首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
金沙江弧—盆系时空结构及地史演化   总被引:48,自引:2,他引:46       下载免费PDF全文
王立全  潘桂棠 《地质学报》1999,73(3):206-218
金沙江结合带是一条古特提斯弧后洋盆消亡的俯冲消减杂岩带。弧后洋盆形成于早石碳世-早二叠世。晚泥盆世晚期已具有雏型,早二叠世是洋盆扩张的鼎盛时期,早二叠世 晚期向西俯冲,在金沙江结合带中形成3条消减杂岩带。金沙江弧-盆系于志留纪末在早古生代变质“软基底”的基础上开始生成、发展和演化,经历了泥盆纪弧后裂谷盆地阶段(D)、早石炭世-早二叠世的弧后洋盆阶段(C1-P1)、早二叠世晚期-晚二叠世的洋壳俯冲消  相似文献   

2.
巴颜喀拉残留洋盆的沉积特征   总被引:6,自引:4,他引:6  
巴颜喀拉盆地垂向沉积序列表明:盆地于早古生代被动陆缘的浅海基础上裂陷、拉开,泥盆纪贯通,早石炭世洋盆扩展为成熟大洋,晚石炭世洋盆北部开始消减、南部继续扩张,晚二叠世-中三叠世进入残留洋阶段,晚三叠世转化为周缘前陆盆地.三叠纪末完全闭合,盆地自形成到消亡为一个连续的沉积和地质构造演化过程。其主体由早中三叠世深海沉积、典型浊积岩复理石和晚三叠世浅海复理石、风暴岩沉积、海相磨拉石构成,北部零星出露了中二叠世海山型沉积,昆南结合带以北有早中三叠世岛弧沉积。以盆地为中心具有向南北两侧陆块双向相背俯冲的极性特点,东西两端的碰撞造山不迟于晚二叠世。总体反映了古特提斯晚二叠世-中三叠世的残留洋盆性质和主洋域之所在。  相似文献   

3.
通过1∶5万区域地质调查和收集相关资料的综合研究,本文对雅鲁藏布江结合带的形成演化作了进一步的探讨。雅鲁藏布江特提斯洋具有弧后扩张洋盆的性质,在早三叠世至中三叠世中期洋盆初步形成,中三叠世晚期至晚三叠世洋盆全面形成,从早侏罗世至晚白垩世洋盆逐步萎缩,到古新世至始新世关闭。南带的蛇绿岩主要为洋中脊扩张型(MORB型),形成于中三叠世晚期至晚三叠世。北带的蛇绿岩主要为与洋内俯冲相关的俯冲带上盘型(SSZ型),形成于早中侏罗世。带内侏罗纪至白垩纪其他岩浆岩主要为前弧玄武岩类(FAB型)。显示雅鲁藏布江特提斯洋从早侏罗世开始发生了洋内俯冲,并同步向北向冈底斯带之下主动俯冲消减和向南向喜马拉雅地块之下被动俯冲消减,持续发展到晚白垩世,在古新世至始新世俯冲碰撞消亡转化为结合带。  相似文献   

4.
三江昌宁-孟连带原-古特提斯构造演化   总被引:4,自引:0,他引:4  
昌宁-孟连特提斯洋的构造演化及其原特提斯与古特提斯的转换方式一直是青藏高原及邻区基础地质研究中最热门的科学问题之一.根据新的地质调查资料、研究成果并结合分析数据,系统总结了三江造山系不同构造单元地质特征,讨论了昌宁-孟连特提斯洋早古生代-晚古生代的构造演化历史.通过对不同构造单元时空结构的剖析和对相关岩浆、沉积及变质作用记录的分析,认为昌宁-孟连结合带内共存原特提斯与古特提斯洋壳残余,临沧-勐海一带发育一条早古生代岩浆弧带,前人所划基底岩系"澜沧岩群"应为昌宁-孟连特提斯洋东向俯冲消减形成的早古生代构造增生杂岩,滇西地区榴辉岩带很可能代表了俯冲增生杂岩带发生了深俯冲,由于弧-陆碰撞而迅速折返就位,这一系列新资料及新认识表明昌宁-孟连结合带所代表的特提斯洋在早古生代至晚古生代很可能是一个连续演化的大洋.在此基础上,结合区域地质资料,构建了三江造山系特提斯洋演化的时空格架及演化历史,认为其经历了早古生代原特提斯大洋扩张、早古生代中晚期-晚古生代特提斯俯冲消减与岛弧带形成、晚二叠世末-早三叠世主碰撞汇聚、晚三叠世晚碰撞造山与盆山转换等阶段.   相似文献   

