首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New data on the structure, age, and composition of the tectonostratigraphic complexes of the western part of the Koryak Highland are presented. The conclusions on the sedimentation conditions are drawn and primary relations are interpreted for most complexes. New Kimmeridgian–Tithonian and Berriasian assemblages of radiolarians are established. Campanian radiolarians are found for the first time in the region.  相似文献   

2.
The authors have proposed a dynamic model in this paper based on the ages,rock series and associations,Sr-Nd isotopic signatures of the Mesozoic intracontinental magmatism overlying the Cathaysian and Yangtze blocks.The model describes the relation of intracontinental collision and subduction in the Tethyan tectonic regie with Paleo-Pacific oceanic plate sudbuction-strike slip-extension in the Pacific tectonic regime.During 220-150Ma,the horizontal collision between the North China block and the Yangtze block,as well as the intracontinental subduction of some divergent microcontinental terranes in the southwestern part of South China are ascribed to the influence of the Tethyan tectonic regime,giving rise to a volume of high-Isr and low-εNd(t) S-type granites only in the Cathaysian Block.During 145-90Ma,under the geodynamic backgound of subduction-strike slip-extension of the Paleo-Pacific oceanic plate on the basis of the deep tectonic process in the Tethyan tectonic regime,high-K,alkalirich calc-alkaline and shoshonitic volcano-plutonic complexes were generated in the Yangtze block,and high-K calc-alkalic and bimodal volcano-plutonic complexes were generated in the Cathaysian block.The occurrence of A-type peralkaline granites in the coastal areas of South east China indicates the end of Mesozoic intracontinental magmatism.  相似文献   

3.
R.L.M. Vissers  P.Th. Meijer 《Earth》2012,110(1-4):93-110
Following on paleomagnetic studies in the sixties showing ~ 35° counterclockwise rotation of Iberia during the Mesozoic, two classes of scenarios have been proposed for the motion history of Iberia which are currently competing. One class infers convergence in the Pyrenees in response to a scissor-type opening of the Bay of Biscay, described by a pole of rotation for Iberia with respect to Europe located within the Bay. The other class of scenarios assumes extensional or transtensional motions in the Pyrenees, compatible with opening of the Bay of Biscay described by a pole of rotation located in northern France. Although plate-kinematic studies over the last decade increasingly support the scissor-type model, geological studies in the Pyrenees have accumulated arguments in favour of an extensional or transtensional regime in the Pyrenean realm.We perform a detailed plate-kinematic analysis of the Late Jurassic and Cretaceous motion history of Iberia and surrounding plates with respect to Europe. A total of six sea-floor reconstructions in combination with paleomagnetic studies onland allow to recognize four distinct stages. (1) Early rifting and ultraslow spreading since the Kimmeridgean led to the development of an oceanic Neotethys domain north of Iberia. (2) This was followed by ~ 35° CCW rotation of Iberia during the Aptian, kinematically linked to progressive opening of the Bay of Biscay. (3) Motions in the Bay became stagnant during the Albian till Santonian, followed by the latest stages of spreading in the Bay, and (4) onset of largely Tertiary continental collision between Iberia and Europe eventually leading to the present day structure of the belt.Our analysis confirms the results of previous studies indicating that extensional or transtensional motions in the Pyrenean realm during opening of the Bay of Biscay and concurrent rotation of Iberia are incompatible with plate-kinematic reconstructions based on sea-floor anomalies. This invites a reappraisal of the geological data. Convergence in the Pyrenean realm during opening of the Bay and rotation of Iberia was accommodated by up to 300 km of subduction of mantle-dominated ocean floor exhumed during the late Jurassic and early Cretaceous. The stagnant stage in the progressive opening of the Bay indicates that convergence in the Pyrenean realm virtually came to a halt during the Albian. We hypothesize that the lithosphere previously subducted during Aptian convergence became gravitationally unstable, leading to asthenospheric upwelling and consequent magmatism and high temperature metamorphism in the overlying European margin now exposed in the North Pyrenean Zone. Aside from these magmatic and thermal effects, an enhanced gravitational potential energy of the remaining lithosphere column underlain by shallow asthenosphere may have led to a stress state allowing belt-parallel extensional deformation. Such a detachment scenario, inspired by plate-kinematic results, may provide an alternative to explain many of the geological data commonly quoted to infer a transtensional or extensional tectonic regime in the Pyrenees during the rotation of Iberia.  相似文献   

