.34±10.49)%),其次是有机物((27.59±8.04)%),硝酸盐((17.54±6.86)%)和海盐((0.53±0.43)%).硫酸盐和有机物分别在夜间和白天的贡献较高,硝酸盐在高污染阶段夜间的贡献增加可能与高污染阶段夜间相对湿度的增加以及质量散射效率的增长有关.元素碳在高污染阶段对吸收系数的贡献超过90%,而NO2气体在低污染阶段对吸收系数的贡献达到22.11%.  相似文献   

4.
根据前人关于自然燃烧作用生成磁赤铁矿的两阶段模式,模拟自然燃烧作用形成磁赤铁矿的过程和条件。实验分2阶段进行,第一阶段氢气氛围300℃煅烧针铁矿2 h,煅烧产物为纳米磁铁矿;第二阶段70℃空气条件下氧化煅烧成因的纳米磁铁矿70 d。对实验两阶段样品的矿物学和磁学特性进行系统测定,结果表明,本研究的煅烧条件可获得接近理想成分的多孔纳米磁铁矿,晶粒及聚集体的粒径分别在30 nm和57 nm左右;在70℃空气氛围下磁铁矿快速向磁赤铁矿转化,70 d的实验时间里2价铁/全铁比值(Fe2+/TFe)由初始31.4%降至5.4%;纳米磁铁矿向磁赤铁矿转化伴随着矿物结晶颗粒的减少和样品总体积的增大,磁铁矿结晶学粒径缩小约17%~19%;磁化率和频率磁化率随氧化时间逐渐降低,前者主要受制于矿物物相变化,而后者与矿物粒径变化相关。模拟结果表明,第一阶段的关键是具有生成晶粒尺寸为亚微米-纳米量级的磁铁矿煅烧条件,第二阶段的关键为具备一个合适的温度条件,以能够快速、高效氧化磁铁矿为磁赤铁矿。  相似文献   

5.
对塔里木盆地西北缘库孜贡苏剖面晚白垩世-早中新世沉积物进行了热退磁及岩石磁学研究,结果表明岩石热退磁及岩石磁学特征随沉积环境可分为三种类型:潮下、台地边缘浅滩相岩石主要磁性矿物为磁铁矿及少量针铁矿、磁赤铁矿,磁性矿物含量较少、颗粒较小(假单畴),其天然剩磁强度较小,一般小于1×10-2 A/m,在250℃~500℃能获得稳定特征剩磁方向,特征剩磁由磁铁矿携带;潮间、潮上带岩石主要磁性矿物为磁铁矿,〖JP2〗并含有少量磁赤铁矿、赤铁矿、针铁矿,磁性矿物颗粒为假单畴和多畴,天然剩磁强度一般在1×10-2 ~1 A/m之间,在250℃~580℃能获得稳定特征剩磁方向,特征剩磁由磁铁矿携带;河湖相岩石主要磁性矿物为磁铁矿、赤铁矿,并含有少量磁赤铁矿、针铁矿,磁性矿物含量较多、颗粒较小(假单畴),天然剩磁强度一般在1×10-1 A/m以上,多数样品特征剩磁由赤铁矿携带,少数由磁铁矿与赤铁矿共同携带。岩石磁学研究对于在沉积环境复杂剖面进行古地磁研究具有重要的意义。  相似文献   

6.
孙猛  王英  董军  耿芳兰  董莉莉  赵然 《世界地质》2010,29(4):673-676
实验研究了含水层介质中主要铁氧化物催化H2O2 氧化地下水中硝基苯的机理和主要影响因素,为硝基苯污染地下水的原位化学修复技术提供了一定的理论依据。实验模拟在地下环境温度8 ℃ ~ 10 ℃条件下,利用动力学方程对硝基苯的衰减进行拟合,结果表明,其衰减系数K = 0. 044 3 min - 1 ; 硝基苯与H2O2 的最佳摩尔比为1∶200; 主要铁氧化物催化H2O2 氧化硝基苯能力依次为: 磁铁矿> 针铁矿> 氢氧化铁> 赤铁矿。  相似文献   

