首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
林兴超  汪小刚  王玉杰  李旭  韩鑫晔 《岩土力学》2011,32(10):3065-3070
数值流形法是至少包含流形法(NMM)、有限元法(FEM)和非连续变形分析(DDA)的数值方法体系。将数值流形法中物理单元与数学单元完全重合,去掉接触理论,流形元能够回归到有限元,将通过简单的板压缩数值试验验证这一点。在以前的数值流形法法中,质量守恒问题一直被忽视,物理单元的质量会随着单元体积改变,计算结果存在一定的误差。通过改变计算过程中单元密度实现计算过程中的"质量守恒",完善了现有数值流形法的理论基础。  相似文献   

2.
焦健  乔春生  徐干成 《岩土力学》2010,31(9):2951-2957
针对数值流形方法特有的覆盖剖分方式,提出了一种模拟岩土工程中开挖过程的算法。该算法采取某种措施,在覆盖剖分过程中将开挖面视为特殊的不连续面,这种不连续面将其所在的数学网格剖分成不同的流形单元,但却不对所在的数学覆盖作剖分。这样,开挖面两侧虽分属不同的流形单元,但开挖面两侧同一数学网格内的流形单元却具有相同的物理覆盖。采用该算法,无需对开挖面处的单元进行特殊处理,可在整个分析域采用统一的网格形式;同时,打破了原有数值流形方法的限制,将开挖面的位置完全当作连续介质来处理,避免了因将其视为不连续面而产生的误差。验证了算法的可靠性后,将其应用于某假想隧道的开挖模拟,计算结果表明该算法具有一定的应用前景。  相似文献   

3.
p型自适应有限单元法及其在岩土工程中的应用   总被引:1,自引:0,他引:1  
费文平  张林  谢和平 《岩土力学》2004,25(11):1727-1732
详细地介绍了p型自适应有限元的基本理论及其发展过程,总结了p型自适应有限元的误差估计方法、自适应升阶策略以及加速收敛技术,并将p型自适应有限元法应用于岩土工程的三维弹粘塑性分析、三维动力响应分析以及三维渗流分析中,最后提出了p型自适应有限单元法中亟待解决的问题及今后的研究方向。  相似文献   

4.
弹塑性数值流形方法在边坡稳定分析中的应用   总被引:2,自引:0,他引:2  
针对现有数值流形方法只能进行弹性计算的不足,建立了一个能够反映完整岩块弹塑性变形特征的本构模型,并借助VC++开发了内置该本构模型的弹塑性数值流形程序。利用该程序模拟了含单节理岩样的室内压缩试验,分析得到了其强度和变形特性,计算结果符合实际的物理现象,表明程序是正确有效的。考虑到数值流形方法本身能够有效模拟材料的不连续变形,新增的弹塑性分析功能又可以反映岩石的强度特性,将弹塑性数值流形程序应用于某含有不连续面的岩石边坡的稳定性分析。并结合锚杆单元的使用,对比分析了不同锚固方案的加固效果。程序提供的变形、应力等计算结果表明:预应力锚杆不仅可以防止不连续面发生剪切破坏,增强坡体的稳定性,限制塑性变形的发展;而且可以使不连续软弱层面对岩体变形的消极影响得以减弱,起到提高岩体整体性的作用。  相似文献   

5.
杨石扣  张继勋  任旭华 《岩土力学》2018,39(Z1):488-494
基于数值流形法(NMM)进行三维裂纹扩展分析研究,编写了相应的C++程序。充分发挥数值流形法在非连续变形分析领域的优势,不需要扩展有限元中的水平集和阶跃函数概念,应用数值流形法计算结果分析裂纹尖端线的破坏状况,对已有的非局部求迹法和三角形推进法进行简化和扩展,提出一种简化算法确定最终的新裂纹扩展面。应用简化算法对水平钱币型裂纹扩展问题进行数值模拟和对比分析研究。计算结果表明,基于数值流形法的三维裂纹扩展算法是可行的,采用简化处理之后,克服原有算法的不足,大大减少了新裂纹尖端线和新裂纹面的数目,降低了计算网格对新裂纹面的影响,提高了计算效率和扩大了应用范围。  相似文献   

