首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
塔里木盆地走滑带碳酸盐岩断裂相特征及其与油气关系   总被引:2,自引:0,他引:2  
通过露头与井下资料的综合分析,塔里木盆地奥陶系碳酸盐岩走滑断裂带断裂相具有多样性,根据内部构造发育程度可以分为断层核发育、断层核欠发育两类。露头走滑带断层核部以裂缝带、透镜体、滑动面等断裂相发育为特征,断裂边缘的破碎带发育裂缝带、变形带。裂缝带主要分布在断层核附近50m的破碎带内,裂缝多开启,渗流性好。断裂核部透镜体发育,在破碎带也有分布,破碎角砾组合的透镜体多致密。滑动面具有平直截切型、渐变条带型等两种类型,多为开启的半充填活动面。变形带多为方解石与碎裂岩充填,破碎带局部部位裂缝与溶蚀作用较发育。利用地震剖面、构造图、相干图等资料可以判识塔里木盆地内部奥陶系碳酸盐岩走滑断裂相的特征及其发育程度,沿走滑断裂带走向上断裂相具有分段性与差异性,根据渗流性可以定性区分高渗透相、致密相区。沿断裂带高渗透相区是碳酸盐岩缝洞体储层发育的有利部位。断裂相的横向变化造成油气分布的区段性,形成高渗透相输导模式、致密相遮挡模式等两类成藏模式。走滑断裂带碳酸盐岩断裂相的特征及其控藏作用对油气勘探开发储层建模具有重要意义。  相似文献   

2.
青藏高原中部第四纪左旋剪切变形的地表地质证据   总被引:7,自引:5,他引:2  
在青藏铁路的格尔木—拉萨段进行的活动断裂调查发现,在沱沱河—五道梁之间宽约150km的地段内发育了多条由北西西向次级断层左列分布构成的北西西向和北西向左旋张扭性断裂带,在断裂带之间则发育"S"型的北东向裂陷盆地和雁列分布的菱形裂陷盆地,盆地边界断裂也为左旋张扭性质。上述断裂带和裂陷带主要形成于第四纪,它们构成了宽约150km的不均匀的左旋简单剪切变形域,该变形域的整体活动性较弱,属于弱的不均匀剪切变形域。但其中的二道沟断陷盆地是个例外,该盆地边界断裂的垂直活动速率约为0 5mm/a,左旋活动速率介于0 8~1 0mm/a之间。而在整个左旋剪切变形带累计的左旋走滑速率不会超过6mm/a,它们所调节的昆仑山与唐古拉山之间的地壳南北缩短量也可能仅占总缩短量的15%~30%。上述弱剪切变形域与强烈左旋走滑的昆仑断裂系共同构成了高原中部的左旋剪切变形带,它们在印度板块与欧亚板块强烈碰撞的构造动力学背景下,起着调节青藏高原南北向缩短的重要作用。  相似文献   

3.
A numerical estimation is presented on the effects induced in an existing tunnel by the development of a fault from the deep bedrock during a seismic event. The spreading of the fault within the alluvial deposit hosting the tunnel, and the consequent effects on its permanent liner, are studied in static conditions through a series of elastic-plastic, plane strain finite element analyses. They account for the reduction of the shear strength and stiffness characteristics of the faulting zone with increasing irreversible strains. Even though the calculations require only “standard”, e.g. peak and residual, material parameters it is shown that these properties can hardly be obtained for the alluvial deposit at hand. To overcome this drawback a relatively large scale in-situ tests could be performed and its results could be interpreted through a suitable back analysis. This would permit characterizing the numerical model to be subsequently adopted for the analysis of the faulting process.  相似文献   

4.
黄辉 《工程地质学报》2016,24(6):1255-1261
基岩逆断层错动引起上覆土体变形会导致地表及地下建筑的破坏,相应的变形预测模型仍较为缺乏,相关因素的影响规律尚未掌握。本文通过补余误差方程来表征逆断层错动引起的上覆土体变形,建立可预测不排水条件下上覆土体的变形理论计算模型,并通过离心机实验数据、数值模拟数据加以验证。对比分析结果表明,补余误差方程能表征基岩逆断层错动所引起的地表及地表以下土体变形。参数分析结果表明:基岩错动量的幅值对地表不均匀隆起区域范围的影响并不显著;形状参数的增加会使得地表不均匀隆起区域趋向集中;断层倾角的增加会使得地表不均匀隆起区域向断层上盘一侧偏移。  相似文献   

