首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A calcic skarn deposit occurs along the contact zone between Oligo-Miocene Çatalda? Granitoid and Mesozoic limestones in Susurluk, northwestern Turkey. The skarn zone with little or no retrograde stage is represented by fluid inclusions with high homogenization temperatures (up to >600 °C) and a wide range of salinity (12 to >70 wt.% NaCl). Pluton-derived fluids facilitated occurrence of continuous prograde reactions in the country rocks (particularly in the proximal zone) and oxygen isotopic depletion in calc-silicate and calcite minerals. δ18O of anhydrous minerals within proximal and distal zones indicate that skarn-forming fluids had a magmatic origin. The δ18O values are 5.93–9.08‰ (mean 6.8‰) for garnet, 4.08–9.94‰ (mean 6.4‰) for pyroxene, 4.89–7.92‰ (mean 6.4‰) for wollastonite and 6.65–8.28‰ (mean 7.5‰) for vesuvianite. Temperatures estimated by isotopic compositions of mineral pairs are significantly lower than those measured from the fluid inclusions, indicating that isotopic equilibrium is not preserved between the skarn minerals. δ18O and δ13C values are systematically depleted from marbles to skarn carbonates. Calc-silicate forming reactions and permeability increase triggered by volatilization and consequent strong infiltration of H2O-rich siliceous fluids into the system promoted fluid–rock interaction causing isotopic resetting and isotopic depletion of silicates (e.g. pyroxene and wollastonite) and skarn calcites.  相似文献   

2.
The skarn‐type tungsten deposit of the Date‐Nagai mine is genetically related to the granodiorite batholith of the Iidateyama body. Skarn is developed along the contact between pelitic hornfels and marble that remains as a small roof pendant body directly above the granodiorite batholith. Zonal arrangement of minerals is observed in skarn. The zonation consists of wollastonite, garnet, garnet‐epidote, and vesuvianite‐garnet zones, from marble to hornfels. Sheelite is included in garnet, garnet‐epidote, and vesuvianite‐garnet zones. The oxygen isotope values of skarn minerals were obtained as δ18O = 4.2–7.7‰ for garnet, 5.9–6.9‰ for vesuvianite, ?0.3–3.4‰ for scheelite, 6.0–10.9‰ for quartz, and 8.2‰ for muscovite. The temperature of skarn‐formation was calculated from oxygen isotopic values of scheelite‐quartz pairs to be 288°C. Calculated oxygen isotope values of fluid responsible for skarn minerals were 6.1–9.5‰ for garnet, 1.2–4.8‰ for scheelite, ?1.3‐3.6‰ for quartz, and 4.5‰ for muscovite. Garnet precipitated from the fluids of different δ18O values from scheelite, quartz, and muscovite. These δ18O values suggest that the origin of fluid responsible for garnet was magmatic water, while evidence for the presence of a meteoric component in the fluids responsible for middle to later stages minerals was confirmed.  相似文献   

3.
The Yangla Cu deposit is the largest Cu skarn deposit in the Jinshajiang tectonic belt. Based on the detailed observation of crosscutting relationships, three mineralization stages (i.e., pre-ore, ore and supergene) have been identified in the Yangla deposit. The pre-ore stage is dominated by prograde skarn. The ore stage is characterized by the precipitation of hydrous silicate minerals, Fe-oxides, Fe-Cu-Mo-sulfides, quartz and calcite, whose mineral assemblages were formed in the early and late sub-ore stages. The early sub-ore stage is marked by retrograde alteration with the deposition of hydrous silicate minerals (e.g., actinolite, epidote and chlorite), Fe-oxides, abundant Fe-Cu-Mo-sulfides, quartz and minor calcite. Whilst, the late sub-ore stage, associated with silicic and carbonate alteration, is represented by widespread thick quartz or calcite veins with disseminated pyrite, chalcopyrite, galena and sphalerite. We present new carbon-oxygen (C-O) isotopic compositions of the ore-hosting marble and hydrothermal calcite of this deposit. The hydrothermal calcite in the Yangla deposit was precipitated from both the early and late sub-ore stages. Calcite I from the early sub-ore stage is anhedral, and occurs as spot in the skarn or locally replaces the skarn minerals. Calcite II from the late sub-ore stage is distinguished by being coarse-grained, subhedral to euhedral and its occurrence in thick veins. Calcite I contains lower δ13CPDB (−7.0‰ to −5.0‰) and δ18OSMOW (7.2‰ to 12.7‰) than Calcite II (δ13CPDB = −4.5‰ to −2.3‰; δ18OSMOW = 10.7‰ to 19.4‰). In the δ13CPDB vs. δ18OSMOW diagram, the Calcite I and Calcite II data fall close to the igneous carbonatite field and between the fields of igneous carbonatite and marine carbonates, respectively. This suggests a dominantly magmatic origin for the early sub-ore fluids, and there might have been increasing carbonate wall rock involvement towards the late sub-ore stage. The ore-hosting marble (δ13CPDB = −4.8‰ to −0.3‰; δ18OSMOW = 10.2‰ to 23.9‰) also shows a positive δ13CPDB vs. δ18OSMOW correlation, which is interpreted to reflect the decreasing alteration intensity during the interactions between the hydrothermal fluids and ore-hosting carbonates. Simulated calculation suggests that both the Calcite I and Calcite II precipitated at 350 °C to 250 °C and 250 °C to 150 °C, respectively. We proposed that CO2 degassing and water/rock interactions were likely the two major processes that precipitated the calcite and led to the observed C-O isotopic features of the Yangla Cu deposit.  相似文献   

