首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《China Geology》2022,5(3):421-428
This paper aims to investigate the present situation and transfer mechanisms of microplastics in lacustrine sediments in the Qinghai-Tibet Plateau. The study surveyed the average abundance of microplastics in sediments. The abundance of microplastics in sediments of lakes from the Qinghai-Tibet Plateau is 17.22–2643.65 items/kg DW and 0–60.63 items/kg DW based on the data of the Qinghai Lake and the Siying Co Basin. The microplastic abundance in sediments from small and medium lakes is very high compared to that in other areas in the world. Like microplastics in other lakes of the world, those in the lakes in the Qinghai-Tibet Plateau mainly include organic polymers PA, PET, PE, and PP and are primarily in the shape of fibers and fragments. The microplastic pollution of lacustrine sediments in the Qinghai-Tibet Plateau is affected by natural changes and by human activities, and the concentration of microplastics in lacustrine ecosystems gradually increases through food chains. Furthermore, the paper suggests the relevant administrative departments of the Qinghai-Tibet Plateau strengthen waste management while developing tourism and pay much attention to the impacts of microplastics in water environments. This study provides a reference for preventing and controlling microplastic contamination in the Qinghai-Tibet Plateau.©2022 China Geology Editorial Office.  相似文献   

2.
《China Geology》2022,5(3):429-438
Microplastic pollution is widely distributed from surface water to sediments to groundwater vertically and from land to the ocean horizontally. This study collected samples from surface water, groundwater, and sediments from upper to lower reaches and then to the estuary in 16 typical areas in the Jinjiang River Basin, Fujian Province, China. Afterward, it determined the components and abundance of the microplastics and analyzed the possible microplastic sources through principal component analysis (PCA). As a result, seven main components of microplastics were detected, i.e., polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyformaldehyde (POM), nylon 6 (PA6), and polystyrene (PS). Among them, PE and PP were found to have the highest proportion in the surface water and sediments and in the groundwater, respectively. The surface water, groundwater, and sediments had average microplastic abundance of 1.6 n/L, 2.7 n/L and 33.8 n/kg, respectively. The microplastics in the sediments had the largest particle size, while those in the groundwater had the smallest particle size. Compared with water bodies and sediments in other areas, those in the study area generally have medium-low-level microplastic abundance. Three pollution sources were determined according to PCA, i.e., the dominant agriculture-forestry-fishery source, domestic wastewater, and industrial production. This study can provide a scientific basis for the control of microplastics in rivers.©2022 China Geology Editorial Office.  相似文献   

3.
《China Geology》2021,4(4):585-592
This study aims to comprehensively assess the environmental risks of microplastics in the Yellow River, achieving the following results through comprehensive research. The average microplastic abundances in the river waters and sediments are 5358–654000 n/m3 and 43.57–615 items/kg, respectively, and there are fewer microplastics in water samples than in sediments. Microplastics in the study area can be divided into five types according to their occurrence morphologies, namely fragments, foams, films, fibers, and particles. The most widely distributed pollution types in sediments include debris, fibers, and particles. In contrast, fibers are the dominant type in water samples, accounting for 68.18% –98.93%. The chemical components of the microplastics include polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyvinyl chloride. The microplastics are in four colors, with white accounting for a higher proportion. The grain size of the microplastics in tributaries or lakes of the Yellow River is less than 2 mm, which makes them liable to enter organisms for enrichment. Furthermore, the sources of the microplastics are closely related to agricultural and industrial production and biological activities in habitats and exhibit seasonal and hydrological characteristics. The microplastics in the study area show the adsorption of metals and nonmetals to different degrees, which increases the pollution risks of heavy metals combined with microplastics. In addition, microplastics can accumulate in organisms in the Yellow River and cause physical, biochemical, and other damage to aquatic organisms, thus further posing carcinogenic risks to human beings. Therefore, it is necessary to study, monitor, and control the pollution and effects of microplastics in the Yellow River, in order to provide theoretical references for the control of pollution and ecological risk of microplastics in the river.©2021 China Geology Editorial Office.  相似文献   

