首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 534 毫秒
1.
A moderate (M 5) earthquake struck the northeastern United Arab Emirates (UAE) and northern Oman on March 11, 2002. The event was felt over a wide area of the northern Emirates and was accompanied by smaller (felt) events before and after the March 11 main shock. The event was large enough to be detected and located by global networks at teleseismic distances. We estimated focal mechanism and depth from broadband complete regional waveform modeling. We report a normal mechanism with a slight right-lateral strike-slip component consistent with the large-scale tectonics. The normal component suggests relaxation of obducted crust of the Semail ophiolite (specifically, the Khor Fakkan Block) while the right-lateral strike-slip component of the mechanism is consistent with shear across the Oman Line. Felt earthquakes are rare in the region, however no regional seismic network exists in the UAE to determine local seismicity. This event offers a unique opportunity to study the active tectonics of the region as well as inform future studies of seismic hazard in the UAE and northern Oman.  相似文献   

2.
In April 2006, Dubai Municipality established a broadband seismological network in Dubai Emirate, United Arab Emirates (UAE). This network was the first seismic network in UAE and consists of four remote seismic stations to observe local and regional seismic activity that may have an effect on Dubai Emirate and the surrounding areas. The network exchanges real-time data with the National Center of Meteorology and Seismology in Abu Dhabi, the Earthquake Monitoring Center in Oman and imports in real-time data from few Global Seismic Network stations, which increases the aperture of the network. In April 2012, Dubai Municipality installed an additional five free-field strong motion stations inside the urban area to estimate and publish real-time ShakeMaps for public and decision makers. Although the local seismic activity from April 2006 to June 2013 reflects low seismic activity with the Emirate, it indicates active tectonics in the relatively aseismic northern Oman Mountains region. A few inland clusters of micro-to-small earthquakes have been identified with the new network. A clear cluster of small-to-moderate earthquakes took place in the eastern part of UAE to the east of Masafi, while two clusters of micro-to-small earthquakes took place at Wadi Nazwa and northern Huwaylat. Focal mechanisms of few well recorded earthquakes in this region indicate normal faulting, generally trending NE in parallel to the transition shear zone between the collision at Zagros and the subduction at the Makran zone.  相似文献   

3.
In this study we computed recent seismicity and present kinematic regime in the northern and middle zones of Gulf of Suez as inferred from moment tensor settlings and focal mechanism of local earthquakes that happened in this region. On 18 and 22 of July, 2014 two moderate size earthquakes of local magnitudes 4.2 and 4.1 struck the northern zone of Gulf of Suez near Suez City. These events are instrumentally recorded by Egyptian National Seismic Network (ENSN). The earthquakes have been felt at Suez City and greater Cairo metropolitan zone while no losses were reported. The source mechanism and source parameters of the calculated events were considered by the near-source waveform data listed at very broadband stations of ENSN and supported by the P-wave polarity data of short period stations. The new settling method and software used deem the action of the source time function, which has been ignored in most of the program series of the moment tensor settling analysis with near source seismograms. The obtained results from settling technique indicate that the estimated seismic moments of both earthquakes are 0.6621E + 15 and 0.4447E + 15 Nm conforming to a moment magnitude Mw 3.8 and 3.7 respectively. The fault plan settlings obtained from both settling technique and polarity of first-arrival indicate the dominance of normal faulting. We also evaluated the stress field in north and middle zones of Gulf of Suez using a multiple inverse method. The prime strain axis shows that the deformation is taken up mainly as stretching in the E–W and NE–SW direction.  相似文献   

4.
A temporal seismic network recorded local seismicity along a 130 km long segment of the transpressional dextral strike-slip Liquiñe-Ofqui fault zone (LOFZ) in southern Chile. Seventy five shallow crustal events with magnitudes up to Mw 3.8 and depths shallower than 25 km were observed in an 11-month period mainly occurring in different clusters. Those clusters are spatially related to the LOFZ, to the volcanoes Chaitén, Michinmahuida and Corcovado, and to active faulting on secondary faults. Further activity along the LOFZ is indicated by individual events located in direct vicinity of the surface expression of the LOFZ. Focal mechanisms were calculated using deviatoric moment tensor inversion of body wave amplitude spectra which mostly yield strike-slip mechanisms indicating a NE–SW direction of the P-axis for the LOFZ at this latitude. The seismic activity reveals the present-day activity of the fault zone. The recent Mw 6.2 event near Puerto Aysén, Southern Chile at 45.4°S on April 21, 2007 shows that the LOFZ is also capable of producing large magnitude earthquakes and therefore imposing significant seismic hazard to this region.  相似文献   