6.
刘建  陈佺 《岩土力学》2012,33(7):2174-2180
数值流形法(numerical manifold method)是一种新型的数值计算方法,已成功应用于岩土工程的诸多领域,但该方法尚未应用于岩土工程蠕变分析。近年来对高阶流形法的研究表明,对复杂的岩土工程问题,使用高阶覆盖函数可明显提高流形法的计算精度。为此,开展了用高阶流形法模拟蠕变的研究,在高阶流形法中引入“时步-初应变”法计算蠕变,以广义开尔文体为基础,推导了相关的计算公式,并编制了相应的计算程序,同时还通过算例,验证了方法的可行性和合理性。结果表明,高阶流形可以方便地与“时步-初应变”法结合用于蠕变计算,可较好地模拟蠕变变形。算例分析表明,在不改变网格密度情况下,仅通过采用高阶覆盖函数,高阶流形法可大幅提高传统流形法的计算精度。  相似文献   

7.
Wilson非协调数值流形方法   总被引:1,自引:0,他引:1  
魏高峰  冯伟 《岩土力学》2006,27(2):189-192
三维数值流形方法中,当数学覆盖取六面体体单元时流形单元总体位移函数中所包含的多项式并不是完全的,非完全的高次项非但对改善精度不起作用,而且还可能起相反的作用。为此,基于Wilson非协调元理论,推导了附加非协调位移基本项的流形元通用公式,通过内参静力凝聚处理,导出了消除单元内参后的单元应变矩阵、单元刚度矩阵,建立了非协调数值流形方法。数值试验表明,在规则数学网格覆盖下它们能够保证收敛,有较高的精度,从而证明所建方法的可行性。  相似文献   

8.
本文通过各阶升阶多边形之间的逼近程度,求出升阶多边形对Bezier曲线的逼近程度。给出了在曲线生成、弧长求值及面积求值中的应用。  相似文献   

9.
李小凯  郑宏 《岩土力学》2014,35(6):1787-1794
非连续变形分析(DDA)方法是一种新的用来分析块体系统运动和变形的非连续介质数值计算方法。研究的核心工作是致力于对现有DDA接触问题处理方法的改进。DDA主要采用罚函数法和Lagrange乘子法处理接触问题,合理设定罚参数很困难,此外,因开闭迭代而引起的刚度矩阵的不连续变化也会导致收敛方面的困难。为避免引入罚参数及传统意义上的开闭迭代,用混合线性互补模型(LCDDA)对DDA方法进行了重新描述。在此基础上,综合基于非光滑分析的Newton法的局部平方收敛和最速下降法的全局线性收敛的优势,提出求解LCDDA模型的有效算法。根据上述思想及理论研究成果编制了完整的计算程序,算例计算结果证明了方法的精度及可行性。  相似文献   

10.
杨石扣  张继勋  任旭华  张道法 《岩土力学》2016,37(10):3017-3025
运用三维数值流形法(3D NMM)进行三维裂纹扩展分析,并采用C++语言编写了相应的程序。充分利用三维数值流形法模拟裂纹扩展的优势,只需要更新裂纹尖端线附近的边界环路和流形单元,不需要使用阶跃函数。根据三维数值流形法计算得到的应力结果,应用非局部求迹方法分析每个裂纹尖端的破坏状态,如果发生破坏则沿垂直于其最大主应力方向扩展。针对裂纹扩展后的不同状况,采用四边形或三角形推进法。裂纹扩展后为了使变形后的面保持平面,必须对新生成的面进行三角化分割。对诸如单边裂纹、平行钱币型裂纹和倾斜钱币型裂纹扩展问题进行数值模拟。计算结果表明,采用三维数值流形法进行裂纹扩展模拟是可行的,文中方法对裂纹尖端线非闭合和闭合的情形均适用,且文中方法对于裂纹尖端线位于单元内部的非平面裂纹扩展也是有效的。  相似文献   