5.
晚古生代—中三叠世右江盆地的格局和转换   总被引:6,自引:0,他引:6  
晚古生代—中三叠世右江盆地是在夷平的南华加里东造山带基础上再生裂陷的大陆边缘盆地,该盆地的形成与金沙江—哀牢山古特提斯洋盆关系密切,是一个具有台地与台间海槽相间结构的大陆边缘裂谷盆地。右江盆地自早泥盆世埃姆斯晚期开始裂陷,到石炭纪盆地与越北地块之间出现一个与古特提斯洋相关的局限小洋盆或深海盆。至二叠纪,该洋盆开始向西南俯冲于越北地块之下,形成活动大陆边缘。早三叠世晚期以后,随着该洋盆的闭合和碰撞造山,在凭祥、那坡等地出现同碰撞型的火山活动,右江盆地也于中三叠世转变为以复理石为特征的前陆盆地。因此右江盆地经历了裂谷盆地(早泥盆世晚期—晚泥盆世)、被动大陆边缘(早石炭世—早三叠世)、前陆盆地(中三叠世)的构造演化阶段。  相似文献   

6.
在详细理清区内地层格架的基础上,整理和归纳了研究区内各沉积盆地岩石建造组合和时代依据,最后在板块构造学说和大陆动力学观点的理论指导下,划分盆地类型,寻找盆地演化的时空规律,了解原-古特提斯大洋从发生、发展到消亡的过程.通过归纳总结,将前新生代原-古特提斯大洋在该区的演化划分为与盆地演化对应的4个阶段.对研究区内的3个主要结合带的盆地演化进行了系统总结,其中龙木错-双湖洋盆与昌宁-孟连洋盆都存在奥陶纪的具MORB性质的蛇绿混杂岩,并且二者均在二叠纪末、早三叠世初发生弧-陆碰撞作用,说明二者可能共同代表了一个统一的古特提斯洋在研究区的残余.以班公湖-怒江洋盆为代表的残余古特提斯洋在早石炭世开始扩张并持续演化到早白垩世,它们代表了古特提斯洋盆的最终消亡.   相似文献   

7.
唐哲明  韩同林 《地球学报》1990,11(2):121-128
本文在分析了青藏高原不同地体的区域构造的基础上,讨论了青藏高原的构造演化史。青藏高原的板块构造经历了两个开合旋回。第一个开合旋回发育的时间为泥盆纪到二叠纪,其中泥盆纪到石炭纪为洋盆扩张阶段,二叠纪为洋盆俯冲缩小阶段。第二个开合旋回发育的时间为三叠纪到白垩纪,其中早中三叠世和晚三叠世早期为洋盆扩张阶段,晚三叠世晚期到白垩纪对于整个青藏高原来说,为洋盆俯冲缩小阶段。洋盆扩张阶段,地体朝南运动,洋盆俯冲缩小阶段,地体朝北运动。  相似文献   

8.
右江盆地晚古生代-三叠纪盆地转换及其构造意义   总被引:11,自引:0,他引:11  
右江盆地是在南华加里东造山带夷平的基础上经再次裂陷形成的,它的形成与金沙江—红河—马江洋盆关系密切,是该洋盆与扬子板块之间的大陆边缘盆地。早泥盆世晚期—石炭纪随着金沙江—红河—马江洋盆的形成,扬子板块南部边缘开始裂陷,形成特殊的台地与台间海槽相间的大陆边缘裂谷盆地。二叠纪—早三叠世初期随着该洋盆的俯冲消减,形成越北岛弧,右江盆地进入弧后(裂陷)盆地阶段。早三叠世晚期以后,随着该洋盆的闭合和碰撞造山,在红河—马江造山带与扬子板块之间形成以复理石为特征的弧后前陆盆地。因此右江盆地经历了大陆边缘裂谷盆地(早泥盆世晚期—石炭纪)、弧后盆地(二叠纪—早三叠世早期)、弧后前陆盆地(早三叠世晚期—中三叠世)的构造演化阶段。  相似文献   

9.
虽然在滇西昌宁-孟连带内发现了泥盆纪至中三叠世的放射虫硅质岩,但是目前对其构造古地理意义仍然有争议。对昌宁-孟连带晚石炭世至早二叠世碳酸盐岩地层内鲕粒灰岩进行了研究,结果表明,该套碳酸盐岩形成于动荡浅水沉积环境,其成因可能与古特提斯洋内碳酸盐岩洋岛海山有关,并且反映了温暖、较为干燥的古气候背景。根据地质背景资料分析,它们应该形成于南亚热带较干燥的气候环境。与东西两侧同期地层形成的古气候背景对比发现,在石炭纪-二叠纪时,昌宁-孟连带是分隔滨冈瓦纳地块群和华夏地块群的主支洋盆;在早二叠世时,该洋盆宽度约10°古纬距。  相似文献   