4.
Microplastic pollution has become an environmental issue of great concern owing to the persistence of microplastics and their potential adverse effects on biota.The Yangtze River is the longest river in China and the third-longest river in the world,and the microplastics in this river will affect the health of a large population living along with it.To ensure the survival safety of people,it is essential to plan ahead and investigate in advance in order to understand the microplastic pollution in the river and work out countermeasures.This paper reviews the literature concerning the microplastic pollution in the Yangtze River basin and analyzes the abundance,shapes,colors,and composition of microplastics in the water bodies and sediments in the trunk stream and main lakes of the Yangtze River.The results are as follows.Compared to other river basins in China and abroad,the microplastics in the Yangtze River basin have a moderate abundance and high spatial heterogeneity.Owing to the barrier effect of the Three Gorges Dam on microplastics,the abundance of microplastics in the Three Gorges Reservoir is generally an order of magnitude higher than that in other sections of the river.Most microplastics in the water bodies and sediments are less than 1 mm in size and are transparent and colorful.In terms of shapes,they are dominated by fibers,followed by fragments and films.In terms of composition,the microplastics in the source region of the Yangtze River are mainly composed of nylon and polyethylene,while the microplastics in the surface water from the lower reaches of the Jinsha River to the Yangtze River estuary are dominated by polypropylene and polyethylene.The microplastics are primarily derived from the secondary microplastics in the environment,and relatively intensive human activities increase the abundance of microplastics.These results serve as bases for understanding and preventing microplastic pollution in the Yangtze River.  相似文献   

5.
The characteristics of nitrogen fractions in the surface sediments of lakes from Eastern Plain Region, Yunnan-Guizhou Plateau Region, Northeast China Region, Qinghai-Tibet Plateau Region and Mongolia-Xinjiang Plateau Region were investigated and the differences of five lake regions on nitrogen fractionation were discussed. The results indicated that organic nitrogen (Norg) was the major nitrogen fraction accounting for 76.38–92.02 % of Ntot in sediments. The rank order of average Norg and Ntot of sediments in five lake regions was: Yunnan-Guizhou Plateau Region > Northeast China Region > Mongolia-Xinjiang Plateau Region > Qinghai-Tibet Plateau Region > Eastern Plain Region. The exchangeable nitrogen had a similar distribution as organic nitrogen in the studied sediments. NH4 +–N is the main exchangeable nitrogen of sediments in the studied lakes except in Lake Qinghai and Lake Yamdrok which contained higher nitrate concentrations than ammonium. Fixed ammonium (Nfix) in the sediments of studied lakes was irregularly distributed with the values ranging from 99.45 to 329.02 mg/kg. TOC was significantly and positively correlated with ammonium, nitrate, Norg and Ntot, while Nfix was negatively correlated with nitrate probably due to electrostatic attraction between Nfix and nitrate in layers of sediments.  相似文献   

6.
The major cation and anion compositions of waters from the Lake Qinghai river system (LQRS) in the northeastern Tibetan Plateau were measured. The waters were collected seasonally from five main rivers during pre-monsoon (late May), monsoon (late July), and post-monsoon (middle October). The LQRS waters are all very alkaline and have high concentrations of TDS (total dissolved solids) compared to rivers draining the Himalayas and the southeastern Tibetan Plateau. Seasonal variations in the water chemistry show that, except the Daotang River, the TDS concentration is high in October and low in July in the LQRS waters. The forward models were used to quantify the input of three main rivers (Buha River, Shaliu River, and Hargai River) from rain, halite, carbonates, and silicates. The results suggest that (1) atmospheric input is the first important source for the waters of the Buha River and the Shaliu River, contributing 36–57% of the total dissolved cations, (2) carbonate weathering input and atmospheric input have equal contribution to the Hargai River water, (3) carbonate weathering has higher contribution to these rivers than silicate weathering, and (4) halite is also important source for the Buha River. The Daotang River water is dominated by halite input owing to its underlying old lacustrine sediments. The water compositions of the Heima River are controlled by carbonate weathering and rainfall input in monsoon season, and groundwater input may be important in pre-monsoon and post-monsoon seasons. After being corrected the atmospheric input, average CO2 drawdown via silicate weathering in the LQRS is 35 × 103 mol/km2 per year, with highest in monsoon season, lower than Himalayas and periphery of Tibetan Plateau rivers but higher than some rivers draining shields.  相似文献   

7.
吉林省部分河流与湖泊表层沉积物中重金属的分布规律   总被引:13,自引:2,他引:13  
河流的水化学组成具有多样性和易变性,而湖泊水则因其交换缓慢,即使与河流所在地区的气候条件和地球化学条件相似,其化学组成也明显区别于河流,沉积物中重金属的分布也不同.利用形态分析、相关分析和地累积指数法研究了吉林省境内部分河流、湖泊沉积物重金属分布规律.研究结果表明,伊通河和南湖重金属元素生物可利用态含量都很高,存在较大的、潜在的生态危害,Pb、Cu在有机物态中表现出明显的赋存趋势;河流沉积物中Cu、Pb、Zn与pH值显著相关,但湖泊中却相关性不显著.河流沉积物受重金属污染较严重,污染程度最高达到4级,属强污染,湖泊污染程度较轻.  相似文献   

