首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first catalogue of active regional faults of Cuba is presented. The seismotectonic map of Cuba is a base for studying the seismicity in this region. Of the 30 faults studied, only twelve are active. The main seismotectonic structure is the Bartlett-Cayman fault system, which borders the eastern and southeastern seismotectonic units in this region. Approximately 70% of Cuban seismicity is concentrated here. The Cauto-Nipe, Cochinos and Nortecubana faults border other seismotectonic units. The Nortecubana fault is the only one associated with a tsunami. All the faults are segmented. The faults described are related to the current tectonic stress regime of the Northern Caribbean. All the available information (maps, sections and profiles, photos, geological and neotectonic data on seismicity and focal mechanisms) is supported by a GIS.  相似文献   

2.
3.
A first-order seismotectonic model was created for South Africa. This was done using four logical steps: geoscientific data collection, characterisation, assimilation and zonation. Through the definition of subunits of concentrations of earthquake foci and large neotectonic and structural domains, seismotectonic structures, systems and domains were created. Relatively larger controls of seismicity exist between the Great Escarpment and the coast. In the south, this region is characterised by large aeromagnetic anomalies and large EW trending faults. In the west, it is characterised by the NW–SE trending Wegener stress anomaly, radial-trending dykes and earthquake clusters. In the east, it is characterised by a large neotectonic domain where several large historical earthquakes occurred. In the centre of South Africa, several clusters of earthquake activity are found, often related to mining activity. Further north, seismicity is related to both mining activity and neotectonic deformation. This work contributes to the development of a seismotectonic model for South Africa by (1) bringing together, digitally, several data sets in a common GIS platform (geology, geophysics, stress, seismicity, neotectonics, topography, crustal and mantle structure and anisotropy), (2) understanding the significance of data sets for seismotectonic zonation and limitations thereof and (3) obtaining a reasonable regional model for use in seismic hazard assessments.  相似文献   

4.
Assessment of seismic hazard in Panama is made using a seismotectonic regionalization model. The coefficients of Gumbel's Type-I distribution are calculated and return periods for several magnitudes are found. From these coefficients intensities, peak ground acceleration and earthquake hazard for a set of return periods and epicentral distances are estimated and substantial variations in the probability of occurrence are noted. The Panama Fracture Zone (PFZ) and the Panama-South America Suture Zone (PSZ) provinces are the most active in producing earthquakes with a magnitude of about 7.0 in less than 16 yr. Magnitude 7.0 earthquakes in the Azuero province have a return period of about 160 yr, whereas in the Panama Deformed Belt (PDB) province the return period for magnitude 7.5 events is about 175 yr.  相似文献   

5.
《Geodinamica Acta》1999,12(2):71-80
In the Maghreb, the southern border of the Kabylie (Algeria) mountains is considered as an aseismic region. The detailed study of the historical seismicity of this region shows moderate seismic activity (M1 = 5.0) which is not coherent with the observed tectonic deformations. However, an analysis of the morphology on Landsat image, aerial photos and the topography shows Quaternary deformations in the southern side of the “Kabylie massifs” (Algeria). These deformations are interpreted as reactivation of Miocene thrust faults. The tectonic Quaternary scarps are more spectacular in the Bouira and Tazmalt region and might be associated with successive strong earthquakes (M = 7.0). Therefore, this major active thrust fault observed in this region, as in many intraplate regions, poses the problem of the long return period of seismic activity in this zone. © Elsevier, Paris  相似文献   

6.
Detecting the paleoseismological specifications as well as seismic capability of faults has specific importance in estimating the earthquake hazard in any region. The geomorphic indices are used as indirect procedures in the mountainous area. They are appropriate and applicable methods in recognizing the specifications of active tectonics and evaluating fault seismicity in the mountainous areas. In this regard, giant landslides can be pointed out as proper indices. These landslides are usually related to tectonics and triggered by earthquakes in many cases. In this research, giant landslides existed in Noor valley (central Alborz) have been considered as geomorphological indices for recognizing the seismicity of the region and the seismic capability of its faults. There are four giant landslides in this region (Baladeh, Razan, Vakamar, and Iva) used for the mentioned purpose. No historical earthquake has been reported around Noor valley. However, the existence of giant and old landslides, related to earthquake, indicates the occurrence of numerous prehistoric earthquakes. In this research, three different age classes have been determined (Late Holocene, Early Holocene, and Late Pleistocene) for landslides. By the way, the possibility of identifying multiple earthquakes is provided in this area. The magnitudes of earthquakes are estimated as 7.7 ± 0.49 to 7.9 ± 0.49 based on their relations with maximum volume of displaced material. Regarding the distribution of landslides and other evidences, the eastern segment of Baladeh fault has probably been the main cause of the earthquakes.  相似文献   