11.
三维稳定渗流的 p 型自适应有限元分析   总被引:3,自引:2,他引:3  
费文平  陈胜宏 《岩土力学》2004,25(2):211-215
建立了三维稳定渗流的p型自适应有限元分析的误差估计器。充分利用p型有限元前处理少、计算精度高和收敛速度快的优点,分析了p型有限元法求解渗流问题的技术特点,给出了求解三维稳定渗流的自适应升阶策略。通过具体算例,研究了单元阶次及网格尺度对计算结果的影响,验证了三维p型有限元法在求解渗流问题时的可行性。  相似文献   

12.
提出了求解有自由面渗流问题的三维数值流形方法,通过构造任意形状流形单元的水头函数,推导了流形单元的渗透矩阵和无压渗流分析的总体控制方程,并给出了自由面的迭代求解策略和渗透体积力的计算方法。典型算例的数值分析表明,该方法采用数学网格覆盖整个材料区域,在自由面的迭代求解过程中数学网格保持不变,只考虑自由面以下渗流区的介质,只对自由面以下的流形单元形成总体渗透矩阵,具有精度高、收敛速度快、编程简单等优点,而且能够通过单纯形积分精确计算被自由面穿越单元的渗透作用力,因此,特别适用于有自由面渗流问题的模拟。  相似文献   

13.
朱爱军  曾祥勇  邓安福 《岩土力学》2009,30(8):2495-2500
数值流形方法是包含流形元、有限元及DDA在内的数值方法体系,建立流形元与DDA块体的接触方程,则可实现流形方法框架下的连续介质和散体系统共同作用模拟。针对填石路堤工程,编制了大型数值计算程序,采用块体随机生成、块体粒径控制及块体自然堆积的方法建立散体系统的DDA模型,对路堤的分层铺设、碾压及工后沉降变形等进行模拟分析。通过算例表明,在数值流形方法框架下,采用流形元与DDA共同作用的方法,可以很好地对同时存在连续变形和散体大变形的体系进行计算分析,其对该类问题的模拟更接近分析对象的实际情况,有助于从根本上揭示分析对象变形的细观机制和规律,并能考察更多因素对工程问题的影响。  相似文献   

14.
周小义  邓安福 《岩土力学》2010,31(7):2276-2282
对三维问题的分析是数值流形方法发展的必然,在数值流形方法覆盖位移函数的基础上构造了一种六面体有限覆盖的三维流形单元,推导了相应的应变矩阵、刚度矩阵及平衡方程等表达式。同时,由于目前数值流形方法的模拟分析主要是采用线弹性模型,而对于非线性模型分析研究很少;根据数值流形方法的特点和岩土体的本构模型,给出了适用于数值流形方法进行非线性分析的算法。该方法利用中点增量法进行求解,以改变 模型和 模型中弹性模量的方式来反映非线性,其实质是用分段线性来取代非线性。通过地基沉降计算算例表明,数值流形方法在三维岩土体中进行非线性分析中是有效的。  相似文献   

15.
彭成佳  陈胜宏 《岩土力学》2007,28(4):817-822
阐述了节理岩体复合单元法基本原理,引入了阶谱有限单元法中的虚节点和广义节点概念,提出了覆盖虚棱(面)和广义棱(面)的概念,并进一步将虚节点和广义节点分类。在此基础上构造了节理岩体的三维复合单元不同阶次时的位移函数并推导了对应的刚度矩阵。算例表明此法是合理有效的。提出的概念有助于复合单元法和传统有限单元法二者升阶谱的理解与统一实现,并为实现节理岩体三维复合单元法的P型自适应奠定了基础。  相似文献   