4.
Nine marble horizons from the granulite facies terrane of southern India were examined in detail for stable carbon and oxygen isotopes in calcite and carbon isotopes in graphite. The marbles in Trivandrum Block show coupled lowering of δ13C and δ18O values in calcite and heterogeneous single crystal δ13C values (? 1 to ? 10‰) for graphite indicating varying carbon isotope fractionation between calcite and graphite, despite the granulite facies regional metamorphic conditions. The stable isotope patterns suggest alteration of δ13C and δ18O values in marbles by infiltration of low δ13C–δ18O‐bearing fluids, the extent of alteration being a direct function of the fluid‐rock ratio. The carbon isotope zonation preserved in graphite suggests that the graphite crystals precipitated/recrystallized in the presence of an externally derived CO2‐rich fluid, and that the infiltration had occurred under high temperature and low fO2 conditions during metamorphism. The onset of graphite precipitation resulted in a depletion of the carbon isotope values of the remaining fluid+calcite carbon reservoir, following a Rayleigh‐type distillation process within fluid‐rich pockets/pathways in marbles resulting in the observed zonation. The results suggest that calcite–graphite thermometry cannot be applied in marbles that are affected by external carbonic fluid infiltration. However, marble horizons in the Madurai Block, where the effect of fluid infiltration is not detected, record clear imprints of ultrahigh temperature metamorphism (800–1000 °C), with fractionations reaching <2‰. Zonation studies on graphite show a nominal rimward lowering δ13C on the order of 1 to 2‰. The zonation carries the imprint of fluid deficient/absent UHT metamorphism. Commonly, calculated core temperatures are > 1000 °C and would be consistent with UHT metamorphism.  相似文献   

5.
《Gondwana Research》2001,4(3):377-386
The Kerala Khondalite belt is a Proterozoic metasupracrustal granulite facies terrain in southern India comprising garnet-biotite gneiss, garnet-sillimanite gneiss and orthopyroxene granulites as major rock types. Calc-silicate rocks and marbles, occurring as minor lithologies in the Kerala Khondalite Belt, show different mineral assemblages and reaction histories of which indicate a metamorphic P-T-fluid history dominated by internal fluid buffering during the peak metamorphism, followed by external fluid influx during decompression. The carbon and oxygen isotopic compositions of calcite from three representative metacarbonate localities show contrasting evolutionary trends. The Ambasamudram marbles exhibit carbon and oxygen isotope ratios (δ13C ∼ 0‰ and δ18O ∼ 20‰) typical of middle to late Proterozoic marine carbonate sediments with minor variation ascribed to the isotopic exchange due to the devolatilization reactions. The δ13C and δ18O values of ∼ −9‰ and 11‰, respectively, for calcite from calc-silicate rocks at Nuliyam are considerably low and heterogeneous. The wollastonite formation here, possibly corresponds to an earlier event of fluid infiltration during prograde to peak metamorphism, which resulted in decarbonation and isotope resetting. Further, petrologic evidence supports a model of late carbonic fluid infiltration that has partially affected the calc-silicate rocks, with subsequent isotope resetting, more towards the contact between calc-silicate rock and charnockite. At Korani, only oxygen isotopes have been significantly lowered (δ18O ∼ 13‰) and the process involved might be a combination of metamorphic devolatilization accompanied by an aqueous fluid influx, supported by petrologic evidence. The stable isotope signatures obtained from the individual localities, thus indicate heterogeneous patterns of fluid evolution history within the same crustal segment.  相似文献   