4.
Based on the study of folds and related conjugate shear joints, the tectonic stress fields of the Urumqi-Usu region to the north of the North Tianshan Mountains have been reconstructed. Furthermore the author discussed the tectonic movements and their dynamic features. The early tectonic movement in the investigated region occurred from the end of the Late Jurassic to the initial stage of the Early Cretaceous, with the maximum (tensile) and minimum (compressional) principal stress trajectories in the tectonic stress field being in E-W and S-N directions respectively; the late tectogenesis took place from the end of the Early Pleistocene to the initial Middle Pleistocene, with the maximum and minimum principal stress trajectories in the late stress field striking in WNW and NE-NNE directions respectively. Through computer-aided simulated calculation by the finite element method and analysis of geological structure, it has been ascertained that the early tectogenesis is a nearly N-S compressive movement and the late one a NE to nearly N-S compressive movement with reverse shear. The dynamic force which caused the tectogeneses came from the movement of the southern major fault, i.e. the North Tianshan Mountains.  相似文献   

5.
Plate subduction leads to complex exhumation processes on continents. The Huangling Massif lies at the northern margin of the South China Block. Whether the Huangling Massif was exhumed as a watershed of the middle reaches of the Paleo-Yangtze River during the Mesozoic remains under debate. We examined the exhumation history of the Huangling Massif based on six granite bedrock samples, using apatite fission track (AFT) and apatite and zircon (U-Th)/He (AHe and ZHe) thermochronology. These samples yielded ages of 157–132 Ma (ZHe), 119–106 Ma (AFT), and 114–72 Ma (AHe), respectively. Thermal modeling revealed that three phases of rapid cooling occurred during the Late Jurassic–Early Cretaceous, late Early Cretaceous, and Late Cretaceous. These exhumation processes led to the high topographic relief responsible for the emergence of the Huangling Massif. The integrated of our new data with published sedimentological records suggests that the Huangling Massif might have been the watershed of the middle reaches of the Paleo-Yangtze River since the Cretaceous. At that time, the rivers flowed westward into the Sichuan Basin and eastward into the Jianghan Basin. The subduction of the Pacific Plate beneath the Asian continent in the Mesozoic deeply influenced the geomorphic evolution of the South China Block.  相似文献   

6.
The eastern pari of the Xing-Meng Orogenic Belt( XMOB )consists of the Lesser Xing'an-Zhangguangcai Range Orogenic belt, the Bureya-Jiamusi-khanka Block and the Sikhote-Alin accretionary belt. This area is located between the Paleo-Asian oceanic and Paleo-Pacific tectonic regimes. Recent researches imply that the Paleo-Pacific subduction might have begun since early Permian and influenced the both sides of the Mudanjiang Fault during Triassic, which generated a N-S trending magmatic belt and accretionary complexes, such as the Heilongjiang Complex. In Late Jurassic to Early Cretaceous, some tectono st rati graph ic terranes were produced in Sikhote-Alin, which were then dismembered and migrated northwards in late Early Cretaceous by sinistral strike-slip faults. The continental margin parallel transportion weakened subduction-related magmatism in NE China which was under an extensional setting. However, in Lite Cretaceous, the Paleo-Pacific subduction was re-Activated in the eastern XMOB, which contributed to the magmatism in Sikhote-Alin.  相似文献   

7.
Three melting events of the earth's crust occurred during the period of 220-120 Ma in the Shandong Pe-ninsula. Three subcycles of granitoid magma including six rock series were generated in the faulted granitoidmagma belt. The parent magma of several rock series formed earliest originated from the lower crust ofgranulite facies; following the increase of geothermal temperature the source magma would migrate into themiddle crust of amphibolite facies. In the diapiric granitoid magma belt, the granitoid magma was formed firstin granitic layer of the upper crust, and then in the middle crust. In each subcycle the generation of magmastarted with the generation of more mafic one and finished with low eutectic one; they were formed in the formof layered melting in a particular position of the crust.  相似文献   