7.
以合成针铁矿为原料,通过煅烧法获得比表面积分别为85.74和22.65 m2/g的多孔纳米赤铁矿和磁赤铁矿,通过静态实验探究了针铁矿和煅烧产物的Sb(Ⅲ)吸附性能.结果 表明,Sb(Ⅲ)吸附效率为赤铁矿>磁赤铁矿>针铁矿,其前二者效率显著高于针铁矿.Sb(Ⅲ)在3种矿物表面的吸附均为快速的化学吸附,吸附在2h内即可接近平衡,符合准二级动力学反应和Freundlich等温吸附模型,为自发进行的吸热反应,升高温度有利于反应的进行.在45 ℃、pH=7的条件下,针铁矿、赤铁矿和磁赤铁矿的最大吸附量分别可达16.04、50.44和33.53 mg/g.pH对赤铁矿和磁赤铁矿的Sb(Ⅲ)吸附效率影响不大,但pH升高会导致针铁矿的吸附能力降低.CO32-、SiO44-、PO43-和胡敏酸会与Sb(Ⅲ)竞争吸附位,抑制3种矿物对Sb(Ⅲ)的吸附,但这种抑制作用只在阴离子浓度较高的条件下有效.研究认为磁赤铁矿具有更多的表面活性位和较强的磁回收能力,是优于针铁矿和赤铁矿的含Sb(Ⅲ)废水处理材料.  相似文献   

8.
本文实验研究了希瓦氏奥奈达菌株(Shewanella oneidensis MR-1,以下简称MR-1)在pH为中性的厌氧条件下还原针铁矿的过程,探讨了MR-1菌异化还原针铁矿的动力学特征。采用邻菲罗啉分光光度法检测了反应前后溶液中铁含量的变化,利用扫描电子显微镜、粉晶X射线衍射和激光拉曼光谱分析了针铁矿及其还原产物的形貌特征和物相组成。结果表明,针铁矿在厌氧条件下可被MR-1还原,生成磁铁矿、菱铁矿等次生矿物。本文认为针铁矿的微生物异化还原过程以直接接触机制为主,同时存在间接还原机制;溶液中的Fe2+与CO32-、SO42-等沉淀生成菱铁矿等次生产物,同时部分Fe2+、Fe3+离子可吸附于矿物表面,甚至能引起矿物相的转化,两者共同构成了针铁矿的次生分解路径。  相似文献   

9.
对邯邢地区白涧铁矿中磁铁矿与赤铁矿进行成因矿物学研究,精细刻画了铁的成矿过程。在岩相学观察过程中作者发现该矿床中存在2个期次的赤铁矿,其分别交代磁铁矿或被磁铁矿交代。根据磁铁矿和赤铁矿的交代关系,我们将赤铁矿划分为早、晚2个期次,并根据成矿流体的演化,将铁矿化过程划分为4个阶段。成矿流体从岩浆中分离并交代碳酸盐围岩形成矽卡岩,同时形成接触带矿(第1成矿期),随着接触带磁铁矿的形成,具有更高氧逸度的演化的流体沿着断裂带充填和交代碳酸盐地层形成早期赤铁矿(第2成矿期)。随着赤铁矿形成,氧逸度降低至磁铁矿-赤铁矿缓冲线之下,形成层间的磁铁矿(第3成矿期),SO42-转化成HS-,同时形成大量自由氧,导致成矿流体的氧逸度进一步升高,从而形成晚期赤铁矿(第4成矿期),伴随温度和氧逸度的进一步降低,成矿作用进入硫化物形成时期。整个成矿过程中氧逸度控制了成矿过程及其产物,对矽卡岩型铁矿的形成起到了主导作用。  相似文献   