6.
Abstract Granulite facies marbles from the Upper Calcsilicate Unit of the Reynolds Range, central Australia, contain metre-scale wollastonite-bearing layers formed by infiltration of water-rich (XCO2= 0.1–0.3) fluids close to the peak of regional metamorphism at c. 700° C. Within the wollastonite marbles, zones that contain <10% wollastonite alternate on a millimetre scale with zones containing up to 66% wollastonite. Adjacent wollastonite-free marbles contain up to 11% quartz that is uniformly distributed. This suggests that, although some wollastonite formed by the reaction calcite + quartz = wollastonite + CO2, the wollastonite-rich zones also underwent silica metasomatism. Time-integrated fluid fluxes required to cause silica metasomatism are one to two orders of magnitude higher than those required to hydrate the rocks, implying that time-integrated fluid fluxes varied markedly on a millimetre scale. Interlayered millimetre -to centimetre-thick marls within the wollastonite marbles contain calcite + quartz without wollastonite. These marls were probably not infiltrated by significant volumes of water-rich fluids, providing further evidence of local fluid channelling. Zones dominated by grandite garnet at the margins of the marl layers and marbles in the wollastonite-bearing rocks probably formed by Fe metasomatism, and may record even higher fluid fluxes. The fluid flow also reset stable isotope ratios. The wollastonite marbles have average calcite (Cc) δ18O values of 15.4 ± 1.6% that are lower than the average δ18O(Cc) value of wollastonite-free marbles (c. 17.2 ± 1.2%). δ13C(Cc) values for the wollastonite marbles vary from 0.4% to as low as -5.3%, and correlations between δ18O(Cc) and δ13C(Cc) values probably result from the combination of fluid infiltration and devolatilization. Fluids were probably derived from aluminous pegmatites, and the pattern of mineralogical and stable isotope resetting implies that fluid flow was largely parallel to strike.  相似文献   

7.
High-temperature, intermediate-pressure calc-silicate marbles occur in the granulite-facies terrain of the La Huerta Range in the Province of San Juan, NW-Argentina, in three bulk-compositional varieties: Type (1) dolomite-absent scapolite-wollastonite-grandite-clinopyroxene-quartz—calcite marbles; Type (2) diopside-forsterite-spinel-corundum—calcite marbles with dolomite exolution lamellae in calcite; Type (3) serpentinized forsterite-spinel-dolomite marbles. An isobaric cooling path from peak-metamorphic conditions of 860°C to 750°C at 6.5 kbar is inferred from scapolite-wollastonite-grandite reaction textures in Type (1) and is consistent with cooling after an advective heat input from related gabbroic and tonalitic intrusive bodies. Stable carbon and oxygen isotope geochemistry was used to decipher the fluid/rock evolution of the three marble types. An interpreted four-stage temperature-time-fluid flow path comprises: (1) infiltration of pre-peak-metamorphic fluids, depleted in δ18O, that caused a shift of primary sedimentary δ18O ratios to lower values (19.6–20.0); (2) syn-metamorphic fluid liberation from Type (1) marbles with evidence for processes close to batch devolatilization that caused a weak coupled 13C and 18O depletion during prograde metamorphism. A different devolatilization behaviour, close to Rayleigh fractionation, texturally associated with fold settings indicates that granulite-facies fluid flow was focused rather than pervasive; (3) H2O-absent conditions were dominant when coronal grandite formed during incipient high-temperature isobaric cooling at the expense of scapolite and wollastonite in the Type (1) marbles; (4) intense post-peak- hydration of Type (2) and Type (3) marbles is the last recognizable metasomatic event. In combination, the three marble types record fluid infiltration both before and after the metamorphic peak.  相似文献   

8.
An extensive humite‐bearing marble horizon within a supracrustal sequence at Ambasamudram, southern India, was studied using petrological and stable isotopic techniques to define its metamorphic history and fluid characteristics. At peak metamorphic temperatures of 775±73°C, based on calcite‐graphite carbon isotope thermometry, the mineral assemblages suggest layer‐by‐layer control of fluid compositions. Clinohumite + calcite‐bearing assemblages suggest XCO2 < 0.4 (at 700°C and 5 kbar), calcite + forsterite + K‐feldspar‐bearing assemblages suggest XCO2>0.9 (at 790°C); and local wollastonite + scapolite + grossular‐bearing zones formed at XCO2 of c. 0.3. Retrograde reaction textures such as scapolite + quartz symplectites after feldspar and calcite and replacement of dolomite + diopside or tremolite+dolomite after calcite+forsterite or calcite+clinohumite are indicative of retrogression under high XCO2 conditions. Calcite preserves late Proterozoic carbon and oxygen isotopic signatures and the marble lacks evidence for extensive retrograde fluid infiltration, while during prograde metamorphism the possible infiltration of aqueous fluids did not produce significant isotopic resetting. Isotopic zonation of calcite and graphite grains was likely produced by localized CO2 fluid infiltration during retrogression. Contrary to the widespread occurrence of humite‐marbles related to retrograde aqueous fluid infiltration, the Ambasamudram humite‐marbles record a prograde‐to‐peak metamorphic humite formation and retrogression under conditions of low XH2O.  相似文献   