8.
Numerous traces of paleoseismic events (seismites) were established in Mesozoic–Cenozoic marine sedimentary sequences of the northern Caucasus. These traces are most prominent in the terrigenous Middle Miocene sandy–clayey sediments. Impact of seismic shocks upon the relatively weakly lithified sediments provoked distortion of the primary sedimentary structure, liquefaction of the sandy material, and injections of different morphologies (neptunic dikes and sills). The formation of jointing in sediments fostered their vertical permeability and promoted the migration of diagenetic solutions into the adjacent horizons, which stimulated the formation of subvertical carbonate bodies. The amount and intensity of seismic events varied at different stages of the accumulation of sequences and in different areas of the paleobasin. In the eastern sector of the northern Caucasus, seismic activity similar to the present-day general pattern was likely developed as early as the Middle Miocene: maximum activity in the Dagestan and its westward attenuation. Traces of seismic activity are also recorded in the Maikopian (Oligocene–Lower Miocene) and Lower–Middle Jurassic rocks.  相似文献   

9.
The spatial and temporal characteristics of magmatism caused by the Barents–Amerasian Jurassic–Cretaceous plume in conjunction with the geodynamics of destructive transformations of the lithosphere are presented here. The localities of manifestation of magmatism were concentrated mainly out of general contour of the areal occupied by the Siberian superplume, and they demonstrated certain gravitation to the Caledonide–Ellesmeride belts. This suggests an inherited position of both the J–K plume and the initial detachment zone produced by it: this led to formation of the Canadian Basin. The stages in the evolution and character of polycyclic multiphase plume magmatism are substantiated by the geochronology of magmatic provinces in the Arctic region during formation of the Amerasian Basin.  相似文献   

10.
A New Symmetrodont Mammal with Fur Impressions from the Mesozoic of China   总被引:3,自引:0,他引:3  
Western Liaoning of northeastern China is world-renowned for the Mesozoic Jehol biota, especially for yielding many feathered dinosaurs, primitive birds, mammals and fossil angiosperm. This paper describes a complete specimen of a symmetrodont mammal with well-preserved hairs and soft tissue from the basal part of the Yixian Formation in the Sihetun area, Beipiao, western Liaoning. It is significant for understanding the morphology, osteology, phylogeny and life habits of Mesozoic symmetrodont mammals.  相似文献   

11.
The results of ICP-MS trace-element (LILE, HFSE, REE) study of the Late Mesozoic–Early Cenozoic volcanic rocks of the Okhotsk and Japan seas and geochronological K-Ar dating of the Eocene volcanic rocks are presented. Specifics of volcanism developed on submarine rises of these seas was characterized for the first time, and magma sources and geodynamic settings of the volcanic complexes predating the formation of the deep-water basins were determined. It is established that the Late Mesozoic magmas were formed in a subduction setting from spinel peridotites of suprasubduction mantle wedge, which was metasomatically reworked by aqueous fluids that were released by dehydration of sedimentary layer of subducting oceanic plate. This follows from the elevated concentrations of H2O, alkalis, potassium, LILE and LREE, and lowered HFSE (including Ta-Nb minimum) and HREE contents, at lowered Sm/Yb, Nb/Ta, Nb/Y and elevated La/Nb, Ba/La, and Zr/Y ratios. Eocene adakite-like volcanic rocks were identified for the first time in the Sea of Okhotsk. They vary from andesitic to more felsic compositions with elevated MgO (>4%) and elevated La/Yb (>14) and Sr/Y (50–60) ratios. Identification of adakite-like volcanic rocks serves as evidence in support of the transform continental-margin (or plate sliding) setting, which is characterized by breaking apart of subduction slab and formation of slab “windows” acting as pathways for the transfer of asthenospheric mantle into continental lithosphere. New geochemical data on the Late Mesozoic–Early Cenozoic volcanic rocks of the Okhotsk and Japan seas and analysis of literature data were used to distinguish two geodynamic settings within these seas: subduction and transform margin. Similar settings operated at that time in the adjacent continental- margin volcanic belts (Akinin and Miller, 2011; Martynov and Khanchuk, 2013; et al.).  相似文献   