10.
骆少勇  周跃飞  刘星 《地学前缘》2020,27(5):218-226
通过在滇池开展原位实验,研究探讨了湖泊沉积物中磷灰石制约水铁矿分解和转化的机制,以及二者共存时的环境效应。结果表明:将水铁矿放置到沉积物中1个月,矿物保持稳定;放置时间达到3个月时,添加磷灰石实验中水铁矿发生了显著物相转变。冬天(12—2月)实验中,转化产物随深度的变化趋势为针铁矿+磁(赤)铁矿→针铁矿+纤铁矿→针铁矿;夏天(6—9月)实验中,转化产物随深度的变化趋势为针铁矿+纤铁矿+磁(赤)铁矿→针铁矿+纤铁矿→未转化。透射电镜分析结果显示冬天实验中生成的磁性铁氧化物为纳米磁铁矿和磁赤铁矿,夏天实验中产生的则主要为纳米磁铁矿。X射线光电子能谱分析结果显示冬天表层实验样品具有较高P含量。分析表明的湖泊沉积物中磷灰石促进水铁矿转化的过程为:(1)微生物促进磷灰石溶解;(2)磷灰石溶解释放的P促进铁还原菌生长;(3)铁还原菌促进水铁矿还原;(4)水铁矿还原产生的溶解态Fe2+催化水铁矿向针铁矿、纤铁矿和磁铁矿转化。冬天及沉积氧化-还原界面最适宜磷灰石分解菌和铁还原菌生长,水铁矿的转化和P释放能力也更强,相应地内源磷释放的风险也更大。  相似文献   

11.
The oxide mineralogy and rock magnetic properties of unmineralised banded iron‐formations in selected portions of four drillholes in the Hamersley Basin, Western Australia are reviewed. In all four drillholes, petrographic studies indicate that primary euhedral to subhedral hematite is partially replaced by magnetite as a result of subsolidus reduction. All drillholes show partial recrystallisation of the secondary magnetite, suggesting that early subsolidus reduction was probably a regional event occurring during prograde metamorphism. Incomplete replacement of primary hematite by magnetite within and between sedimentary band structures indicates that equilibration in the magnetite stability field was not reached even at the mesoband scale. Subsequent subsolidus oxidation of magnetite and the formation of a second‐generation hematite are documented in only two of the drillholes. Goethite‐filled veins and thick selvages of goethite around some veins reflect movement of circulating oxidising fluids. The absence of goethite and second‐generation hematite in two of the drillholes indicates that subsolidus oxidation is not a regional event, but very much localised. Rapid changes in down‐hole susceptibility measurements correlate directly with detailed petrographic results as susceptibility readings change with the hematite/magnetite ratio on a mesoband scale. Acquisition of the main remanence correlates with the formation of hematite as the primary oxide phase followed by partial replacement by magnetite as a result of subsolidus reduction, supporting regional models requiring pre‐folding remanence. The strong orientation of the primary hematite parent parallel to band structures in the banded iron‐formations has influenced the direction of crystallisation remanent magnetisation during subsolidus reduction to the magnetite daughter. The strong planar alignment has also produced a planar magnetic fabric and marked anisotropy of magnetic susceptibility. A natural remanent magnetisation overprint and reduction in anisotropy of magnetic susceptibility are only recorded in samples that have undergone subsolidus oxidation and the recognition of localised post‐metamorphic oxidation overprinting can also explain ore deposit models requiring post‐folding remanence. The relative timing of and between oxidising fluid events is not known, but both petrographic and rock magnetic evidence to date suggests that there was at least one and probably two post‐folding oxidising events in the area of study.  相似文献   