9.
At Naxos, Greece, a migmatite dome is surrounded by schists and marbles of decreasing metamorphic grade. Sillimanite, kyanite, biotite, chlorite, and glaucophane zones are recognized at successively greater distances from the migmatite dome. Quartz-muscovite and quartz-biotite oxygen isotope and mineralogie temperatures range from 350 to 700°C.The metamorphic complex can be divided into multiple schist-rich (including migmatites) and marblerich zones. The δ18O values of silicate minerals in migmatite and schist units and quartz segregations in the schist-rich zones decrease with increase in metamorphic grades. The calculated δ18OH2O values of the metamorphic fluids in the schist-rich zones decrease from about 15‰ in the lower grades to an average of about 8.5‰ in the migmatite.The δD values of OH-minerals (muscovite, biotite, chlorite, and glaucophane) in the schist-rich zones also decrease with increase in grade. The calculated δDH2O values for the metamorphic fluid decrease from ?5‰ in the glaucophane zone to an average of about ?70‰ in the migmatite. The δD values of water in fluid inclusions in quartz segregations in the higher grade rocks are consistent with this trend.Theδ18O values of silicate minerals and quartz segregations in marble-rich zones are usually very large and were controlled by exchange with the adjacent marbles. The δD values of the OH minerals in some marble-rich zones may reflect the value of water contained in the rocks prior to metamorphism.Detailed data on 20 marble units show systematic variations of δ18O values which depend upon metamorphic grade. Below the 540°C isograd very steep δ18O gradients at the margins and large δ18O values in the interior of the marbles indicate that oxygen isotope exchange with the adjacent schist units was usually limited to the margins of the marbles with more exchange occurring in the stratigraphic bottom than in the top margins. Above the 540°C isograd lower δ18O values occur in the interior of the marble units reflecting a greater degree of recrystallization and the occurrence of Ca-Mg-silicates.Almost all the δ13C values of the marbles are in the range of unaltered marine limestones. Nevertheless, the δ13C values of most marble units show a general correlation with δ18O values.The CO2H2O mole ratio of fluid inclusions in quartz segregations range from 0.01 to 2. Theδ13C values of the CO2 range from ?8.0 to 3.6‰ and indicate that at some localities CO2 in the metamorphic fluid was not in carbon isotopic equilibrium with the marbles.  相似文献   

10.
Vein-controlled retrograde infiltration of H2O-CO2 fluids into Dalradian epidote amphibolite facies rocks of the SW Scottish Highlands under greenschist facies conditions resulted in alteration of calcite-rich marble bands to dolomite and spatially associated 18O enrichment of about 10%. on a scale of metres. Fluid inclusion data indicate that the retrograde fluid was an H2O-salt mixture with a low CO2 content, and that the temperature of the fluid was about 400d? C. Detailed petrographic and textural (backscattered electron imaging) studies at one garnet-grade locality show that advection of fluid into marbles proceeded by a calcite-calcite grain edge flow mechanism, while alteration of non-carbonate wall-rock is associated with veinlets and microcracks. Stable isotopic analysis of carbonates from marble bands provides evidence for advection of isotopic fronts through carbonate wall-rocks perpendicular to dolomite veins, and fluid fluxes in the range 2.4–28.6 m3/m2 have been computed from measured advection distances. Coincidence of isotope and reaction fronts is considered to result from reaction-enhanced kinetics of isotope exchange at the reaction front. Front advection distances are related to the proportion of calcite to quartz in each marble band, with the largest advection distance occurring in nearly pure calcite matrix. This relationship indicates that fluid flow in carbonates is only possible along fluid-calcite-calcite grain edges. However, experimental constraints on dihedral angles in calcite-fluid systems require that pervasive infiltration occurred in response to calcite dissolution initiated at calcite-calcite grain junctions rather than to an open calcite pore geometry. The regional extent of the retrograde infiltration event has been documented from the high δ18O of dolomite-ankerite carbonates from veins and host-rocks over an area of least 50 × 50 km in the SW Scottish Highlands. Isotopically exotic 18O-rich retrograde fluids have moved rapidly upwards through the crust, inducing isotopic exchange and mineral reaction in wall-rocks only where lithology, pore geometry or mineral solubilities, pressure and temperature have been appropriate for pervasive infiltration to occur.  相似文献   