7.
Strong seismic events once again confirm the view that great destructive earthquakes are produced by the reactivation of pre-existing faults although they have usually remained inactive for many, perhaps thousands of years. It is evident that such active seismogenic zones, with little or no seismicity, have presumably been ignored in the determination of the region's seismic hazard. At south Peloponnesus, Greece, is situated at Taygetos mountain. At its eastern front lies a large normal fault system, the southern segment being the Sparta fault. This area has been characterized by low seismicity for the last 25 centuries. However, during the 6th and 5th centuries B.C. several destructive earthquakes have been reported. That of 464 B.C., was the most destructive and devastated the city of Sparta. Detailed morphotectonic observations of this area, suggest that the earthquake of 464 B.C. could be related to the most recent reactivation of this fault. The ground accelerations that would be produced by a future activation of the Sparta fault, were calculated, by applying a method which takes into account information mainly from the seismotectonic parameters of the Sparta fault, the rupture pattern, the properties of the propagation medium and the local ground conditions. Moreover, these results were compared with those of other independent studies based mainly on the seismic data of the area. This method estimated greater expected values of ground acceleration than those computed by the conventional seismic hazard methods. The highest values correspond to the activation of the Sparta fault either in a unilateral rupture, which would start from the southernmost point of the fault, or in a circular one. Furthermore, an increase is observed of the order of 50% in the ground acceleration values in unconsolidated soft ground in relation to the corresponding values of hard ground. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Seismicity of Gujarat   总被引:2,自引:2,他引:0  
Paper describes tectonics, earthquake monitoring, past and present seismicity, catalogue of earthquakes and estimated return periods of large earthquakes in Gujarat state, western India. The Gujarat region has three failed Mesozoic rifts of Kachchh, Cambay, and Narmada, with several active faults. Kachchh district of Gujarat is the only region outside Himalaya-Andaman belt that has high seismic hazard of magnitude 8 corresponding to zone V in the seismic zoning map of India. The other parts of Gujarat have seismic hazard of magnitude 6 or less. Kachchh region is considered seismically one of the most active intraplate regions of the World. It is known to have low seismicity but high hazard in view of occurrence of fewer smaller earthquakes of M????6 in a region having three devastating earthquakes that occurred during 1819 (M w7.8), 1956 (M w6.0) and 2001 (M w7.7). The second in order of seismic status is Narmada rift zone that experienced a severely damaging 1970 Bharuch earthquake of M5.4 at its western end and M????6 earthquakes further east in 1927 (Son earthquake), 1938 (Satpura earthquake) and 1997 (Jabalpur earthquake). The Saurashtra Peninsula south of Kachchh has experienced seismicity of magnitude less than 6.  相似文献   

9.
基于辽宁地区主要活动断裂的几何特征和空间展布,对1980年以来辽宁地区ML≥2.0地震的累计频次和1900年以来Ms≥5.0地震的年发生率的空间分布及其与活动断裂构造背景关系进行研究,获得了基于地震学的辽宁省内主要断裂和构造区(带)的活动性与地震危险性的初步评估结果。辽宁地区主要断裂活动性较高的有海城河断裂、金州断裂九寨—盖州北段、朝阳—北票断裂等;辽宁地区未来3年发生Ms≥5.0地震危险性较高的断裂依次有海城河断裂、金州断裂、熊岳—庄河断裂、鸭绿江断裂及赤峰—开原断裂与柳河断裂交汇处等。在判定区域地震危险性和城市地震风险时,除了依据前兆异常的空间分布,还应充分考虑区内主要构造(断裂)的活动性与地震危险性。  相似文献   