12.
Iron ore deposits are generally described in terms of size, grade and chemical composition rather than the mineralogical and microstructural characteristic of different ore types. It is essential, however, to know the morphology, microstructure and chemical composition of individual minerals for optimum mineral processing. Goethite is reported to occur as a ubiquitous phase in many iron ore types and is particularly abundant in the Precambrian banded iron ore formation of north Orissa, India. Goethite from the Bonai–Keonjhar Belt in Orissa has been examined in terms of its morphology and microstructure in relation to chemical composition. Electron microscopy indicated several goethite morphotypes including botryoidal, nodular, spheroidal, platy, stalactitic and flaky. These different morphotypes display intergranular, intragranular, wedge, reniform, comb, prismatic, cavity-line and bead microstructures. In situ analysis using electron probe microanalyzer indicated a wide compositional variation among the different morphotypes and microstructures. Goethite replacing hematite is generally devoid of deleterious elements while re-precipitated goethite generally contains adsorbed alumina, silica and/or phosphorus. Nodular goethite commonly has a high phosphorus level while botryoidal, spheroidal and platy goethite often contains increased combined alumina and silica. Goethite having a reniform, wedge, intergranular or intragranular microstructure is highly water bearing and cryptocrystalline in nature. During dehydration, bead, comb, cavity-lined or prismatic goethite develop, which are more crystalline and which have a higher iron concentration. Goethite with a wedge, prismatic or bead-type microstructure has a higher adsorption of silica (2–4%), while goethite having an intergranular, bead or prismatic microstructure invariably contains appreciable phosphorus, generally at levels deleterious to processing.  相似文献   

13.
Due to the strong reducing capacity of ferrous Fe, the fate of Fe(II) following dissimilatory iron reduction will have a profound bearing on biogeochemical cycles. We have previously observed the rapid and near complete conversion of 2-line ferrihydrite to goethite (minor phase) and magnetite (major phase) under advective flow in an organic carbon-rich artificial groundwater medium. Yet, in many mineralogically mature environments, well-ordered iron (hydr)oxide phases dominate and may therefore control the extent and rate of Fe(III) reduction. Accordingly, here we compare the reducing capacity and Fe(II) sequestration mechanisms of goethite and hematite to 2-line ferrihydrite under advective flow within a medium mimicking that of natural groundwater supplemented with organic carbon. Introduction of dissolved organic carbon upon flow initiation results in the onset of dissimilatory iron reduction of all three Fe phases (2-line ferrihydrite, goethite, and hematite). While the initial surface area normalized rates are similar (∼10−11 mol Fe(II) m−2 g−1), the total amount of Fe(III) reduced over time along with the mechanisms and extent of Fe(II) sequestration differ among the three iron (hydr)oxide substrates. Following 16 d of reaction, the amount of Fe(III) reduced within the ferrihydrite, goethite, and hematite columns is 25, 5, and 1%, respectively. While 83% of the Fe(II) produced in the ferrihydrite system is retained within the solid-phase, merely 17% is retained within both the goethite and hematite columns. Magnetite precipitation is responsible for the majority of Fe(II) sequestration within ferrihydrite, yet magnetite was not detected in either the goethite or hematite systems. Instead, Fe(II) may be sequestered as localized spinel-like (magnetite) domains within surface hydrated layers (ca. 1 nm thick) on goethite and hematite or by electron delocalization within the bulk phase. The decreased solubility of goethite and hematite relative to ferrihydrite, resulting in lower Fe(III)aq and bacterially-generated Fe(II)aq concentrations, may hinder magnetite precipitation beyond mere surface reorganization into nanometer-sized, spinel-like domains. Nevertheless, following an initial, more rapid reduction period, the three Fe (hydr)oxides support similar aqueous ferrous iron concentrations, bacterial populations, and microbial Fe(III) reduction rates. A decline in microbial reduction rates and further Fe(II) retention in the solid-phase correlates with the initial degree of phase disorder (high energy sites). As such, sustained microbial reduction of 2-line ferrihydrite, goethite, and hematite appears to be controlled, in large part, by changes in surface reactivity (energy), which is influenced by microbial reduction and secondary Fe(II) sequestration processes regardless of structural order (crystallinity) and surface area.  相似文献   