11.
We studied calcite and rhodochrosite from exploratory drill cores (TH‐4 and TH‐6) near the Toyoha deposit, southwestern Hokkaido, Japan, from the aspect of stable isotope geochemistry, together with measuring the homogenization temperatures of fluid inclusions. The alteration observed in the drill cores is classified into four zones: ore mineralized zone, mixed‐layer minerals zone, kaolin minerals zone, and propylitic zone. Calcite is widespread in all the zones except for the kaolin minerals zone. The occurrence of rhodochrosite is restricted in the ore mineralized zone associated with Fe, Mn‐rich chlorite and sulfides, the mineral assemblage of which is basically equivalent to that in the Toyoha veins. The measured δ18OSMOW and δ13CPDB values of calcite scatter in the relatively narrow ranges from ?2 to 5‰ and from ?9 to ?5‰, respectively; those of rhodochrosite from 3 to 9‰ and from ?9 to ?5‰, excluding some data with large deviations. The variation of the isotopic compositions with temperature and depth could be explained by a mixing process between a heated surface meteoric water (100°C δ18O =?12‰, δ13C =?10‰) and a deep high temperature water (300°C, δ18O =?5‰, δ13C =?4‰). Boiling was less effective in isotopic fractionation than that of mixing. The plots of δ18O and δ13C indicate that the carbonates precipitated from H2CO3‐dominated fluids under the conditions of pH = 6–7 and T = 200–300°C. The sequential precipitation from calcite to rhodochrosite in a vein brought about the disequilibrium isotopic fractionation between the two minerals. The hydrothermal fluids circulated during the precipitation of carbonates in TH‐4 and TH‐6 are similar in origin to the ore‐forming fluids pertaining to the formation of veins in the Toyoha deposit.  相似文献   

12.
The Bismark deposit (8.5 Mt at 8% Zn, 0.5% Pb, 0.2% Cu, and 50 g/t Ag) located in northern Mexico is an example of a stock-contact skarn end member of a continuum of deposit types collectively called high-temperature, carbonate-replacement deposits. The deposit is hosted by massive sulfide within altered limestone adjacent to the Bismark quartz monzonite stock (~42 Ma) and the Bismark fault. Alteration concurrently developed in both the intrusion and limestone. The former contains early potassic alteration comprising K-feldspar and biotite, which was overprinted by kaolinite-rich veins and alteration and later quartz, sericite, and pyrite with minor sphalerite and chalcopyrite. Prograde exoskarn alteration in the limestone consists of green andradite and diopside, and transitional skarn comprising red-brown andradite, green hedenbergite and minor vesuvinite, calcite, fluorite, and quartz. The main ore stage post-dates calc-silicate minerals and comprises sphalerite and galena with gangue pyrite, pyrrhotite, calcite, fluorite, and quartz. The entire hydrothermal system developed synchronously with faulting. Fluid inclusion studies reveal several distinct temporal, compositional, and thermal populations in pre-, syn- and post-ore quartz, fluorite, and calcite. The earliest primary fluid inclusions are coexisting vapor-rich (type 2A) and halite-bearing (type 3A; type 3B contain sylvite) brine inclusions (32 to >60 total wt% salts) that occur in pre-ore fluorite. Trapping temperatures are estimated to have been in excess of 400 °C under lithostatic pressures of ~450 bar (~1.5 km depth). Primary fluid inclusions trapped in syn-ore quartz display critical to near critical behavior (type 1C), have moderate salinity (8.4 to 10.9 wt% NaCl equiv.) and homogenization temperatures (Th) ranging from 351 to 438 °C. Liquid-rich type 1A and 1B (calcite-bearing) inclusions occur as primary to secondary inclusions predominantly in fluorite and show a range in Th (104–336 °C) and salinity (2.7–11.8 wt% NaCl equiv.), which at the higher Th and salinity ranges overlap with type 1C inclusions. Oxygen isotope analysis was carried out on garnet, quartz, and calcite (plus carbon isotopes) in pre-, syn-, post-ore, and peripheral veins. Pre-ore skarn related garnets have a δ18Omineral range between 3.9 and 8.4‰. Quartz from the main ore stage range between 13.6 and 16.0‰. Calcite from the main ore stage has δ13C values of –2.9 to –5.1‰ and δ18O values of 12.3 to 14.1‰, which are clearly distinct from post-ore veins and peripheral prospects that have much higher δ18O (16.6–27.3‰) and δ13C (1.3–3.1‰) values. Despite the numerous fluid inclusion types, only two fluid sources can be inferred, namely a magmatic fluid and an external fluid that equilibrated with limestone. Furthermore, isotopic data does not indicate any significant mixing between the two fluids, although fluid inclusion data may be interpreted otherwise. Thus, the various fluid types were likely to have formed from varying pressure–temperature conditions through faulting during exsolution of magmatic fluids. Late-stage hydrothermal fluid activity was dominated by the non-magmatic fluids and was post-ore.  相似文献   