8.
The influx of Sr responsible for increase in marine Sr has been attributed to rise of Himalaya and weathering of the Himalayan rocks. The rivers draining Himalaya to the ocean by the northern part of the Indian sub-continent comprising the Ganga Alluvial Plain (GAP) along with Central parts of the Himalaya and the northern part of the Indian Craton are held responsible for the transformation of Sr isotopic signature. The GAP is basically formed by the Himalayan-derived sediments and serves as transient zone between the source (Himalaya) and the sink (Bay of Bengal). The Gomati River, an important alluvial tributary of the Ganga River, draining nearly 30,500 km2 area of GAP is the only river which is originating from the GAP. The river recycles the Himalayan-derived sediments and transport its weathering products into the Ganga River and finally to Bay of Bengal. 11 water samples were collected from the Gomati River and its intrabasinal lakes for measurement of Sr isotopic composition. Sr concentration of Gomati River water is about 335 μg/l, which is about five times higher than the world’s average of river water (70 μg/l) and nearly three times higher than the Ganga River water in the Himalaya (130 μg/l) The Sr isotopic ratios reported are also higher than global average runoff (0.7119) and to modern seawater (0.7092) values. Strong geochemical sediment–water interaction appearing on surface is responsible for the dissolved Sr isotopic ratios in the River water. Higher Sr isotopic rations found during post-monsoon than in pre-monsoon season indicate the importance of fluxes due to monsoonal erosion of the GAP into the Gomati River. Monsoon precipitation and its interaction with alluvium appear to be major vehicle for the addition of dissolved Sr load into the alluvial plain rivers. This study establishes that elevated 87Sr/86Sr ratios of the Gomati River are due to input of chemical weathering of alluvial material present in the Ganga Alluvial Plain.  相似文献   

9.
青藏高原近25年来河流、湖泊的变迁及其影响因素   总被引:7,自引:0,他引:7  
结合20世纪70年代中期的MSS图像和90年代末期的ETM 图像解译,对近25年来青藏高原河流、湖泊的分布现状及其变迁进行了分析。研究表明,青藏高原河流总体上变化不明显,部分地区外流水系个别河段略有摆动,内流水系少数河段发生改道、断流,入湖河流河口段发生延伸、退缩等变化。青藏高原多数天然湖泊变化较大,主要是部分湖泊面积缩小或扩大;少数湖泊解体或归并;有的已干涸的湖泊又重新汇水,有的湖泊则接近干涸。导致河流、湖泊演变的主要影响因素有气温变化、降水变化及冰川变化、气候雪线变化等。  相似文献   

10.
Microplastics (MPs) pollution has become a serious environmental issue of growing global concern due to the increasing plastic production and usage. Under climate warming, the cryosphere, defined as the part of Earth’s layer characterized by the low temperatures and the presence of frozen water, has been experiencing significant changes. The Arctic cryosphere (e.g., sea ice, snow cover, Greenland ice sheet, permafrost) can store and release pollutants into environments, making Arctic an important temporal sink and source of MPs. Here, we summarized the distributions of MPs in Arctic snow, sea ice, seawater, rivers, and sediments, to illustrate their potential sources, transport pathways, storage and release, and possible effects in this sentinel region. Items concentrations of MPs in snow and ice varied about 1–6 orders of magnitude in different regions, which were mostly attributed to the different sampling and measurement methods, and potential sources of MPs. MPs concentrations from Arctic seawater, river/lake water, and sediments also fluctuated largely, ranging from several items of per unit to >40,000 items m?3, 100 items m?3, and 10,000 items kg?1 dw, respectively. Arctic land snow cover can be a temporal storage of MPs, with MPs deposition flux of about (4.9–14.26) × 108 items km?2 yr?1. MPs transported by rivers to Arctic ocean was estimated to be approximately 8–48 ton/yr, with discharge flux of MPs at about (1.65–9.35) × 108 items/s. Average storage of MPs in sea ice was estimated to be about 6.1×1018 items, with annual release of about 5.1×1018 items. Atmospheric transport of MPs from long-distance terrestrial sources contributed significantly to MPs deposition in Arctic land snow cover, sea ice and oceanic surface waters. Arctic Great Rivers can flow MPs into the Arctic Ocean. Sea ice can temporally store, transport and then release MPs in the surrounded environment. Ocean currents from the Atlantic brought high concentrations of MPs into the Arctic. However, there existed large uncertainties of estimation on the storage and release of MPs in Arctic cryosphere owing to the hypothesis of average MPs concentrations. Meanwhile, representatives of MPs data across the large Arctic region should be mutually verified with in situ observations and modeling. Therefore, we suggested that systematic monitoring MPs in the Arctic cryosphere, potential threats on Arctic ecosystems, and the carbon cycle under increasing Arctic warming, are urgently needed to be studied in future.  相似文献   