14.
The BIF-hosted iron ore system represents the world's largest and highest grade iron ore districts and deposits. BIF, the precursor to low- and high-grade BIF hosted iron ore, consists of Archean and Paleoproterozoic Algoma-type BIF (e.g., Serra Norte iron ore district in the Carajás Mineral Province), Proterozoic Lake Superior-type BIF (e.g., deposits in the Hamersley Province and craton), and Neoproterozoic Rapitan-type BIF (e.g., the Urucum iron ore district).The BIF-hosted iron ore system is structurally controlled, mostly via km-scale normal and strike-slips fault systems, which allow large volumes of ascending and descending hydrothermal fluids to circulate during Archean or Proterozoic deformation or early extensional events. Structures are also (passively) accessed via downward flowing supergene fluids during Cenozoic times.At the depositional site the transformation of BIF to low- and high-grade iron ore is controlled by: (1) structural permeability, (2) hypogene alteration caused by ascending deep fluids (largely magmatic or basinal brines), and descending ancient meteoric water, and (3) supergene enrichment via weathering processes. Hematite- and magnetite-based iron ores include a combination of microplaty hematite–martite, microplaty hematite with little or no goethite, martite–goethite, granoblastic hematite, specular hematite and magnetite, magnetite–martite, magnetite-specular hematite and magnetite–amphibole, respectively. Goethite ores with variable amounts of hematite and magnetite are mainly encountered in the weathering zone.In most large deposits, three major hypogene and one supergene ore stages are observed: (1) silica leaching and formation of magnetite and locally carbonate, (2) oxidation of magnetite to hematite (martitisation), further dissolution of quartz and formation of carbonate, (3) further martitisation, replacement of Fe silicates by hematite, new microplaty hematite and specular hematite formation and dissolution of carbonates, and (4) replacement of magnetite and any remaining carbonate by goethite and magnetite and formation of fibrous quartz and clay minerals.Hypogene alteration of BIF and surrounding country rocks is characterised by: (1) changes in the oxide mineralogy and textures, (2) development of distinct vertical and lateral distal, intermediate and proximal alteration zones defined by distinct oxide–silicate–carbonate assemblages, and (3) mass negative reactions such as de-silicification and de-carbonatisation, which significantly increase the porosity of high-grade iron ore, or lead to volume reduction by textural collapse or layer-compaction. Supergene alteration, up to depths of 200 m, is characterised by leaching of hypogene silica and carbonates, and dissolution precipitation of the iron oxyhydroxides.Carbonates in ore stages 2 and 3 are sourced from external fluids with respect to BIF. In the case of basin-related deposits, carbon is interpreted to be derived from deposits underlying carbonate sequences, whereas in the case of greenstone belt deposits carbonate is interpreted to be of magmatic origin. There is only limited mass balance analyses conducted, but those provide evidence for variable mobilization of Fe and depletion of SiO2. In the high-grade ore zone a volume reduction of up to 25% is observed.Mass balance calculations for proximal alteration zones in mafic wall rocks relative to least altered examples at Beebyn display enrichment in LOI, F, MgO, Ni, Fe2O3total, C, Zn, Cr and P2O5 and depletions of CaO, S, K2O, Rb, Ba, Sr and Na2O. The Y/Ho and Sm/Yb ratios of mineralised BIF at Windarling and Koolyanobbing reflect distinct carbonate generations derived from substantial fluid–rock reactions between hydrothermal fluids and igneous country rocks, and a chemical carbonate-inheritance preserved in supergene goethite.Hypogene and supergene fluids are paramount for the formation of high-grade BIF-hosted iron ore because of the enormous amount of: (1) warm (100–200 °C) silica-undersaturated alkaline fluids necessary to dissolve quartz in BIF, (2) oxidized fluids that cause the oxidation of magnetite to hematite, (3) weakly acid (with moderate CO2 content) to alkaline fluids that are necessary to form widespread metasomatic carbonate, (4) carbonate-undersaturated fluids that dissolve the diagenetic and metasomatic carbonates, and (5) oxidized fluids to form hematite species in the hypogene- and supergene-enriched zone and hydroxides in the supergene zone.Four discrete end-member models for Archean and Proterozoic hypogene and supergene-only BIF hosted iron ore are proposed: (1) granite–greenstone belt hosted, strike-slip fault zone controlled Carajás-type model, sourced by early magmatic (± metamorphic) fluids and ancient “warm” meteoric water; (2) sedimentary basin, normal fault zone controlled Hamersley-type model, sourced by early basinal (± evaporitic) brines and ancient “warm” meteoric water. A variation of the latter is the metamorphosed basin model, where BIF (ore) is significantly metamorphosed and deformed during distinct orogenic events (e.g., deposits in the Quadrilátero Ferrífero and Simandou Range). It is during the orogenic event that the upgrade of BIF to medium- and high-grade hypogene iron took place; (3) sedimentary basin hosted, early graben structure controlled Urucum-type model, where glaciomarine BIF and subsequent diagenesis to very low-grade metamorphism is responsible for variable gangue leaching and hematite mineralisation. All of these hypogene iron ore models do not preclude a stage of supergene modification, including iron hydroxide mineralisation, phosphorous, and additional gangue leaching during substantial weathering in ancient or Recent times; and (4) supergene enriched BIF Capanema-type model, which comprises goethitic iron ore deposits with no evidence for deep hypogene roots. A variation of this model is ancient supergene iron ores of the Sishen-type, where blocks of BIF slumped into underlying karstic carbonate units and subsequently experienced Fe upgrade during deep lateritic weathering.  相似文献   