13.
The 31.6±0.3 Ma old Bufa del Diente alkali-syenite (NE Mexico) intruded a sequence of Cretaceous limestones with intercalated sub-horizontal chert layers. The cherts acted as aquifers that facilitated transport of brines and pegmatitic melts within the shallow-level (<1 kbar) contact-metamorphic aureole. Fluid-driven reactions between chert and marble wallrock, and the influx of late melts and various fluids gave rise to distinct chemical and isotopic signatures within the aquifer and across the zones of infiltration and fluid-driven reaction. Aqueous brines of magmatic origin produced thick wollastonite mantles around the chert layers. Wollastonite formation occurred at the expense of limestone and chert and generated CO2. This CO2-induced fluid unmixing into an aqueous brine and a low-density CO2-rich fluid, which was lost to the overlying marble where it oxidized organic matter and caused 13C and 18O shifts in a zone some 5–10 cm wide. After wollastonite formation, the chert aquifers were locally intruded by pegmatite veins carrying alkali feldspar, quartz, aegirine-augite, eudialyte, zircon, and apatite. Aqueous fluids that exsolved during crystallization of the pegmatite veins escaped along late cross-fractures and migrated along the inner and outer borders of the wollastonite margins. Chemical dispersion patterns of U, Al, Na + K, P, S, Fe, and REE across the chert-to-marble boundary and its metasomatic rims are shown by autoradiography and neutron-induced radiography. Scavenging of cations at mineralogical contacts and cation transport into the marbles occurred only on the mm to cm scale. Isotopic data for Pb and Sr across a simple metachert-marble boundary and for Pb, Sr, Nd, B, and Li across a metachert-pegmatite-marble sequence demonstrate the following: (1) The Pb and Sr isotopic signature of early fluids was buffered by the carbonate wallrock. Only late fluids, shielded from wallrock interaction by a wollastonite mantle, variably preserved a memory of their initial magmatic signature. (2) Since the Nd isotope signature of marble and chert is bound to calcite and clay minerals, systematic shifts to unradiogenic Nd in marble reflect loss of carbonate-bound Nd as the wollastonite margin is approached. Nd in the wollastonite margin is dominated by Nd originally bound to clay minerals. The later emplacement of the pegmatite, which carried the Nd isotope signature of its alkali-syenite source, had little effect on the Nd isotopic composition of the wollastonite rim. (3) Although the Li and B isotopic compositions reflect the alkali-syenite source, they are also affected by isotopic fractionation and partitioning between melt, fluid, and solids.Editorial responsibility J. Hoefs  相似文献   

14.
Fluid compositions and bedding‐scale patterns of fluid flow during contact metamorphism of the Weeks Formation in the Notch Peak aureole, Utah, were determined from mineralogy and stable isotope compositions. The Weeks Formation contains calc‐silicate and nearly pure carbonate layers that are interbedded on centimetre to decimetre scales. The prograde metamorphic sequence is characterized by the appearance of phlogopite, diopside, and wollastonite. By accounting for the solution properties of Fe, it is shown that the tremolite stability field was very narrow and perhaps absent in the prograde sequence. Unshifted oxygen and carbon isotopic ratios in calcite and silicate minerals at all grades, except above the wollastonite isograd, show that there was little to no infiltration of disequilibrium fluids. The fluid composition is poorly constrained, but X(CO2)fluid must have been >0.1, as indicated by the absence of talc, and has probably increased with progress of decarbonation reactions. The occurrence of scapolite and oxidation of graphite in calc‐silicate beds of the upper diopside zone provide the first evidence for limited infiltration of external aqueous fluids. Significantly larger amounts of aqueous fluid infiltrated the wollastonite zone. The aqueous fluids are recorded by the presence of vesuvianite, large decreases in δ18O values of silicate minerals from c. 16‰ in the diopside zone to c. 10‰ in the wollastonite zone, and extensive oxidation of graphite. The carbonate beds interacted with the fluids only along margins where graphite was destroyed, calcite coarsened, and isotopic ratios shifted. The wollastonite isograd represents a boundary between a high aqueous fluid‐flux region on its higher‐grade side and a low fluid‐flux region on its lower‐grade side. Preferential flow of aqueous fluids within the wollastonite zone was promoted by permeability created by the wollastonite‐forming reaction and the natural tendency of fluids to flow upward and down‐temperature near the intrusion‐wall rock contact.  相似文献   