11.
The contamination of organochlorine pesticides (OCPs) from the selected rivers in Okinawa Island was investigated to estimate the current status of pollution in water, plants and surface sediments in these rivers. The Aja River, Asato River, Houtoku River, Kokuba River and Okukubi River were selected for this study. The concentration of the total pesticides were in the range of 0.94-231.8 ng/L in river water, 0.006–191.6 ng/L dry weight in river sediments and 0.001–55.8 ng/L dry weight in plants. Among the OCPs, ΣHCB of α-BHC,β-BHC and Aldrin were the common detected compounds in river water. The α-BHC, Aldrin and Dieldrin were the most frequent detected compounds in river sediments and α-BHC and Dieldrin were the common OCPs detected in plants. Aldrin, Dieldrin and ΣHCB were in abundance. Various contamination patterns between the selected river water, sediments and plants were observed. Aja River, Asato River and Houtoku River were contaminated with α,β,δ,γ- BHC, Aldrin and Dieldrin (water and sediments) whereas the main OCPs in Kokuba River and Okukubi River were Dieldrin (plants) The OCPs levels in all rivers were generally below guideline values in Japan, but some sites displayed levels which exceeded the EC and WHO Standards for Aldrin, Dieldrin and α,β-BHC.  相似文献   

12.
在第四纪的末次冰期、新冰期和小冰期期间,位于大峡谷入口处的则隆弄跃动冰川发生多次的快速前进,多次发生阻塞雅鲁藏布江事件,在大峡谷以上河段形成4期(Ⅳ~Ⅰ)的林芝古堰塞湖。14 C测年结果指示第2次、第3次和第4次堰塞湖分别发生在9760~11300aB.P.,1220±40~1660±40aB.P.和287±93~394±83aB.P.。估计Ⅳ~Ⅱ期堰塞湖库容量约2150km3,835km3和81km3。冰川阻塞湖坝的溃决释放突发性洪水,对下游的雅鲁藏布大峡谷河段及下游地区的环境产生巨大的影响。  相似文献   

13.
青藏高原唐古拉山南北两侧在地形地貌、地理和气候特征上存在显著差异,多年冻土的发育状况和特征也明显不同。受第二次青藏高原综合科学考察研究等项目资助,多年冻土对亚洲水塔的影响专题考察分队分别于2019年和2020年的10—11月对唐古拉山各拉丹冬南侧的色林错上游扎加藏布源区(简称“湖源区”)和北侧的长江上游沱沱河源区(简称“江源区”)进行了多年冻土野外考察。利用钻探、坑探、地球物理勘探等方法对多年冻土的分布边界、多年冻土剖面的地层、地下冰等特征进行了描述和取样,同步构建了多年冻土温度和活动层水热观测网络,为多年冻土对亚洲水塔影响的机理分析、数值模拟以及情景预估提供数据保障。对野外调查资料的初步分析认为,各拉丹冬南北两坡地层沉积类型和地下冰赋存状态存在明显差异,北坡多年冻土的热稳定性、地下冰含量、冰缘地貌类型多样性均高于南坡,但由于受到构造地热、河流融区等多种因素的影响,北坡的冻土分布形式更为复杂。江源区100 m钻孔剖面揭示了连续分布的、厚度大于50 m的地下冰;在该区域发现了多年生冻胀丘分布群,并利用钻探和地球物理勘探方法对该区域规模最大、结构最完整的冰核型冻胀丘进行了较为系统的勘察剖析。两次野外调查工作共采集钻孔岩心、表层土壤、冰水等各类样本近1.2万件,为后期区域冻土理化指标分析,冻土环境化学、古气候环境研究的开展奠定基础。  相似文献   