5.
Geotechnical and Geological Engineering - Artificial islands near Dubai were constructed with geomaterials of significant gravel content from other areas of the United Arab Emirates (UAE). The...  相似文献   

6.
The Tarutung Basin is located at a right step-over in the northern central segment of the dextral strike-slip Sumatran Fault System (SFS). Details of the fault structure along the Tarutung Basin are derived from the relocations of seismicity as well as from focal mechanism and structural geology. The seismicity distribution derived by a 3D inversion for hypocenter relocation is clustered according to a fault-like seismicity distribution. The seismicity is relocated with a double-difference technique (HYPODD) involving the waveform cross-correlations. We used 46,904 and 3191 arrival differences obtained from catalogue data and cross-correlation analysis, respectively. Focal mechanisms of events were analyzed by applying a grid search method (HASH code). Although there is no significant shift of the hypocenters (10.8 m in average) and centroids (167 m in average), the application of the double difference relocation sharpens the earthquake distribution. The earthquake lineation reflects the fault system, the extensional duplex fault system, and the negative flower structure within the Tarutung Basin. The focal mechanisms of events at the edge of the basin are dominantly of strike-slip type representing the dextral strike-slip Sumatran Fault System. The almost north–south striking normal fault events along extensional zones beneath the basin correlate with the maximum principal stress direction which is the direction of the Indo-Australian plate motion. The extensional zones form an en-echelon pattern indicated by the presence of strike-slip faults striking NE–SW to NW–SE events. The detailed characteristics of the fault system derived from the seismological study are also corroborated by structural geology at the surface.  相似文献   

7.
The paper presents a detailed analysis of 1st April 2015 earthquake, whose epicenter (30.16° N, 79.28° E) was located near Simtoli village of Chamoli district, Uttarakhand. The focal depth is refined to 7 km by the grid search technique using moment tensor inversion. The source parameters of the earthquake as estimated by spectral analysis method suggested the source radius of ~1.0 km, seismic moment as 1.99E+23 dyne-cm with moment magnitude (Mw) of 4.8 and stress drop of 69 bar. The fault plane solution inferred using full waveform inversion indicated two nodal planes, the northeast dipping plane having strike 334° and dip 5° and the southwest dipping plane with dip 86° and strike 118°. The parallelism of the nodal plane striking 334° with dip 5° as indicated in depth cross sections of the tectonic elements suggested the north dipping Main Boundary Thrust (MBT) to be the causative fault for this earthquake. Spatio-temporal distribution of earthquakes during the period 1960-2015 showed seismic quiescence during 2006-2010 and migration of seismicity towards south.  相似文献   

8.
Moment tensors and micromechanical models   总被引:4,自引:0,他引:4  
A numerical modelling approach that simulates cracking and failure in rock and the associated seismicity is presented and a technique is described for quantifying the seismic source mechanisms of the modelled events. The modelling approach represents rock as an assemblage of circular particles bonded together at points of contact. The connecting bonds can break under applied stress forming cracks and fractures in the modelled rock. If numerical damping is set to reproduce realistic levels of attenuation, then energy is released when the bonds break and seismic source information can be obtained as damage occurs. A technique is described by which moment tensors and moment magnitudes can be calculated for these simulated seismic events. The technique basically involves integrating around the source and summing the components of force change at the surrounding particle contacts to obtain the elements of the moment tensor matrix. The moment magnitude is then calculated from the eigenvalues of the moment tensor. The modelling approach is tested by simulating a well-controlled experiment in which a tunnel is excavated in highly stressed granite while microseismicity is recorded. The seismicity produced by the model is compared to the actual recorded seismicity underground. The model reproduces the spatial and temporal distribution of seismicity observed around the tunnel and also the magnitudes of the events. A direct comparison between the actual and simulated moment tensors is not performed due to the two-dimensional nature of the model, however, qualitative comparisons are presented and it is shown that the model produces intuitively realistic source mechanisms. The ability to obtain seismic source information from the models provides a unique means for model validation through comparison with actual recorded seismicity. Once it is established that the model is performing in a realistic manner, it can then be used to examine the micromechanics of cracking, failure and the associated seismicity and to help resolve the non-uniqueness of the geophysical interpretation. This is demonstrated by examining in detail the mechanics of one of the modelled seismic events by observation of the time dependence of the moment tensor and by direct examination of the particle motions at the simulated source.  相似文献   