5.
泸定韧性剪切带为南北向大渡河断裂中段,为川滇“Y”字构造重要组成部分.川藏铁路泸定特大桥在泸定县白日坝附近横跨泸定韧性剪切带,且左岸隧洞穿越⑤号糜棱岩带,该韧性剪切带组成及活动性直接影响重大基础工程建设.基于平硐、公路开挖剖面精细编录,配合薄片鉴定,对泸定韧性剪切带展布特征、组成特征及断裂活动性进行了研究,主要结论如下:(1)泸定韧性剪切带从西向东可区分为5个带,其中①、③、⑤为长英质糜棱岩带,②、④为糜棱岩化斜长角闪岩带,泸定韧性剪切带泸定段展布于桥位区河谷底部及左岸,总宽约1 000 m.①、③带由南向北横穿桥位区,产状N15°~20°E/NW∠55°~65°,带宽500 m,以灰色长英质糜棱岩、千糜棱岩为主,⑤带沿太阳沟-五里沟向东延伸,横穿左岸隧道,产状N43°E/NW∠54°,带宽500 m,糜棱岩为长英质糜棱岩、带状-小眼球状糜棱岩;(2)受断层带切割影响,河段构造节理密度大、组数多、期次多,岩体破碎、完整性较差;(3)泸定韧性剪切带晋宁期受韧性剪切变形影响,中生代以来受脆性破裂改造,但未形成大规模脆性破裂带,对泸定特大桥影响总体较小,工程效应主要表现为大渡河两岸隧洞进出口边坡稳定性较差及左岸洞内围岩完整性差.   相似文献   

6.
天山东段推覆构造研究   总被引:16,自引:1,他引:16       下载免费PDF全文
舒良树  孙家齐 《地质科学》1997,32(3):337-350
本文概括性总结了天山东段大型推覆构造的基本特征。根据地质证据和同位素年龄,东天山存在早古生代末,晚古生代晚期和新生代三期推覆构造;根据推覆构造分布规律及构造背景,在平面上划分为五大推覆带、9个大型韧剪带;根据出露岩石的矿物变形相将东天山推覆构造划分为深、中深和浅三个深度层次;通过韧剪变形组构的观察分析,确定了多期韧性变形性质与运动方向。糜棱岩中超微构造、古应力及小构造变形缩短率测量统计,证明东天山推覆变形具有显著的地壳缩短增厚作用。新生代板块碰撞导致本区中新生代盆地基底向造山带A型俯冲,造山带向盆地推覆,其结果就构成了今日看到的镶嵌状盆地-山脉构造地貌景观。  相似文献   

7.
A variety of unusual early post‐depositional deformation structures exist in grainstone and flat‐pebble conglomerate beds of Upper Cambrian strata, western Colorado, including slide scarps, thrusted beds, irregular blocks and internally deformed beds. Thrusted beds up to tens of centimetres thick record thrust movement of a part of a bed onto itself along a moderate to steeply inclined (15° to 40°) ramp, locally producing hanging wall lenses with fault‐bend geometries. Thrust plane orientations are widely distributed, and in some cases nearly oppositely oriented in close proximity, indicating that they did not form as failures acted upon by gravity forces. Irregular bedded to internally deformed blocks are isolated on generally flat upper bedding surfaces. These features represent parts of beds that detached, moved up onto and some distances across, the laterally adjacent undisturbed bed surfaces. Deformation of thin intervals of mud on the ocean floor by moving blocks rules out the possibility of storm‐induced deformation, because the mud was not eroded by high shear stresses that would accompany the extremely large forces required to produce and move the blocks. Finally, internally deformed beds are characterized by large blocks, fitted fabrics of highly irregular fragments and contorted lamination, which represent heterogeneous deformation, such as brecciation and liquefaction. The deformation structures were produced by earthquakes linked to the reactivation of Mesoproterozoic, crustal‐scale shear zones in the central Rockies during the Late Cambrian. Analysis of the deformation structures indicates very large body forces and calculated earthquake‐generated ground motion velocities of ca 1·6 m sec?1. These correspond to moment magnitudes of ca 7·0 or more and a Mercalli Intensity of X+. These are the only known magnitude estimates of Phanerozoic (other than Quaternary) large‐intensity earthquakes for the Rocky Mountain region, and they are as large as, or larger than, previous estimates of Proterozoic earthquakes along these major shear zones of the central Rockies.  相似文献   