15.
The Madoonga iron ore body hosted by banded iron formation (BIF) in the Weld Range greenstone belt of Western Australia is a blend of four genetically and compositionally distinct types of high-grade (>55 wt% Fe) iron ore that includes: (1) hypogene magnetite–talc veins, (2) hypogene specular hematite–quartz veins, (3) supergene goethite–hematite, and (4) supergene-modified, goethite–hematite-rich detrital ores. The spatial coincidence of these different ore types is a major factor controlling the overall size of the Madoonga ore body, but results in a compositionally heterogeneous ore deposit. Hypogene magnetite–talc veins that are up to 3 m thick and 50 m long formed within mylonite and shear zones located along the limbs of isoclinal, recumbent F1 folds. Relative to least-altered BIF, the magnetite–talc veins are enriched in Fe2O3(total), P2O5, MgO, Sc, Ga, Al2O3, Cl, and Zr; and depleted in SiO2 and MnO2. Mafic igneous countryrocks located within 10 m of the northern contact of the mineralised BIF display the replacement of primary igneous amphibole and plagioclase, and metamorphic chlorite by hypogene ferroan chlorite, talc, and magnetite. Later-forming, hypogene specular hematite–quartz veins and their associated alteration halos partly replace magnetite–talc veins in BIF and formed during, to shortly after, the F2-folding and tilting of the Weld Range tectono-stratigraphy. Supergene goethite–hematite ore zones that are up to 150 m wide, 400 m long, and extend to depths of 300 m replace least-altered BIF and existing hypogene alteration zones. The supergene ore zones formed as a result of the circulation of surface oxidised fluids through late NNW- to NNE-trending, subvertical brittle faults. Flat-lying, supergene goethite–hematite-altered, detrital sediments are concentrated in a paleo-topographic depression along the southern side of the main ENE-trending ridge at Madoonga. Iron ore deposits of the Weld Range greenstone belt record remarkably similar deformation histories, overprinting hypogene alteration events, and high-grade Fe ore types to other Fe ore deposits in the wider Yilgarn Craton (e.g. Koolyanobbing and Windarling deposits) despite these Fe camps being presently located more than 400 km apart and in different tectono-stratigraphic domains. Rather than the existence of a synchronous, Yilgarn-wide, Fe mineralisation event affecting BIF throughout the Yilgarn, it is more likely that these geographically isolated Fe ore districts experienced similar tectonic histories, whereby hypogene fluids were sourced from commonly available fluid reservoirs (e.g. metamorphic, magmatic, or both) and channelled along evolving structures during progressive deformation, resulting in several generations of Fe ore.  相似文献   