9.
Determining fault activity through time has typically utilised high-resolution seismic data to identify stratigraphic thickness changes or displacement vs distance plots; however, this approach is not possible in regions with low-resolution seismic data. We present a new approach for determining fault reactivation (tensile and shear) through time by integrating three-dimensional seismic data, geomechanical modelling and complete paleostress tensors from calcite twin stress inversion. The Cooper–Eromanga Basin is used as a case study to model the stress conditions present during six tectonic events that have affected the basin and, in doing so, constrain the effective paleostress magnitudes through time. Results show that the likelihood of dilation and shear reactivation of individual fault sets varies through time, with N–S- and E–W-striking faults likely to have been open to fluid flow after the critical moment in the hydrocarbon system. These results have substantial implications for hydrocarbon migration pathway models and structural and stratigraphic models for the Cooper–Eromanga Basin. This approach would benefit other provinces with low-resolution seismic data preventing fault growth analysis, or in regions where hydrocarbon migration pathways are poorly defined.  相似文献   

10.
Sand and dust storms are causing hazards and problems in aviation as well as the dangers and distresses they cause on living things. The low meteorological visibility, the presence of strong winds with gust, and the transport of dust and sand particles by the wind are dangerous on landing and departure of aircrafts, and even on planes that are parked. The main aim of the study is to examine the meteorological conditions causing the dust storm that took place in the Arabian Peninsula on February 28, 2009, and to determine the source of dust caused dust storm, sand storm, blown sand, and blown dust at the airports. Within the scope of the study, aviation routine weather report (METAR) and aviation selected special weather report (SPECI) reports have been assessed at many airports over Arabian Peninsula (AP), the northern part of the AP and North Africa. As model outputs; NCEP–DOE Reanalysis 2 data, BSC–DREAM8B, and HYSPLIT model were used. In the satellite images; METEOSAT MSG dust RGB images, MODIS, and Kalpana-1 data were used. According to obtained results, dust storms were detected in Bahrain, Kuwait, Saudi Arabia, and United Arab Emirates (UAE). At Al-Ahsa Airport in Saudi Arabia, the lowest visibility measured on February 28, 2009, dropping to 200 m, which was dominated by blowing sand. The source region of the dust observed at Dubai Airport in UAE is the eastern regions of the Rub’al Khali Desert located between Saudi Arabia, Oman, and UAE.  相似文献   

11.
The 1515 M7? Yongsheng earthquake is the strongest earthquake historically in northwest Yunnan. However, its time, magnitude and the seismogenic fault have long been a topic of dispute. In order to accurately define those problems, a 1:50000 active tectonic mapping was carried out along the northern segment of the Chenghai–Binchuan fault zone. The result shows that there is an at least 25 km–long surface rupture and a series of seismic landslides distributed along the Jinguan fault and the Chenghai fault. Radiocarbon dating of the ~(14) C samples indicates that the surface rupture should be a part of the deformation zone caused by the Yongsheng earthquake in the year 1515. The distribution characteristics of this surface rupture indicate that the macroscopic epicenter of the 1515 Yongsheng earthquake may be located near Hongshiya, and the seismogenic fault of this earthquake is the Jinguan–Chenghai fault, the northern part of the Chenghai–Binchuan fault zone. Striations on the surface rupture show that the latest motion of the fault is normal faulting. The maximum co–seismic vertical displacement can be 3.8 m, according to the empirical formula for the fault displacement and moment magnitude relationship, the moment magnitude of the Yongsheng earthquake was Mw 7.3–7.4. Furthermore, combining published age data with the ~(14) C data in this paper reveals that at least four large earthquakes of similar size to the 1515 Yongsheng earthquake, have taken place across the northern segment of the Chenghai–Binchuan fault zone since 17190±50 yr. BP. The in–situ recurrence interval of Mw 7.3–7.4 characteristic earthquakes in Yongsheng along this fault zone is possibly on the order of 6 ka.  相似文献   