12.
The paper presents a study of the gneissic granitoids of the Malkhan Complex and the intruisve granitoids of the Daur and Bichur complexes developed within the Khilok–Vitim fold belt of Central Transbaikalia. In the state geological map, these complexes have been attributed to the Early and Late Paleozoic. New 40Ar/39Ar geochronological data indicate that these rocks are Mesozoic rather than Paleozoic in age, which suggests the much broader manifestation of the Mesozoic granitoid complexes in this area. The studied Mesozoic granitoid massifs exhibit temporal and compositional zoning reflected in a westward decrease in age (from Early to Late Mesozoic) and increase in total alkalinity and potassium content at the appropriate trace-element characteristics. The obtained results of study of the Khilok–Vitim Belt are interpreted in the framework of the model of the formation of domal–cupola structures by the multiple activity of deep thermochemical plumes.  相似文献   

13.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

14.
15.
Deccan Traps spread over large parts of south, west and central India, possibly hiding underneath sediments with hydrocarbon potential. Here, we present the results of seismic refraction and wide-angle reflection experiments along three profiles, and analyze them together the results from all other refraction profiles executed earlier in the western part of Narmada–Tapti region of the Deccan Volcanic Province (DVP). We employ travel time modelling to derive the granitic basement configuration, including the overlying Trap and sub-trappean sediment thickness, if any. Travel time skips and amplitude decay in the first arrival refraction data are indicative of the presence of low velocity sediments (Mesozoic), which are the low velocity zones (LVZ) underneath the Traps. Reflection data from the top of LVZ and basement along with the basement refraction data have been used to derive the Mesozoic sediment thickness.In the middle and eastern parts of the study region between Narmada and Tapti, the Mesozoic sediment thickness varies between 0.5 and 2.0 km and reaches more than 2.5 km south of Sendhwa between Narmada and Tapti Rivers. Thick Mesozoic sediments in the eastern parts are also accompanied by thick Traps. The Mesozoic sediments along the present three profiles may not be much prospective in terms of its thickness, except inside the Cambay basin, where the subtrappean sediment thickness is about 1000–1500 m. In the eastern part of the study area, the deepest section (>4 km) has thick (∼2 km) Mesozoic sediments, but with almost equally thick Deccan Trap cover. Results of the present study provide important inputs for future planning for hydrocarbon exploration in this region.  相似文献   

16.
17.
K-Ar ages of illite-muscovite and fission track ages of zircon and apatite were determined from various lithotypes of the Bükkium, which forms the innermost segment of the Western Carpathians. The stratigraphic ages of these Dinaric type formations cover a wide range from the Late Ordovician up to the Late Jurassic. The grade of the orogenic dynamo-thermal metamorphism varies from the late diagenetic zone through the anchizone up to the epizone (chlorite, maximally biotite isograd of the greenschist facies). The K-Ar system of the illite-muscovite in the < 2 m grain-size fraction approached equilibrium only in epizonal and high-temperature anchizonal conditions. The orogenic metamorphism culminated between the eo-Hellenic (160-120 Ma) phase connected to the beginning of the subduction in the Dinarides, and the Austrian (100-95 Ma) phase characterized by compressional crustal thickening. No isotope geochronological evidence was found for proving any Hercynian recrystallization. The stability field of fission tracks in zircon was approached using the thermal histories of the different tectonic units. A temperature less than 250°C and effective heating time of 20–30 Ma had only negligible effects on the tracks, whereas total annealing was reached between 250 and 300°C. Apatite fission track ages from the Paleozoic and Mesozoic formations show that the uplift of the Bükk Mountains occurred only in the Tertiary (not earlier than ca. 40 Ma ago). Thermal modeling based on apatite fission track length spectra and preserved Paleogene sediment thickness data proved that the Late Neogene burial of the recently exhumed plateau of the Bükk Mountains exceeded 1 km.  相似文献   