8.
Thrusting fault zone in foreland basins are characterized by highly foliated zones generally enriched in phyllosilicates which can play a major role on the mechanical behaviour of the fault. In this context, investigations of synkinematic clay minerals permit to determine the origin of the fluid from which they precipitated as well as the mechanisms of deformation. Our study is focused on clay mineral assemblages (illite and chlorite) in a major thrust fault located in the Monte Perdido massif (southern Pyrenees), a shallow thrust that affects upper cretaceous-paleocene platform carbonates and lower Eocene marls and turbidites. It implied 3?km of displacement of the Monte Perdido thrust unit with respect to the underlying Gavarnie unit. In this area the cleavage development by pressure-solution is linked to the Monte Perdido and Gavarnie thrust activity. The core zone of the fault, about 6?m thick, consists of an interval of intensely deformed clay-bearing rocks bounded by major shear surfaces. The deformed sediment is markedly darker than the protolith. Calcite-quartz shear veins along the shear planes are abundant. Detailed SEM and TEM observations of highly deformed fault zone samples indicate that clay mineral enrichment in the core zone of the fault is not only related to passive increase by pressure-solution mechanism but that dissolution?Crecrystallization of phyllosilicates occurs during deformation. A mineral segregation is observed in the highly deformed zone. Newly formed 2M 1 muscovite is present along the cleavage whereas IIb chlorite crystals fill SV2 shear veins suggesting syntectonic growth of phyllosilicates in the presence of fluids in low-grade metamorphic conditions. These mineralogical reactions act as weakening processes and would favour Monte Perdido fault creeping.  相似文献   

9.
《Earth》2006,74(1-4):245-270
New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ∼3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post − 3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast–southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone.  相似文献   

10.
青海省哇洪山断裂带中段构造变形特征及X光岩组分析   总被引:3,自引:0,他引:3  
通过对哇洪山断裂带中段构造变形宏观及微观特征的研究,认为该断裂带经历了两种不同层次、不同性质的构造变形,早期以韧性变形为主,形成了沿断裂带广泛分布的NW-NNW向糜棱岩带;晚期以脆性变形为主,形成了广泛分布断层破碎带,并将早期的糜棱岩带错断。X光岩组分析结果表明,糜棱岩带构造岩内矿物排列定向性明显,其中石英变形以底面滑移或近底面滑移为主,兼有柱面滑移,为中低温-中温变形环境所形成;另外动态重结晶对变形岩石中石英优选方位的形成也可能发挥了重要作用。华里西晚期花岗闪长岩、印支期钾长花岗岩、花岗岩、二长花岗岩均没有明显的优选方位,因此韧性变形发生在该类岩石侵位之前。构造变形分析及同位素测年结果证实韧性剪切带形成于晚志留世,即加里东晚期。  相似文献   

11.
论走滑断层作用的几个主要问题   总被引:52,自引:1,他引:52  
徐嘉炜 《地学前缘》1995,2(2):125-136
介绍了走滑断层作用研究前缘的若干主要方面。认为普遍使用走滑断层的术语外,在大陆上当断层性质不明时可使用平移断层。强调了单剪机制对大型走滑断层形成的作用,并评论了X破裂的纯剪理论。基于我国郯庐断裂带等的研究成果,提出走滑断层作用的若干新概念。指出剪曲(牵引)构造不同于雁列褶皱。认为中国地质学家从地质力学研究走滑断层的旋转构造已有卓绝的成就,只要同世界科学接轨,就会获得新的巨大生命力。文中描述了确定位移的方法,提出平移幅度与错距是两个不同的概念。强调了剪切热在大陆构造中的作用,提出走滑剪切带演化中剪切变形-断裂动热变质-重熔岩浆作用旋回。讨论了剪切成矿作用及已成矿体、矿带的走滑错移及变形。划分了三种基本走滑盆地类型及论证了大陆浅源走滑型地震机制。  相似文献   