10.
We relocate the 1990–1991 Potenza (Southern Apennines belt, Italy) sequences and calculate focal mechanisms. This seismicity clusters along an E–W, dextral strike–slip structure. Second-order clusters are also present and reflect the activation of minor shears. The depth distribution of earthquakes evidences a peak between 14 and 20 km, within the basement of the subducting Apulian plate. The analysed seismicity does not mirror that of Southern Apennines, which include NW–SE striking normal faults and earthquakes concentrated within the first 15 km of the crust. We suggest that the E–W faults affecting the foreland region of Apennine propagate up to 25 km of depth. The Potenza earthquakes reflect the reactivation of a deep, preexisting fault system. We conclude that the seismotectonic setting of Apennines is characterized by NW–SE normal faults affecting the upper 15 km of the crust, and by E–W deeper strike–slip faults cutting the crystalline basement of the chain.  相似文献   

11.
Dextral transtensional deformation is occurring along the Sierra Nevada–Great Basin boundary zone (SNGBBZ) at the eastern edge of the Sierra Nevada microplate. In the Lake Tahoe region of the SNGBBZ, transtension is partitioned spatially and temporally into domains of north–south striking normal faults and transitional domains with conjugate strike-slip faults. The normal fault domains, which have had large Holocene earthquakes but account only for background seismicity in the historic period, primarily accommodate east–west extension, while the transitional domains, which have had moderate Holocene and historic earthquakes and are currently seismically active, primarily record north–south shortening. Through partitioned slip, the upper crust in this region undergoes overall constrictional strain.Major fault zones within the Lake Tahoe basin include two normal fault zones: the northwest-trending Tahoe–Sierra frontal fault zone (TSFFZ) and the north-trending West Tahoe–Dollar Point fault zone. Most faults in these zones show eastside down displacements. Both of these fault zones show evidence of Holocene earthquakes but are relatively quiet seismically through the historic record. The northeast-trending North Tahoe–Incline Village fault zone is a major normal to sinistral-oblique fault zone. This fault zone shows evidence for large Holocene earthquakes and based on the historic record is seismically active at the microearthquake level. The zone forms the boundary between the Lake Tahoe normal fault domain to the south and the Truckee transition zone to the north.Several lines of evidence, including both geology and historic seismicity, indicate that the seismically active Truckee and Gardnerville transition zones, north and southeast of Lake Tahoe basin, respectively, are undergoing north–south shortening. In addition, the central Carson Range, a major north-trending range block between two large normal fault zones, shows internal fault patterns that suggest the range is undergoing north–south shortening in addition to east–west extension.A model capable of explaining the spatial and temporal partitioning of slip suggests that seismic behavior in the region alternates between two modes, one mode characterized by an east–west minimum principal stress and a north–south maximum principal stress as at present. In this mode, seismicity and small-scale faulting reflecting north–south shortening concentrate in mechanically weak transition zones with primarily strike-slip faulting in relatively small-magnitude events, and domains with major normal faults are relatively quiet. A second mode occurs after sufficient north–south shortening reduces the north–south Shmax in magnitude until it is less than Sv, at which point Sv becomes the maximum principal stress. This second mode is then characterized by large earthquakes on major normal faults in the large normal fault domains, which dominate the overall moment release in the region, producing significant east–west extension.  相似文献   

12.
Characteristics of the seismicity in depth ranges 0–33 and 34–70 km before ten large and great (M w = 7.0−9.0) earthquakes of 2000–2008 in the Sumatra region are studied, as are those in the seismic gap zones where no large earthquakes have occurred since at least 1935. Ring seismicity structures are revealed in both depth ranges. It is shown that the epicenters of the main seismic events lie, as a rule, close to regions of overlap or in close proximity to “shallow” and “deep” rings. Correlation dependences of ring sizes and threshold earthquakes magnitudes on energy of the main seismic event in the ring seismicity regions are obtained. Identification of ring structures in the seismic gap zones (in the regions of Central and South Sumatra) suggests active processes of large earthquake preparation proceed in the region. The probable magnitudes of imminent seismic events are estimated from the data on the seismicity ring sizes.  相似文献   