16.
数值流形方法中一般采用有限元网格或规则网格作为其数学覆盖系统,而规则的网格突出的优点是不需要适应求解域的边界和各种不连续面。采用规则的矩形网格作为数值流形方法中的数学网格,并借助适合分析的T样条实现了数值流形方法中的局部加密。适合分析的T样条定义在一个限制的T网格上,其基函数具有线性无关、单位分解、局部加密等许多重要性质,使得其非常适合用于工程设计及分析。当对一个适合分析的T网格加密后,所产生的新的网格往往不再是适合分析的T网格。基于此,提出了一种简单的数学网格加密算法,该算法能保证局部加密后的数学网格仍然是适合分析的。算例结果表明:在应力集中区和裂纹尖端等应力梯度较大区域,该算法均具有较强的适用性。  相似文献   

17.
张友良  刘登学  刘高敏 《岩土力学》2016,37(8):2404-2410
在岩土工程分析中求解精度控制常常是必需的,在数值流形法中可以通过控制数学覆盖网格的稀疏和覆盖位移的阶数来达到精度的要求。提出了基于等几何分析的数值流形方法,定义了相应的数学覆盖的构造形式,推导了基于二次B样条的9节点数值流形方法分析格式;针对基于Lagrange插值函数的4节点数值流形方法提出了基于T样条思想的数学覆盖网格的局部加密方法。算例计算结果表明,相对于4节点的数值流形方法,基于非均匀有理B样条的9节点数值流形方法具有更高的精度;基于T样条思想的加密网格在保持计算精度的前提下降低了自由度的数量,表明T样条加密是一种自然的局部加密算法。  相似文献   

18.
刘建  陈佺 《岩土力学》2012,33(4):1203-1209
为了保障岩土工程结构能长期正常使用,需要对其蠕变变形进行分析。“时步-初应变”法是一种常用的计算岩石蠕变的方法。数值流形方法是一种新兴的数值计算方法,常用于计算节理岩体的变形,但尚未被试用于计算蠕变变形。在原数值流形方法的程序中增加了基于“时步-初应变”法的计算模块,通过对广义开尔文模型进行的模拟,显示新程序可以正确反映岩石的黏弹性蠕变趋势,并能够计算包含节理的岩体的蠕变变形,改进后的数值流形方法不但能够模拟岩石的线弹性变形,而且可以模拟岩石的黏弹性蠕变,比原流形方法更能全面地模拟岩石的变形,扩展了数值流形方法在岩土工程中的使用范围。  相似文献   

19.
徐栋栋  杨永涛  郑宏  邬爱清 《岩土力学》2016,37(12):3598-3607
传统数值流形法(NMM)在处理非连续变形问题时,仅限于几何构型不发生破坏的情况。针对这一不足,通过在裂纹尖端附近的物理片上增加用于模拟应力奇异性的增强位移函数,进一步发展了可用于几何构型破坏的扩展的高阶NMM。然后,将其应用到重力坝由连续到非连续的破坏过程分析中。首先,针对一含单裂纹的重力坝模型进行了敏感性分析,结果表明,在不同的扩展长度或网格密度下,其扩展路径基本相同且与文献结果保持一致。进而在此模型基础上又开展了多裂纹扩展分析,结果仅一条主导裂纹发生扩展,与文献结果基本一致。最后,针对印度的Koyna重力坝,通过设置不同的漫顶高度研究了其裂纹扩展路径的变化。结果表明,随着漫顶高度的增大,裂纹扩展路径逐渐趋向于水平方向扩展,而且坝体抵抗破坏的能力逐渐减弱。总体表明,NMM在求解实际工程问题时具有很好的数值稳定性和鲁棒性。  相似文献   

20.
姜清辉  邓书申  周创兵 《岩土力学》2006,27(9):1471-1474
将三维流形单元的位移函数从一阶拓展为二阶,基于最小势能原理建立了有限单元覆盖的高阶流形方法分析格式,详细推导了三维流形单元的刚度矩阵、等效节点荷载列阵以及位移约束矩阵。计算结果表明,提高物理覆盖函数的阶次可有效提高流形方法的计算精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号