12.
The Norumbega fault system in the Northern Appalachians in eastern Maine experienced complex post-Acadian ductile and brittle deformation from middle through late Paleozoic times. Well-preserved epizonal ductile shear zones in Fredericton belt metasedimentary rocks and granitic batholiths that intrude them provide valuable information on the nature, geometry, and evolution of orogen-parallel strike-slip Norumbega faulting. Metasedimentary rocks were ductilely sheared into phyllonite schistose mylonite, whereas granite into mylonite within the ductile shear zones. Ductile shearing took place at conditions of the lower greenschist facies with peak temperatures on the order of 300–350° based on comparison of plastic quartz and brittle feldspar microstructures, confirming a shallow crustal environment during faulting.Ductile shear strain was partitioned into two major shear zones in easternmost Maine—the Waite and Kellyland zones—but these zones converge toward the southwest. Megascopic, mesoscopic, and microscopic kinematic indicators confirm that fault motion in both zones was dominantly dextral strike-slip. Detailed mapping, especially in the plutonic rocks, reveals a complex ductile deformation history in the area where the Waite and Kellyland zones converge. Shear strain is broadly distributed in the rocks between Kellyland and Waite zones, and increases toward their junction. Multiple dextral high-strain zones oblique to both zones resemble megascopic synthetic c′ shear bands. Together with the Kellyland and Waite master shear zones, these define a megascopic S–C′ structure system produced in a regional-scale dextral strike-slip shear duplex that developed in the transition zone between the deeper (south-central Maine) and shallower (eastern Maine) segments of the Norumbega fault system.Granite plutons caught within the strike-slip shear duplex were intensely sheared and progressively smeared into long and narrow slivers identified by this study. The western lobe of the Deblois pluton and the Lucerne pluton have been recognized as the sources, respectively of the Third Lake Ridge and Morrison Ridge granite slivers. Restoration of both granite slivers to their presumed original positions yields approximately 25 km of dextral strike-slip displacement along only the Kellyland and synthetic ductile shear zones.  相似文献   

13.
断裂带流体作用及动力学模型   总被引:23,自引:0,他引:23  
解习农  李思田 《地学前缘》1996,3(3):145-151
越来越多的证据表明流体活动与断裂作用密切相关。断裂带流体活动不仅影响断裂发生、发展、封闭和断裂强度,而且影响到断裂带附近矿床的形成。断裂带活动为流体循环、水岩相互作用提供了必要条件,流体的再分配是断裂带中应力积累和释放的响应。流体压力和剪切压力的耦合变化影响断裂带摩擦作用中剪切强度的变化,进而控制断裂发生和停止。因此,断裂带流体活动的幕式变化指示了断裂活动事件或地震活动旋回。  相似文献   

14.
本文在系统的有限应变测量的基础上,对闽东南长乐—南澳断裂带东山段剪切变形特征进行了分析:利用变形石英显微亚结构。(动态重结晶颗粒)估算了剪切带内古应力并(σ—σ_3):通过对剪切变形能密度分布W(x)格离散化计算,采用有限差分数值近方法,获得了剪切热数值解:最后总结了研究地区剪切变形,剪切加热与动热成岩成矿作用的相对时空关系以及长乐—南澳断裂域构造意义  相似文献   