14.
我国河流湖泊污染的防治技术及发展趋势   总被引:17,自引:0,他引:17  
我国河流湖泊污染现状为V类和劣V类水质占七大水系(辽河、海河、淮河、黄河、松花江、珠江、长江)主要断面的50%以上,高中营养化湖泊占被调查湖泊的85%以上,河流湖泊污染状况十分严峻.目前河流湖泊采取的污染防治技术措施主要有:削减截流污染源、完善城市排水系统和建设污水处理厂、河流低泥疏浚、河道曝气技术、生物修复技术、水生植被恢复工程、引清冲淡等等.生物生态技术将在河流湖泊污染防治及生态恢复中发挥重要的作用.  相似文献   

15.
The aim of the present work was to investigate links between the low-field magnetic susceptibility (MS) and chemical and mineral composition of sediments from several Croatian and Slovenian rivers, as well as to determine possible anthropogenic influence on these sediments. MS measurements are a fast and simple method, which serves as a proxy for the estimation of pollution in different environmental systems. The investigated rivers are predominantly unpolluted rivers from Croatian and Slovenian karstic and flysch areas, which belong to the Adriatic or the Black Sea watersheds: the Dragonja, the Mirna, the Ra?a, the Ri?ana, the Reka, the Rak, the Cerkni?nica, the Unec and the Ljubljanica rivers. It was assumed that, due to their mostly unpolluted status, they could serve as a database for natural MS background values for this region. For comparison, several rivers and a lake from the Celje old metallurgic industrial area (Slovenia) were also investigated: the Savinja, the Hudinja, the Voglajna rivers and Slivni?ko Lake. They form a sub-basin of the Sava River drainage basin. Sediments of the clean karstic and flysch rivers showed extremely low MS values, with mass susceptibility values ranging from 0.58 × 10?7 to 5.11 × 10?7 m3/kg, and isothermal remanent magnetism (IRM) values ranging from 0.71 to 7.88 A/m. In the Celje industrial area, river sediments showed much higher MS values, with mass susceptibility values ranging from 1.31 × 10?7 to 38.3 × 10?7 m3/kg, and IRM values ranging from 0.91 to 100.42 A/m. The highest MS value was found in the Voglajna River at Teharje-?tore, a point which showed a significant number of anomalies of toxic metals in earlier investigations. Semiquantitative determination of relations between grain size and concentration of magnetite was performed using the Thompson-Oldfield method. X-ray diffraction (XRD) mineralogical analysis showed that sediments of the Celje area have mostly quartz as major mineral, with relatively small amount of carbonate minerals, while in sediments of karstic rivers carbonate minerals prevail. Statistically significant correlations were obtained between MS and Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Ba in the Slovenian karstic region and between MS and Cr, Fe, Co, Ni and Zn in flysch drainage basins. On the contrary, no correlation of MS and Hg content was obtained.  相似文献   

16.
The paper discusses the geochemical and Sr–Nd–Pb-isotope data on ice-rafted sediments (IRS) from different areas of the Arctic Ocean. Samples were collected during the Cruise of R/V Polarstern between Spitsbergen and North Pole, Yermak Plateau, as well as in Fram Strait. It is shown that the studied IRS samples in terms of LaN/YbN and εNd values are close to the composition of suspended particulate matter (SPM) from the mouth parts of large rivers and rivers transporting the sedimentary erosion products. This also follows from their Th/Sc, Th/Co, La/Sc, La/Sm, Sc/Th ratios and Sc content and from the position of their data points in the Sc–Th/Sc, La/Sc–Th/Co, and La/Sm–Sc/Th diagrams between the average SPM compositions of the Ob and Lena rivers. The values of 207Pb/206Pb and εNd in IRS samples give grounds to suggest that the rock complexes of the European, North American, and Asian continental margins could be potential sources for this sedimentary material. In the 207Pb/206Pb–εNd diagram, the IRS samples from all three studied areas define a compact cluster and are mainly confined to the triangle with corners represented by the Mackenzie River, Okhotsk–Chukotka volcanic area, and Lena River, being closer to the latter. In the Sm/Nd–εNd diagram, IRS points also form a compact field, being located almost in the middle between the average SPM compositions of the Yenisei and Ob rivers, on the one hand, and Lena River, on the other. In all diagrams, IRS samples from the different West Arctic areas show no significant scatter. With allowance for the fact that sediments are not subjected to significant homogenization during ice rafting, sediments from all three areas were obtained from a common source. As seen from the position of IRS data points in the 87Sr/86Sr–εNd diagram, this source was the Asian continental margin.  相似文献   