12.
The Aysén Region, southern Chile, is the area located at the southern end of the Nazca-South America subduction zone, to the east of the Chile Triple Junction. This region has historically presented low levels of seismicity mostly related to volcanism. Nonetheless, a seismic sequence occurred in 2007, related to the reactivation of the strike-slip Liquiñe-Ofqui Fault System (LOFS), confirmed that this region is not exempt from major seismic activity M ∼ 7. Here we present results from background local seismicity of two years (2004–2005) preceding the sequence of 2007. Event magnitudes range between 0.5 and 3.4 ML and hypocenters occur at shallow depths, mostly within the upper 10 km of crust, in the overriding South American plate. No events were detected in the area locus of the 2007 sequence, and the Wadati–Benioff (WB) plane is not observable given the lack of subduction inter-plate seismicity in the area. A third of the seismicity is related to Hudson volcano activity, and sparse crustal events can be spatially associated with the trace of the Liquiñe-Ofqui fault, showing the largest detected magnitudes, in particular at the place where the two main branches of the LOFS meet. Other minor sources of seismicity correspond to glacial calving in the terminal zones of glaciers and mining explosions.  相似文献   

13.
The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw = 5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9 × 1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km × 15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike = 266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Apennines being more likely related to the decoupling of the southern Adriatic block from the northern one.  相似文献   

14.
We utilized the seismicity and the potential field data to study the tectonic deformation and to delineate the seismically active subsurface tectonic trends of El-Faiyum area. To accomplish these goals, we analyzed and interpreted the seismicity data, the reduced to pole total magnetic intensity, and the Bouguer anomaly maps. We also used the spatial distribution of the recent seismic events and the focal mechanism to outline the local seismic zones that control the seismicity of the study area and to determine the sense of the motion along the subsurface active faults. The focal mechanism of the recent seismic events and the interpreted subsurface tectonic faults from the potential field data reflect strike-slip movements with normal components along the subsurface active faults. The gravity and magnetic maps show a NE-SW regional trend with low gravity and magnetic values. The NE-SW regional trend extends across the whole area and could be related to the Pelusium Megashear fault. A NE-SW trend with high gravity and magnetic exists at the northern part and coincides with the Kattania Uplift and the basaltic flows in Gabal Qatrani area. The gravity and magnetic maps also reveal several local anomalies with different polarities, amplitudes, and extensions, which reflect anticlinal and synclinal structures on the basement surface. The seismotectonic map, generated by linking the basement structure map and the spatial distribution of the recent earthquake foci, reveals the dominant tectonic trends and the subsurface active faults.  相似文献   

15.
The Pyrenean range, which results from the convergence of the Iberian and Eurasian plates along the North Pyrenean fault, exhibits a permanent seismic activity with moderate magnitude events. From the end of the 1980s, seismic instrumentation has been deployed in the Pyrenees, making now possible the computation of improved seismicity maps. We have gathered all the arrival times published for the period 1989–1996 by the different Spanish and French institutions in charge of the seismic survey of the range, and reprocessed them in an homogeneous way, in order to obtain a coherent seismicity map over the whole range. Particular attention has been paid to the evaluation of the quality of the locations and to the focal depth determinations. The comparison with previous maps of the Pyrenean seismicity reveals significant improvements in both the quality of locations and the threshold of detection. The new seismicity map reveals that the North Pyrenean fault is active only in the western part of the range. In the central and eastern parts, the seismicity involves other tectonic units such as the Maladeta and Canigou granitic massifs, the North Pyrenean Frontal Thrust, the Tet fault and the volcanic units in Catalonia. Despite the short time interval considered, this new seismicity file may be a valuable tool for future tectonic studies.  相似文献   