15.
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD_(H2O-SMOW) and δ~(18)O_(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H_2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ~(13)C_(PDB) values ranging from-6.2‰ to-4.1‰ and δ~(18)O_(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ~(34)S_(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.  相似文献   

16.
The intracrystalline diffusion rate of oxygen in diopside was constrained based on natural isotopic variations from a granulite facies marble from Cascade Slide, Adirondacks (New York, USA). The oxygen isotope compositions of the diopsides, measured as a function of grain size, are nearly constant (20.9 ± 0.3‰ vs. SMOW) over the entire measured size range (0.3–3.2 mm diameter). The δ18O values of the cores of calcite grains are 23.0‰. Temperature estimates based on the Δ18O(calcite-diopside) are 800d?C, in agreement with the highest previous thermometric estimates for these rocks. The lack of isotopic variation in the diopsides as a function of grain size requires that the oxygen intracrystalline diffusion rate in diopside from the Adirondack samples was very slow. The maximum diffusion rates (D800d?C parallel to the c-axis) were calculated with an infinite reservoir model (IRM) and a finite reservoir model (FRM) that incorporates mineral modal abundances and initial isotopic variations. For an assumed activation energy (Q) = 100 kJ/mol, the IRM diffusion rate estimate of 1.6 times 10-20cm2/s is two orders of magnitude faster than from the FRM; at Q=500kJ/mol, the D800d?C estimate for both methods is c. 5.6 times 10-20 cm2/s. The present results require that a hydrothermal fluid significantly enhances the diffusion rate of oxygen in diopside if previous data are correct. The δ18O(SMOW) and δ13C(PDB) values of the calcite, measured in situ with a CO2 laser, are 22.9 ± 0.3, 0.1±0.3‰ in the grain cores, 22.1 ±0.3, 0.2 ±0.1‰ at the grain boundaries and 21.7 ±0.4, -0.6±0.1‰ abutting diopside grains. The δ18O and δ13δC values measured conventionally are: crystal cores, 22.96, -0.95‰; abutting diopside grains, 22.38, -0.93‰; bulk, 22.79, -0.95%. Use of the bulk δ18O(calcite) values for thermometry yields unreasonably high temperatures. The lower δ18O values at the calcite grain boundaries are not due to retrograde diffusional exchange with the diopside, they are thought to be a result of a late retrograde fluid infiltration.  相似文献   

17.
The Middle–Lower Yangtze River Valley is one of the most important metallogenic belts in China, hosting numerous Cu–Fe–Au–Mo deposits. The Taochong deposit is located in the northern part of the Fanchang iron ore district of the Middle–Lower Yangtze River metallogenic belt. The Fe-orebody is hosted by Middle Carboniferous to Lower Permian limestones. Skarns and Fe-orebodies occur as tabular bodies along interlayer-gliding faults, at some distance from the inferred granitic intrusions. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity—the skarn, iron oxide (main mineralization stage), and carbonate stages—all contributed to the formation of the Taochong iron deposit. The skarn stage is characterized by the formation of garnet and pyroxene, with high-temperature, hypersaline hydrothermal fluids with isotopic compositions similar to those of typical magmatic fluids. These fluids were probably generated by the separation of brine from a silicate melt instead of the product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by actinolite, chlorite, quartz, calcite and hematite. The hydrothermal fluids at this stage are represented by saline fluid inclusions that coexist with vapor-rich inclusions with anomalously low δD values (− 66‰ to − 94‰). The decrease in ore fluid δ18Owater with time and decreasing depth is consistent with the decreases in fluid salinity and temperature. The fluid δD values also show a decreasing trend with decreasing depth. Both fluid inclusion and stable isotopic data suggest that the ore fluid during the main period of mineralization was evolved by the boiling of various mixtures of magmatic brine and meteoric water. This process was probably induced by a drop in pressure from lithostatic to hydrostatic. The carbonate stage is represented by calcite veins that cut across the skarn and orebody, locally producing a dense stockwork. This observation indicates the veins formed during the waning stages of hydrothermal activity. The fluids from this stage are mainly represented by a variety of low-salinity fluid inclusions, as well as fewer high-salinity inclusions. These particular fluids have the lowest δ18Owater values (− 2.2‰ to 0.4‰) and a wide of range of δD values (− 40‰ to − 81‰), which indicate that they were originated from a mixture of residual fluids from the oxide stage, various amounts of meteoric water, and possibly condensed vapor. Low-temperature boiling probably occurred during this stage.We also discuss the reasons behind the anomalously low δD values in fluid inclusion water extracted by thermal decrepitation from quartz at high temperatures, and suggest that calcite data provide a possible benchmark for adjusting low δD values found in quartz intergrown with calcite.  相似文献   