13.
The Sannio-Matese region is one of the most seismically active regions of Italy and has been struck by large historical earthquakes. At present, the area is characterized by low magnitude background seismicity and small seismic sequences following M4 main events. In this paper, we show Vp and Vp/Vs models and 3D locations for a complete set of earthquakes occurring in the period 1991–2001. We observe a significant crustal heterogeneity, with large scale east-verging high Vp fault-related-folds, stacked by the Pliocene compression. The relocated earthquakes cluster along a 70° east-dipping, NW-striking plane located at the border of the high Vp thrust units. Normal fault earthquakes related to the young and active extension occur within these high Vp zones, interpreted as high strength material. We expect large future earthquakes to occur within these high Vp zones actually characterized by low magnitude seismicity at their borders.  相似文献   

14.
Indian peninsular shield, which was once considered to be seismically stable, is experiencing many earthquakes recently. As part of the national level microzonation programme, Department of Science and Technology, Govt. of India has initiated microzonation of greater Bangalore region. The seismic hazard analysis of Bangalore region is carried out as part of this project. The paper presents the determination of maximum credible earthquake (MCE) and generation of synthetic acceleration time history plot for the Bangalore region. MCE has been determined by considering the regional seismotectonic activity in about 350 km radius around Bangalore city. The seismotectonic map has been prepared by considering the faults, lineaments, shear zones in the area and historic earthquake events of more than 150 events. Shortest distance from the Bangalore to the different sources is measured and then peak ground acceleration (PGA) is calculated for the different source and moment magnitude. Maximum credible earthquake found in terms of moment magnitude is 5.1 with PGA value of 0.146 g at city centre with assuming the hypo central distance of 15.88 km from the focal point. Also, correlations for the fault length with historic earthquake in terms of moment magnitude, yields (taking the rupture fault length as 5% of the total fault length) a PGA value of 0.159 g. Acceleration time history (ground motion) and a response acceleration spectrum for the corresponding magnitude has been generated using synthetic earthquake model considering the regional seismotectonic parameters. The maximum spectral acceleration obtained is 0.332 g for predominant period of 0.06 s. The PGA value and synthetic earthquake ground motion data from the identified vulnerable source using seismotectonic map will be useful for the PGA mapping and microzonation of the area.  相似文献   

15.
Regional seismicity (i.e. that averaged over large enough areas over long enough periods of time) has a size–frequency relationship, the Gutenberg–Richter law, which differs from that found for some seismic faults, the Characteristic Earthquake relationship. But all seismicity comes in the end from active faults, so the question arises of how one seismicity pattern could emerge from the other. The recently introduced Minimalist Model of Vázquez‐Prada et al. of characteristic earthquakes provides a simple representation of the seismicity originating from a single fault. Here, we show that a Characteristic Earthquake relationship together with a fractal distribution of fault lengths can accurately describe the total seismicity produced in a region. The resulting earthquake catalogue accounts for the addition of both all the characteristic and all the non‐characteristic events triggered in the faults. The global accumulated size–frequency relationship strongly depends on the fault length fractal exponent and, for fractal exponents close to 2, correctly describes a Gutenberg–Richter distribution with a b exponent compatible with real seismicity.  相似文献   

16.
On March 10 and September 13, 2007 two earthquakes with moment magnitudes 3.66 and 3.94, respectively, occurred in the eastern part of the United Arab Emirates (UAE). The two events were widely felt in the northern Emirates and Oman and were accompanied by a few aftershocks. Ground motions from these events were well recorded by the broadband stations of Dubai (UAE) and Oman seismological networks and provide an excellent opportunity to study the tectonic process and present day stress field acting in this area. In this study, we report the focal mechanisms of the two main shocks by two methods: first motion polarities and regional waveform moment tensor inversion. Our results indicate nearly pure normal faulting mechanisms with a slight strike slip component. We associated the fault plane trending NNE–SSW with a suggested fault along the extension of the faults bounded Bani Hamid area. The seismicity distribution between two earthquake sequences reveals a noticeable gap that may be a site of a future event. The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated from displacement spectra. The moment magnitudes were very consistent with waveform inversion. The recent deployment of seismic networks in Dubai and Oman reveals tectonic activity in the northern Oman Mountains that was previously unknown. Continued observation and analysis will allow for characterization of seismicity and assessment of seismic hazard in the region.  相似文献   