16.
Seismotectonics and seismicity of the Silakhor region, Iran   总被引:1,自引:0,他引:1  
This paper deals with seismotectonic and seismicity of the Silakhor region that shows high seismic activity in western Iran. Silakhor is a vast plain with several villages and cities of Dorud and Borujerd and a small town of Chalanchulan that were destroyed and/or damaged many times by large earthquakes. This paper addresses the historical and instrumental earthquakes and their causative faults, seismotectonic provinces and seismotectonic zones of the region. Available seismic data were normalized by means of time normalization technique that resulted in the magnitude-frequency relation for the Silakhor area and estimation of the return period of earthquakes with different magnitudes. Some active faults in this region include the Dorud fault, the main Zagros thrust, the Galehhatam fault, the Sahneh fault and others. Among them, the Dorud fault is an earthquake fault and is the cause for most of the large and intermediate earthquakes in the region. The return period of large earthquakes with magnitudes greater than 7.0 (Ms) is very low, however, the occurrence of destructive earthquakes is greater in the region than in the neighboring provinces. The study proves the high seismicity of this zone and it is required to develop an accurate national plan for future building and reinforcement of the existing buildings in this region.  相似文献   

17.
Advances in earthquake data acquisition and processing techniques have allowed for improved quantification of source parameters for local Australian earthquakes. Until recently, only hypocentral locations and local magnitudes (ML) had been determined routinely, with little attention given to the inversion of additional source parameters. The present study uses these new source data (e.g. seismic moment, stress drop, source dimensions) to further extend our understanding of seismicity and the continental stress regime of the Australian landmass and its peripheral regions.

Earthquake activity within Australia is typically low, and the proportion of small to large events (i.e. the b value) is also low. It is observed that average stress drops for southeastern Australian earthquakes appear to increase with seismic moment to relatively high levels, up to approximately 10 MPa for ML 5.0 earthquakes. This is thought to be indicative of high compressive crustal stress, coupled with strong rocks and fault asperities. Furthermore, the data indicates that shallow focus earthquakes (shallower than 6 km) appear to produce lower than average stress drops than deeper earthquakes (between 6 and 20 km) with similar moment.

Recurrence estimates were obtained for a discrete seismogenic zone in southeastern Australia. Decreasing b values with increasing focal depth for this zone indicate that larger earthquakes (with high stress drops) tend to occur deeper in the crust. This may offer an explanation for the apparent increase of stress drop with hypocentral depth. Consequently, earthquake hazard estimates that assume a uniform Gutenburg–Richter distribution with depth (i.e. constant b value) may be too conservative and therefore slightly overestimate seismic hazard for surface sites in southeastern Australia.  相似文献   


18.
Northeastern Brazil is, within the present knowledge of historical and instrumental seismicity, one the most seismic active areas in intraplate South America. Seismic activity in the region has occurred mainly around the Potiguar basin. This seismicity includes earthquake swarms characterized by instrumentally-recorded events ≤ 5.2 mb and paleoseismic events ≥ 7.0. Our study concentrates in the João Câmara (JC) epicentral area, where an earthquake swarm composed of more than 40,000 aftershocks occurred mainly from 1986 to 1990 along the Samambaia fault; 14 of which had mb > 4.0 and two of which had 5.1 and 5.0 mb. We describe and compare this aftershock sequence with the present-day stress field and the tectonic fabric in an attempt to understand fault geometry and local control of seismogenic faulting. Earthquake data indicate that seismicity decreased steadily from 1986 to 1998. We selected 2,746 epicenters, which provided a high-quality and precise dataset. It indicates that the fault trends 37° azimuth, dips 76°–80° to NW, and forms an alignment  27 km long that cuts across the NNE–SSW-trending ductile Precambrian fabric. The depth of these events ranged from  1 km to  9 km. The fault forms an echelon array of three main left-bend segments: one in the northern and two in the southern part of the fault. A low-seismicity zone, which marks a contractional bend, occurs between the northern and southern segments. Focal mechanisms indicate that the area is under an E–W-oriented compression, which led to strike–slip shear along the Samambaia fault with a small normal component. The fault is at 53° to the maximum compression and is severely misoriented for reactivation under the present-day stress field. The seismicity, however, spatially coincides with a brittle fabric composed of quartz veins and silicified-fault zones. We conclude that the Samambaia fault is a discontinuous and reactivated structure marked at the surface by a well-defined brittle fabric, which is associated with silica-rich fluids.  相似文献   