18.
在德国哈茨山St.Andreasberg热液Pb-Zn矿床的方解石脉中,发现了一个方解石巨晶。对该方解石三个不同方向上的C和O同位素分析发现,方解石晶体内部存在明显的C-O同位素环带。通过对方解石同位素环带的理论模拟,发现在方解石生长过程中,有三种流体参与了作用。它们分别为A:温度约为60℃的近地表流体,δ^13C=-18.5‰,δ^18O=0‰;B:温度约为140℃的深源流体,δ^13C=-7.0%O,δ^18O=+10.0%o;C:温度小于20℃。δ^18O≤%O ,δ^13C≥ 14.0%o的大气降水 作用过程有四个阶段:① 方解石在流体A中等温生长;② 流体B开始与流体A在封闭体系内均匀混合;③ 流体B缓慢注入的同时,发生了一次性流体C的快速不均匀混合;④ 流体B继续与A缓慢混合,混合体系开放。流体混合的发现,为认识St Andreasberg热液矿床的形成机制提供了颟的视野。  相似文献   

19.
The Ohori ore deposit is one of the Cu–Pb–Zn deposits in the Green Tuff region, NE Japan, and consists of skarn‐type (Kaninomata) and vein‐type (Nakanomata) orebodies. The former has a unique origin because its original calcareous rocks were made by hydrothermal precipitation during Miocene submarine volcanism. Carbon and oxygen isotope ratios of skarn calcite and sulfur isotope ratios of sulfides were measured in and around the deposit. Carbon and oxygen isotope ratios of the skarn calcite are δ13C = ?15.51 to ?5.1‰, δ18O = +3.6 to +22.5‰. δ13C values are slightly lower than those of the Cretaceous skarn deposits in Japan. These isotope ratios of the Kaninomata skarn show that the original calcareous rocks resemble the present submarine hydrothermal carbonates at the CLAM Site, Okinawa Trough, than Cenozoic limestones, even though some isotopic shifts had occurred during later skarnization. δ34S ratios of the sulfide minerals from the Kaninomata and Nakanomata orebodies are mostly in a narrow range of +4.0 to +7.0‰ and they resemble each other, suggesting the same sulfur origin for the both deposits. The magnetite‐series Tertiary Kaninomatasawa granite is distributed just beneath the skarn layer and has δ34S ratios of +7.5 to 8.1‰. The heavy sulfur isotope ratio of the skarn sulfides may have been affected by the Kaninomatasawa granite.  相似文献   

20.
The role of volatiles in the stabilization of the lower (granulite facies) crust is contentious. Opposing models invoke infiltration of CO2-rich fluids or generally vapour-absent conditions during granulite facies metamorphism. Stable isotope and petrological studies of granulite facies metacarbonates can provide constraints on these models. In this study data are presented from metre-scale forsteritic marble boudins within Archaean intermediate to felsic orthogneisses from the Rauer Group, East Antarctica. Forsteritic marble layers and associated calcsilicates preserve a range of 13C- and 18O-depleted calcite isotope values (δ13C= -9.9 to -3.0% PDB, δ18O = 4.0 to 12.1% SMOW). A coupled trend of 13C and 18O depletion (~2%, ~5%, respectively) from core to rim across one marble layer is inconsistent with pervasive CO2 infiltration during granulite facies metamorphism, but does indicate localized fluid-rock interaction. At another locality, more pervasive fluid infiltration has resulted in calcite having uniformly low, carbonatite-like δ18O and δ13C values. A favoured mechanism for the low δ18O and δ13C values of the marbles is infiltration by fluids that were derived from, or equilibrated with, a magmatic source. It is likely that this fluid-rock interaction occurred prior to high-grade metamorphism; other fluid-rock histories are not, however, ruled out by the available data. Coupled trends of 13C and 18O depletion are modified to even lower values by the superposed development of small-scale metasomatic reaction zones between marbles and internally folded mafic (?) interlayers. The timing of development of these layers is uncertain, but may be related to Archaean high-temperature (>1000d?C) granulite facies metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号