17.
Assessment of seismic hazard in Panama is made using a seismotectonic regionalization model. The coefficients of Gumbel's Type-I distribution are calculated and return periods for several magnitudes are found. From these coefficients intensities, peak ground acceleration and earthquake hazard for a set of return periods and epicentral distances are estimated and substantial variations in the probability of occurrence are noted. The Panama Fracture Zone (PFZ) and the Panama-South America Suture Zone (PSZ) provinces are the most active in producing earthquakes with a magnitude of about 7.0 in less than 16 yr. Magnitude 7.0 earthquakes in the Azuero province have a return period of about 160 yr, whereas in the Panama Deformed Belt (PDB) province the return period for magnitude 7.5 events is about 175 yr.  相似文献   

18.
Areas of low strain rate are typically characterized by low to moderate seismicity. The earthquake catalogs for these regions do not usually include large earthquakes because of their long recurrence periods. In cases where the recurrence period of large earthquakes is much longer than the catalog time span, probabilistic seismic hazard is underestimated. The information provided by geological and paleo-seismological studies can potentially improve seismic hazard estimation through renewal models, which assume characteristic earthquakes. In this work, we compare the differences produced when active faults in the northwestern margin of the València trough are introduced in hazard analysis. The differences between the models demonstrate that the introduction of faults in zones characterized by low seismic activity can give rise to significant changes in the hazard values and location. The earthquake and fault seismic parameters (recurrence interval, segmentation or fault length that controls the maximum magnitude earthquake and time elapsed since the last event or Te) were studied to ascertain their effect on the final hazard results. The most critical parameter is the recurrence interval, where shorter recurrences produce higher hazard values. The next most important parameter is the fault segmentation. Higher hazard values are obtained when the fault has segments capable of producing big earthquakes. Finally, the least critical parameter is the time elapsed since the last event (Te), when longer Te produces higher hazard values.  相似文献   

19.
The role of the lateral structure of the lithospheric mantle in the seismotectonics and seismicity of the southern part of the Russian Far East has been investigated. The positions of the epicenters of all the major earthquakes in Sakhalin (M ≥ 6.0), as well as in the Amur region and the Primorye zones (M ≥ 5.0), are defined by the boundaries of the Anyui block of highly ferruginous mantle, which lies at the base of the Sikhote-Alin area. Three cycles of large earthquakes are recognized in the region: the end of the 19th-beginning of the 20th century, the mid-20th century, and end of the 20th-beginning of the 21st century. In the seismic zone of the Amur region (hereafter, the Amur seismic zone), the epicenters of the large earthquakes in each cycle migrate from the SW to NE along the Tan-Lu fault megasystem at a rate of 30–60 km/yr. The specific features of the seismicity of the region are explained by the repeated arrival of strain waves from the west. The waves propagate in the upper part of the mantle and provoke the activation of the deep structure of the region. The detailed analysis of the earthquakes in the Sikhote-Alin area (M ≥ 4.0) in 1973–2009 confirmed the clockwise tectonic rotation of the mantle block. The characteristics of the Primorye zone of deep-focus seismicity at the Russia-China boundary are stated. Since 1973, 13 earthquakes with M ≥ 6.0 have been recorded in the zone at a depth of 300–500 km. This number of earthquakes is at least twice as many as the number of large deep-focus earthquakes elsewhere in the Sea of Japan-Sea of Okhotsk transition zone. The unique genesis of the Primorye seismic zone is related to the additional compression in the seismofocal area due to the creeping of the Anyui mantle block onto the subduction zone during its rotation. The geodynamic implications of the seismotectonic analysis are examined, and the necessity of division of the Amur plate into three geodynamically independent lithospheric blocks is substantiated.  相似文献   

20.
Following the 1999 Mw 7.6 Chi-Chi earthquake, a large amount of seismicity occurred in the Nantou region of central Taiwan. Among the seismic activities, eight Mw  5.8 earthquakes took place following the Chi-Chi earthquake, whereas only four earthquakes with comparable magnitudes took place from 1900 to 1998. Since the seismicity rate during the Chi-Chi postseismic period has never returned to the background level, such seismicity activation cannot simply be attributed to modified Omori’s Law decay. In this work, we attempted to associate seismic activities with stress evolution. Based on our work, it appears that the spatial distribution of the consequent seismicity can be associated with increasing coseismic stress. On the contrary, the stress changes imparted by the afterslip; lower crust–upper mantle viscoelastic relaxation; and sequent events resulted in a stress drop in most of the study region. Understanding seismogenic mechanisms in terms of stress evolution would be beneficial to seismic hazard mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号