16.
The Nkout deposit is part of an emerging iron ore province in West and Central Africa. The deposit is an oxide facies iron formation comprising fresh magnetite banded iron formation (BIF) at depth, which weathers and oxidises towards the surface forming caps of high grade hematite/martite–goethite ores. The mineral species, compositions, mineral associations, and liberation have been studied using automated mineralogy (QEMSCAN®) combined with whole rock geochemistry, mineral chemistry and mineralogical techniques. Drill cores (saprolitic, lateritic, BIF), grab and outcrop samples were studied and divided into 4 main groups based on whole rock Fe content and a weathering index. The groups are; enriched material (EM), weathered magnetite itabirite (WMI), transitional magnetite itabirite (TMI) and magnetite itabirite (MI). The main iron minerals are the iron oxides (magnetite, hematite, and goethite) and chamosite. The iron oxides are closely associated in the high grade cap and liberation of them individually is poor. Liberation increases when they are grouped together as iron oxides. Chamosite significantly lowers the liberation of the iron oxides. Automated mineralogy by QEMSCAN® (or other similar techniques) can distinguish between Fe oxides if set up and calibrated carefully using the backscattered electron signal. Electron beam techniques have the advantage over other quantitative mineralogy techniques of being able to determine mineral chemical variants of ore and gangue minerals, although reflected light optical microscopy remains the most sensitive method of distinguishing closely related iron oxide minerals. Both optical and electron beam automated mineralogical methods have distinct advantages over quantitative XRD in that they can determine mineral associations, liberation, amorphous phases and trace phases.  相似文献   

17.
几种铁(氢)氧化物对溶液中磷的吸附作用对比研究   总被引:2,自引:0,他引:2  
铁(氢)氧化物不仅是土壤中广泛存在的矿物,也是重要的矿物资源。表生地质作用形成的针铁矿、赤铁矿和无定形氢氧化铁都具有纳米尺度,具有很高的表面积,表现出对磷的专性吸附,是低浓度磷的潜在吸附材料。本文通过铁(氢)氧化物对水溶液中磷酸根的等温吸附实验,初步对比研究了针铁矿、合成氧化铁黄、赤铁矿和无定形氢氧化铁对水中低浓度磷的吸附作用。结果表明,无定形氢氧化铁对水溶液中磷酸根的吸附能力最强(对低浓度磷的吸附达到5.5mg/g),其次是氧化铁黄和针铁矿,赤铁矿的吸附能力最差。几种铁(氢)氧化物对磷吸附容量的差别主要受比表面积控制。无定形氢氧化铁、合成氧化铁黄、针铁矿、赤铁矿对磷的吸附符合Freundlich等温方程。针铁矿和赤铁矿对磷的吸附动力学符合双常数速率方程。  相似文献   

18.
尹继才  刘卫东 《地球学报》2007,28(6):615-619
本文通过对红山古玉孔洞内球粒状磁铁矿、针铁矿、赤铁矿和金属铁等铁质成分的研究,并与宇宙尘和古生代海洋沉积形成的鲕状赤铁矿进行对比,论证了磁铁矿等铁质矿物球粒的成因.运用这一研究成果,可作为识别红山古玉的一种有效的手段.  相似文献   

19.
The iron mineralization is hosted in carbonate beds of the Garagu Formation (Early Cretaceous) at Gara Mountain, Duhok Governorate, Kurdistan Region, NE Iraq. The Garagu Formation is composed of a series of limestone and siltstone beds with iron-rich beds in the middle part. The iron-rich limestones are iron-rich oolitic grainstone and bioclastic wackestone with hematite and goethite minerals. Geochemical results drawn from this study indicate that the percentage of iron in these beds reaches 19.73 %. Moreover, petrographical investigation of thin and polished sections reveals the presence of different types of fossils, indicating an open marine interior platform depositional environment. Different iron minerals, including hematite, goethite, siderite, pyrite and magnetite, were identified in the sections, and their geneses were related to syngenetic and diagenetic processes. The geochemical distribution of major and trace elements, as well as the V/Ni, V/(V+Ni), V/Cr and Sr/Ba ratios, indicates a reducing environment during the precipitation of carbonate sediments and a subsequent oxidizing condition during the concentration of iron minerals via diagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号