首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
地球物理   1篇
地质学   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 7 毫秒
1
1.
The Chandmani Uul deposit is located in Dornogovi province, Southeastern Mongolia. Iron oxide ores are hosted in the andesitic rocks of the Shar Zeeg Formation of Neoproterozoic to Lower‐Cambrian age. Middle‐ to Upper‐Cambrian bodies of granitic rocks have intruded into the host rocks in the western and southern regions of the deposit. The wall rocks around the iron oxide ore bodies were hydrothermally altered to form potassic, epidote, and sericite–chlorite alteration zones, and calcite and quartz veinlets are ubiquitous in the late stage. Since granitic rocks also underwent potassic alteration, the activity of the granitic rocks must have a genetic relation to the ore deposit. The ore mineral assemblage is dominated by iron oxides such as mushketovite, euhedral magnetite with concentric and/or oscillatory zoning textures, and cauliflower magnetite. Lesser amounts of chalcopyrite and pyrite accompany the iron oxides. Among all these products, mushketovite is dominant and is distributed throughout the deposit. Meanwhile, euhedral magnetite appears in limited amounts at relatively shallow levels in the deposit. By contrast, cauliflower magnetite appears locally in the deeper parts of the deposit, and is associated with green‐colored garnet and calcite. Sulfide minerals are ubiquitously associated with these iron oxides. The oxygen isotope (δ18O) values of all types of magnetite, quartz, and epidote were found to be ?5.9 to ?2.8‰, 10.5 to 14.9‰, and 3.6 to 6.6‰, respectively. The δ18O values of quartz–magnetite pairs suggest an equilibrium isotopic temperature near 300°C. The calculated values of δ18O for the water responsible for magnetite ranged from 2 to 10‰. All the data obtained in this study suggest that the iron oxide deposit at the Chandmani Uul is a typical iron oxide–copper–gold deposit, and that this deposit was formed at an intermediate depth with potassic and sericite–chlorite alteration zones under the oxidized conditions of a hematite‐stable environment. The δ18O range estimated implies that the ore‐forming fluid was supplied by a crystallizing granodioritic magma exsolving fluids at depth with a significant contribution of meteoric water.  相似文献   
2.
The skarn‐type tungsten deposit of the Date‐Nagai mine is genetically related to the granodiorite batholith of the Iidateyama body. Skarn is developed along the contact between pelitic hornfels and marble that remains as a small roof pendant body directly above the granodiorite batholith. Zonal arrangement of minerals is observed in skarn. The zonation consists of wollastonite, garnet, garnet‐epidote, and vesuvianite‐garnet zones, from marble to hornfels. Sheelite is included in garnet, garnet‐epidote, and vesuvianite‐garnet zones. The oxygen isotope values of skarn minerals were obtained as δ18O = 4.2–7.7‰ for garnet, 5.9–6.9‰ for vesuvianite, ?0.3–3.4‰ for scheelite, 6.0–10.9‰ for quartz, and 8.2‰ for muscovite. The temperature of skarn‐formation was calculated from oxygen isotopic values of scheelite‐quartz pairs to be 288°C. Calculated oxygen isotope values of fluid responsible for skarn minerals were 6.1–9.5‰ for garnet, 1.2–4.8‰ for scheelite, ?1.3‐3.6‰ for quartz, and 4.5‰ for muscovite. Garnet precipitated from the fluids of different δ18O values from scheelite, quartz, and muscovite. These δ18O values suggest that the origin of fluid responsible for garnet was magmatic water, while evidence for the presence of a meteoric component in the fluids responsible for middle to later stages minerals was confirmed.  相似文献   
3.
Lower Cretaceous lacustrine oil shales are widely distributed in southeastern Mongolia. Due to the high organic carbon content of oil shale, many geochemical studies and petroleum exploration have been conducted. Although most of the oil shales are considered to be Early Cretaceous in age, a recent study reveals that some were deposited in the Middle Jurassic. The present study aims at establishing depositional ages and characteristics of the Jurassic and Cretaceous lacustrine deposits in Mongolia. The Lower Cretaceous Shinekhudag Formation is about 250 m thick and composed of alternating beds of shale and dolomite. The Middle Jurassic Eedemt Formation is about 150 m thick and composed of alternating beds of shale, dolomitic marl, and siltstone. The alternations of shale and dolomite in both formations were formed by lake level changes, reflecting precipitation changes. Shales were deposited in the center of a deep lake during highstand, while dolomites were formed by primary precipitation during lowstand. Based on the radiometric age dating, the Shinekhudag Formation was deposited between 123.8 ±2.0 Ma and 118.5 ±0.9 Ma of the early Aptian. The Eedemt Formation was deposited at around 165–158 Ma of Callovian–Oxfordian. The calculated sedimentation rate of the Shinekhudag Formation is between 4.7 ±2.6 cm/ky and 10.0 ±7.6 cm/ky. Shales in the Shinekhudag Formation show micrometer‐scale lamination, consisting of algal organic matter and detrital clay mineral couplets. Given the average thickness of micro‐laminae and calculated sedimentation rate, the micro‐lamination is most likely of varve origin. Both Middle–Upper Jurassic and Lower Cretaceous lacustrine oil shales were deposited in intracontinental basins in the paleo‐Asian continent. Tectonic processes and basin evolution basically controlled the deposition of these oil shales. In addition, enhanced precipitation under humid climate during the early Aptian and the Callovian–Oxfordian was another key factor inducing the widespread oil shale deposition in Mongolia.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号