19.
Prasetya  G. S.  De Lange  W. P.  Healy  T. R. 《Natural Hazards》2001,24(3):295-307
The Makassar Strait region has had the highest frequency of historical tsunamievents for Indonesia. The strait has a seismic activity due to the convergenceof four tectonic plates that produces a complex mixture of structures. The maintsunamigenic features in the Makassar Strait are the Palu-Koro and Pasternostertransform fault zones, which form the boundaries of the Makassar trough.Analysis of the seismicity, tectonics and historic tsunami events indicatesthat the two fault zones have different tsunami generating characteristics.The Palu-Koro fault zone involves shallow thrust earthquakes that generatetsunami that have magnitudes that are consistent with the earthquakemagnitudes. The Pasternoster fault zone involves shallower strike-slipearthquakes that produce tsunami magnitudes larger than would normallybe expected for the earthquake magnitude. The most likely cause for theincreased tsunami energy is considered to be submarine landslidesassociated with the earthquakes. Earthquakes from both fault zonesappear to cause subsidence of the west coast of Sulawesi Island.The available data were used to construct a tsunami hazard map whichidentifies the highest risk along the west coast of Sulawesi Island.The opposite side of the Makassar Strait has a lower risk because it isfurther from the historic tsunami source regions along the Sulawesicoast, and because the continental shelf dissipates tsunami wave energy.The greatest tsunami risk for the Makassar Strait is attributed tolocally generated tsunami due to the very short travel times.  相似文献   

20.
Earthquake source parameters and crustal Q are being estimated simultaneously through the inversion of S-wave displacement spectra from three-component recordings of ten local cratonic intraplate earthquakes from 3-6 broadband stations in the eastern Indian shield, wherein, an iterative Levenberg-Marquardt inversion technique is used. The estimated seismic moment (Mo) and source radii (r) vary from 7.4 x 1012 to 7.1 x 1014 N-m and 144.2 to 211.3 m, respectively, while estimated stress drops (Δσ) and multiplicative factor (Emo) values range from 0.11 to 4.13 MPa and 1.33 to 2.16, respectively. The corner frequencies range from 6.23 to 8.62 Hz while moment magnitudes vary from 2.44 to 3.57. The radiated seismic energy and apparent stresses range from 8.3 x 106 to 2.0 x 1010 Joules and 0.06 to 0.94 MPa, respectively, wherein the estimated corner frequencies and seismic moment satisfy the relation Mo ∞ f c –(3+ε) for ε = 12.7. Thus, the source scaling of these events clearly deviates from the self-similarity i.e. f–3. Estimated Zuniga parameters reveal that all selected events satisfy the partial stress drop model, which is in good agreement with the global observations. Our estimated crustal S-wave quality factors vary from 1091 to 4926 with an average of 3006, suggesting a less heterogeneous crustal structure underlying the study region.We also perform moment tensor inversion of five selected local events using ISOLA software, which reveals that the dominant deformation mode for the eastern Indian shield is left-lateral strike slip motion with minor normal dip-slip component on an almost vertical plane. This observation suggests that neotectonic vertical movements might have played a key role in generating these earthquakes. Our modeling also depicts that the seismically mildly active Singhbhum shear zone and Eastern Ghats mobile belt are characterized by the left-lateral strike motion while two events in the Chotanagpur half graben belt suggest a normal dip-slip motion along a south dipping plane. A north-south orientation of P-axis is found to be dominant in the area, which is consistent with the prevailing north–south compression over the Indian plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号