18.
The Jehol fauna was initially represented by a bony fish, concostracan and an insect, as a Lycoptera davidi–Eosestheria–Ephemeropsis trisetalis association, but since the researches of recent decades, the Jehol Biota is now completely different from the past low-diversity, and encompasses a native terrestrial biota that includes many well-preserved vertebrates, invertebrates and plants. There are more than 20 important biological categories, thousands of taphonomically unusual fossils, especially noted for the wide variety of biological tissues. The Jehol Biota has caused a sensation in the world with its wide distribution, large quantity, great variety, fine preservation and detailed information, which records the rise and fall of the numerous taxa, and provides significant evidence for three origins: of birds, eutherian mammals, and angiosperms. The Jehol Biota is a highlight of basic scientific research in China, and we honor it as a world–class fossil treasury and “a Mesozoic Pompeii”.  相似文献   

19.
The Cuaró Formation is part of the sequence of Mesozoic mafic intrusions related to the Early Cretaceous break-up of Gondwana and represents the southernmost occurrences within the Paraná Magmatic Province in Uruguay. We present field data, petrography and lithogeochemical results regarding these dike swarms and sills that crop out in the southern extreme of the Paraná Basin. Dolerites and sills mainly exhibit glomeroporphyritic textures; the phenocrysts consist of plagioclase, clinopyroxene, relicts of olivine and titaniferous magnetite. Bulk-rock geochemical analyses allowed their classification as low-Ti subalkaline tholeiitic basalts and andesitic basalts. Trace element data indicated that the protoliths of these intrusions include the subcontinental lithospheric mantle, as is generally recognized for other Gondwana-related continental flood basalt provinces.  相似文献   

20.
In Central Iran, the mixed siliciclastic?carbonate Nakhlak Group of Triassic age is commonly seen to have a Cimmerian affinity, although it shows considerable resemblances with the Triassic Aghdarband Group in far northeastern Iran, east of Kopeh-Dagh area, with Eurasian affinity. The Nakhlak Group is composed of the Alam (Late Olenekian?Anisian), Baqoroq (Late Anisian??Early Ladinian), and Ashin (Ladinian??Early Carnian) formations consisting mainly of volcanoclastic sandstone and shale and fossiliferous limestone. The Baqoroq Formation contains also metamorphic detritus. Sandstone petrofacies reflect the detrital evolution from active volcanism to growing orogen and again active volcanism. Textural and modal analyses of volcanic lithic fragments from the Alam Formation reflect the eruption style and magma composition of a felsic to intermediate syn-sedimentary arc activity. The detrital modes of the Baqoroq Formation sediments suggest a recycled orogenic source followed by arc activity in a remnant fore-arc basin. The sandstone samples from the Ashin Formation demonstrate a continuity of felsic to intermediate arc activity. Major and trace element concentrations of the Nakhlak Group clastic samples support sediment supply from first-cycle material and felsic magmatic arc input. The enrichment in LREE, the negative Eu anomalies, and the flat HREE patterns indicate origination from the old upper continental crust and young arc material. The chemical index of alteration (CIA ~51–70 for sandstone and 64–76 for shale samples) indicates medium degrees of chemical weathering at the source. Petrographical and geochemical evidence together with facies analysis constructed the following depositional conditions for the Nakhlak Group sediments: In the Olenekian, a fore-arc shallow to deep marine depositional basin developed that later was filled by recycled and arc-related detritus and changed into a continental basin in the Anisian. Ladinian extension let to a deepening of the basin. With respect to the similarities between the Nakhlak and Aghdarband (NE Iran) groups and unusual present-day position of the Nakhlak Group with no stratigraphic connection to the surrounding area, the development of first a fore-arc basin and later change into a back-arc depositional basin in close relation with the Aghdarband basin at the southern Eurasian active margin in the Triassic are here proposed. Understanding the basin development recorded in the Nakhlak Group provides constraints on the closure history of Palaeotethys and of the tectonic evolution of early Mesozoic basins at the southern Eurasian margin before the Cimmerian Orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号