17.
Branched glycerol dialkyl glycerol tetraethers (GDGTs) are bacterial membrane lipids, ubiquitously present in soils and peat bogs, as well as in rivers, lakes and lake sediments. Their distribution in soil is controlled mainly by pH and mean annual air temperature, but the controls on their distribution in lake sediments are less well understood. Several studies have found a relationship between the distribution of branched GDGTs in lake sediments and average lake water pH, suggesting an aquatic source for them, besides that for soil transported to the lake via erosion. We sampled the surface water suspended particulate matter (SPM) from 23 lakes in Minnesota and Iowa (USA), that vary widely in pH, alkalinity and trophic state. The SPM was analyzed for the concentration and distributions of core lipid (presumed fossil origin) and intact polar lipid (IPL, presumed to derive from living cells) branched GDGTs. The presence of substantial amounts (18–48%) of IPL-derived branched GDGTs suggests that branched GDGTs are likely of autochthonous origin. Temperature estimates based on their distribution using lake-specific calibrations agree reasonably with water temperature at time of sampling and average air temperature of the season of sampling. Importantly, a strong correlation between the distribution of branched GDGTs and lake water pH was found (r2 0.72), in agreement with a predominant in situ production. An stronger correlation was found with lake water alkalinity (r2 0.83), although the underlying mechanism that controls the relationship is not understood. Our results raise the potential for reconstructing pH/alkalinity of past lake environments, which could provide important knowledge on past developments in lake water chemistry.  相似文献   

18.
A large number of the landslide dams located on the major rivers at the southeastern margin of the Tibetan Plateau have been previously identified through remote sensing analysis and field investigations. The Xuelongnang paleolake was one of the lakes formed by these landslide dams in the upper Jinsha River, where the association of a relict landslide dam, lacustrine sediment, and outburst sediment is well preserved. This preservation provides an opportunity to better understand the formation, evolution, and longevity of a large landslide-dammed lake in the upper Jinsha River. It was inferred that the Xuelongnang dammed lake may have been formed by an earthquake-induced paleoavalanche. The surface area of the lake at its peak was estimated at 7.0?×?106 m2, and the corresponding volume was approximately 3.1?×?108 m3. Two outburst flood events were determined to have occurred during the life span of the lake. Based on the 18 ages obtained from optically stimulated luminescence (OSL) and carbon-14 (14C) dating combined with stratigraphic sequences observed in the field, the paleolandslide-dammed lake was formed at approximately 2.1 ka and subsequently breached locally. The dammed lake was sustained for a period of some 900 years based on the chronological constraining. This study confirms that a major landslide-dammed lake can be sustained for at least hundreds of years and breached by several dam breaks in multiple periods, which contributed to the preservation of the knickpoints at millennial scale along the major rivers in the study area.  相似文献   

19.
遥感技术由于能够快速、 宏观的获得研究区域的数据, 已成为青藏高原热融湖塘动态监测的重要技术手段. 基于野外现场调查和SPOT-5、 QuickBird两种高分辨率遥感卫星数据的特性分析, 结合影响青藏高原热融湖塘发育的一系列特征因素, 探讨了最适合于青藏高原热融湖塘动态监测的高分辨率遥感数据的纠正、 融合和信息提取方法. 应用该方法对2006-2009年间北麓河盆地北侧的红梁河至秀水河段公路沿线局部63 km2范围的热融湖塘进行了变化特征分析, 结果表明该区的热融湖塘个数和总面积在研究时段都有所增加, 其中湖塘由70个增加到75个, 湖塘总面积增量19.65%.  相似文献   

20.
为了进一步全面理解和探索青藏高原水文水循环过程,采用同位素方法并结合气象资料对青藏高原北麓河区域2011年6~12月降水和河水稳定同位素时空特征进行分析。探讨了北麓河降水同位素与日平均气温、降水量之间的相互关系,同时也对比分析了北麓河降水和河水的同位素变化特征。结果表明:北麓河降水同位素在整个观测期内总体受温度控制,但存在季节变化,其中6~9月降水同位素受到温度和降水量效应的共同控制,9月以后则主要受温度的影响。河水同位素与降水同位素相似的变化特征,体现了降水补给特征,另外降水量也能够影响河水同位素变化:降水量小则降水对其影响较小,反之则大。与北麓河降水线相比,河水δ18O~δD关系的斜率和截距偏大,揭示该区域河水除了受大气降水的补给外,还受到区域水体内循环和蒸发分馏作用的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号