15.
The unlined Bedretto tunnel in the Central Swiss Alps has been used to investigate in detail the fault architecture and late Alpine brittle faulting processes in the Rotondo granite on macroscopic and microscopic scales. Brittle faults in the late Variscan Rotondo granite preferentially are situated within the extent of preexisting ductile shear zones. Only in relatively few cases the damage zone extends into or develops in the previously undeformed granite. Slickensides suggest a predominant (dextral) strike-slip movement along these steeply dipping and NE–SW-striking faults. Microstructures of these fault rocks illustrate a multi-stage retrograde deformation history from ductile to brittle conditions up to the cessation of fault activity. In addition these fabrics allow identifying cataclastic flow, fluid-assisted brecciation and chemical corrosive wear as important deformation mechanisms during this retrogressive deformation path. Based on the analysis of zeolite microfabrics (laumontite and stilbite; hydrated Ca–Al- and Na–Ca–Al–silicate, respectively) in fault breccias, cataclasites and open fractures we conclude, that the main phase of active brittle faulting started below 280°C and ceased ca. 14 Ma ago at temperatures slightly above 200°C. This corresponds to a depth of approx. 7 km.  相似文献   

16.
Dextral transtensional deformation is occurring along the Sierra Nevada–Great Basin boundary zone (SNGBBZ) at the eastern edge of the Sierra Nevada microplate. In the Lake Tahoe region of the SNGBBZ, transtension is partitioned spatially and temporally into domains of north–south striking normal faults and transitional domains with conjugate strike-slip faults. The normal fault domains, which have had large Holocene earthquakes but account only for background seismicity in the historic period, primarily accommodate east–west extension, while the transitional domains, which have had moderate Holocene and historic earthquakes and are currently seismically active, primarily record north–south shortening. Through partitioned slip, the upper crust in this region undergoes overall constrictional strain.Major fault zones within the Lake Tahoe basin include two normal fault zones: the northwest-trending Tahoe–Sierra frontal fault zone (TSFFZ) and the north-trending West Tahoe–Dollar Point fault zone. Most faults in these zones show eastside down displacements. Both of these fault zones show evidence of Holocene earthquakes but are relatively quiet seismically through the historic record. The northeast-trending North Tahoe–Incline Village fault zone is a major normal to sinistral-oblique fault zone. This fault zone shows evidence for large Holocene earthquakes and based on the historic record is seismically active at the microearthquake level. The zone forms the boundary between the Lake Tahoe normal fault domain to the south and the Truckee transition zone to the north.Several lines of evidence, including both geology and historic seismicity, indicate that the seismically active Truckee and Gardnerville transition zones, north and southeast of Lake Tahoe basin, respectively, are undergoing north–south shortening. In addition, the central Carson Range, a major north-trending range block between two large normal fault zones, shows internal fault patterns that suggest the range is undergoing north–south shortening in addition to east–west extension.A model capable of explaining the spatial and temporal partitioning of slip suggests that seismic behavior in the region alternates between two modes, one mode characterized by an east–west minimum principal stress and a north–south maximum principal stress as at present. In this mode, seismicity and small-scale faulting reflecting north–south shortening concentrate in mechanically weak transition zones with primarily strike-slip faulting in relatively small-magnitude events, and domains with major normal faults are relatively quiet. A second mode occurs after sufficient north–south shortening reduces the north–south Shmax in magnitude until it is less than Sv, at which point Sv becomes the maximum principal stress. This second mode is then characterized by large earthquakes on major normal faults in the large normal fault domains, which dominate the overall moment release in the region, producing significant east–west extension.  相似文献   

17.
李艳友  漆家福 《地质科学》2013,48(4):1177-1186
库车坳陷克拉苏构造带发育大量与膏盐相关的收缩构造,其深、浅构造变形不协调具有明显差异性。构造建模表明:克拉苏构造带属于库车坳陷北部强变形带,自西向东具有不同的变形样式。西部大北区段受前缘拜城断裂控制,发育断层规模小的基底卷入冲断叠瓦扇,东部克深区段则受后缘克拉苏断裂控制,发育大位移断层控制的盖层滑脱冲断叠瓦扇。克拉苏构造带基底断裂位移分布具有差异平衡的特点,基底断裂活动对膏盐层厚度及分布具有再调整作用。砂箱物理模拟结果显示,构造变形强度、膏盐层厚度及其分布差异是克拉苏构造带东、西段结构和垂向变形差异的主要控制因素。  相似文献   

18.
东天山晚古生代康古尔塔格构造—金矿带的中段南带开展构造控矿研究,为区域金矿定位预测与勘探提供依据。采用区域构造分析和构造解析方法,在雅满苏北部厘定出一类已发生变形改造的大型面状脆韧性—韧性剪切带,构造恢复表明,其形成于晚古生代造山早期向北的分层剪切或低角度逆冲剪切(S1//S0)作用,并作为区域金矿的一级控矿构造而成为俯冲带深源成矿流体向上运移成矿的主通道。在造山过程中递进变形的分层剪切或低角度逆冲剪切晚期、向南北向横向缩短转换阶段,伴随区域抬升和断褶作用,拆离剪切带分支断裂开始成生并向上突破,导致封闭在拆离带内运移的深源含矿流体以断层阀方式分流排泄,成矿流体沿分支断裂向上运移,在断裂上盘或上盘背斜枢纽处的低序次的断裂、破裂中聚集卸载,形成充填石英脉和交代蚀变岩型(造山型)金矿,并有时限为276.5±2.9Ma的石英闪长斑岩侵入产出;晚期褶皱、断裂等叠加构造则对矿床(体)破坏、改造及保存起了重要作用。  相似文献   

19.
张忠义  肖文进  杨国龙  高军辉 《地质论评》2023,69(3):2023030011-2023030011
东天山晚古生代康古尔塔格构造—金矿带的中段南带开展构造控矿研究,为区域金矿定位预测与勘探提供依据。采用区域构造分析和构造解析方法,在雅满苏北部厘定出一类已发生变形改造的大型面状脆韧性—韧性剪切带,构造恢复表明,其形成于晚古生代造山早期向北的分层剪切或低角度逆冲剪切(S1//S0)作用,并作为区域金矿的一级控矿构造而成为俯冲带深源成矿流体向上运移成矿的主通道。在造山过程中递进变形的分层剪切或低角度逆冲剪切晚期、向南北向横向缩短转换阶段,伴随区域抬升和断褶作用,拆离剪切带分支断裂开始成生并向上突破,导致封闭在拆离带内运移的深源含矿流体以断层阀方式分流排泄,成矿流体沿分支断裂向上运移,在断裂上盘或上盘背斜枢纽处的低序次的断裂、破裂中聚集卸载,形成充填石英脉和交代蚀变岩型(造山型)金矿,并有时限为276. 5±2. 9Ma的石英闪长斑岩侵入产出;晚期褶皱、断裂等叠加构造则对矿床(体)破坏、改造及保存起了重要作用。  相似文献   

20.
Thermal anomalies in tectonically active areas are often attributed to sub-seafloor fluid circulation and faulting mechanisms, particularly in subduction zones where the largest thrust earthquakes occur. Postseismic fluid flow is enabled by the poroelastic response of the fault system to the earthquake's strain field, as well as by the rupturing of permeability barriers in the vicinity of the fault zone. We investigated the relative importance of these mechanisms on postseismic pore-pressure diffusion and advective heat transport in the subduction zone setting. A two-dimensional numerical fluid flow and heat transport model was developed for the Costa Rica subduction zone offshore of the Nicoya Peninsula. The flow and transport model was coupled with an earthquake strain model to quantify the effects of coseismic strain and permeability enhancement on fluid pressures and temperatures within the Costa Rica margin. Coseismic changes in pore pressure and postseismic pore-pressure diffusion were found to be sensitive to the compressibility of the porous medium, and patterns of pore-pressure recovery were more complex than that predicted by theoretical faulting models. Coseismic contraction and extension of the crust produced high fluid pressures close to the fault, while the inflow of fluid from depth increased fluid pressures several years following the simulated fault slip. Crustal deformation alone was not observed to perturb the temperature field. Laterally extensive permeability increases of two orders of magnitude along the décollement were required to produce small changes in heat flow. Local permeability changes in the upper slope region of least five orders of magnitude were necessary to noticeably affect heat flow. The results of the numerical simulations may help to refine conceptual faulting models and provide guidance for locating long-term hydrologic monitoring sites at Costa Rica and other subduction zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号