10.
杨天南  薛传东  信迪  梁明娟  廖程 《岩石学报》2019,35(5):1324-1340
位于青藏高原东缘、东南缘的西南三江造山带的构造几何格架形成于晚古生代-早中生代古特提斯阶段。前人综合1/20万区域地质调查成果创造性地构建了基于板块构造理论的大地构造几何格架初始版本,成为指导三江造山带地学研究的关键基础。二十世纪末引入我国的锆石原位U/Pb测年技术大规模应用于三江造山带研究,积累了大量高精度年代学数据,为升级大地构造几何格架初始版本奠定了良好基础。收集、整理、综合现有测年结果,本文将三江造山带内古特提斯阶段弧岩浆岩划分为两阶段、三个带,分别为晚三叠世玉树-义敦陆缘弧岩浆岩带、二叠纪-中三叠世江达-维西-马登-点苍山陆缘弧岩浆岩带、二叠纪-晚三叠世云县-绿春-哀牢山陆缘弧岩浆岩带。结合高压变质带研究进展、大地构造相时空配置关系提出:(1)玉树-义敦陆缘弧岩浆岩带为甘孜-理塘洋向南西俯冲于东羌塘-中咱陆块之下的产物,俯冲持续时间仅10Myr左右;(2)江达-维西-马登-点苍山、云县-绿春-哀牢山两个陆缘弧岩浆岩带属同一弧岩浆岩带,是龙木措-双湖-昌宁-孟连古洋壳向北、北东俯冲作用的产物,其俯冲时长达70Myr,产生4或5个岩浆岩活跃期。从俯冲作用持续时间及岩浆岩带空间规模分析,龙木措-双湖-昌宁-孟连缝合带代表的古洋盆为三江造山带古特提斯主洋盆,而甘孜-理塘洋规模相对较小。古特提斯主洋盆的闭合具有穿时性,北段闭合于中三叠世,而南段则到晚三叠世才最终闭合。新数据揭示的古特提斯阶段陆缘弧岩浆岩带空间分布特点提出了若干新科学问题,值得进一步深入研究。  相似文献   

11.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

12.
It is proposed that the Bentong–Raub Suture Zone represents a segment of the main Devonian to Middle Triassic Palaeo-Tethys ocean, and forms the boundary between the Gondwana-derived Sibumasu and Indochina terranes. Palaeo-Tethyan oceanic ribbon-bedded cherts preserved in the suture zone range in age from Middle Devonian to Middle Permian, and mélange includes chert and limestone clasts that range in age from Lower Carboniferous to Lower Permian. This indicates that the Palaeo-Tethys opened in the Devonian, when Indochina and other Chinese blocks separated from Gondwana, and closed in the Late Triassic (Peninsular Malaysia segment). The suture zone is the result of northwards subduction of the Palaeo-Tethys ocean beneath Indochina in the Late Palaeozoic and the Triassic collision of the Sibumasu terrane with, and the underthrusting of, Indochina. Tectonostratigraphic, palaeobiogeographic and palaeomagnetic data indicate that the Sibumasu Terrane separated from Gondwana in the late Sakmarian, and then drifted rapidly northwards during the Permian–Triassic. During the Permian subduction phase, the East Malaya volcano-plutonic arc, with I-Type granitoids and intermediate to acidic volcanism, was developed on the margin of Indochina. The main structural discontinuity in Peninsular Malaysia occurs between Palaeozoic and Triassic rocks, and orogenic deformation appears to have been initiated in the Upper Permian to Lower Triassic, when Sibumasu began to collide with Indochina. During the Early to Middle Triassic, A-Type subduction and crustal thickening generated the Main Range syn- to post-orogenic granites, which were emplaced in the Late Triassic–Early Jurassic. A foredeep basin developed on the depressed margin of Sibumasu in front of the uplifted accretionary complex in which the Semanggol “Formation” rocks accumulated. The suture zone is covered by a latest Triassic, Jurassic and Cretaceous, mainly continental, red bed overlap sequence.  相似文献   

13.
The Malay Peninsula is characterised by three north–south belts, the Western, Central, and Eastern belts based on distinct differences in stratigraphy, structure, magmatism, geophysical signatures and geological evolution. The Western Belt forms part of the Sibumasu Terrane, derived from the NW Australian Gondwana margin in the late Early Permian. The Central and Eastern Belts represent the Sukhothai Arc constructed in the Late Carboniferous–Early Permian on the margin of the Indochina Block (derived from the Gondwana margin in the Early Devonian). This arc was then separated from Indochina by back-arc spreading in the Permian. The Bentong-Raub suture zone forms the boundary between the Sibumasu Terrane (Western Belt) and Sukhothai Arc (Central and Eastern Belts) and preserves remnants of the Devonian–Permian main Palaeo-Tethys ocean basin destroyed by subduction beneath the Indochina Block/Sukhothai Arc, which produced the Permian–Triassic andesitic volcanism and I-Type granitoids observed in the Central and Eastern Belts of the Malay Peninsula. The collision between Sibumasu and the Sukhothai Arc began in Early Triassic times and was completed by the Late Triassic. Triassic cherts, turbidites and conglomerates of the Semanggol “Formation” were deposited in a fore-deep basin constructed on the leading edge of Sibumasu and the uplifted accretionary complex. Collisional crustal thickening, coupled with slab break off and rising hot asthenosphere produced the Main Range Late Triassic-earliest Jurassic S-Type granitoids that intrude the Western Belt and Bentong-Raub suture zone. The Sukhothai back-arc basin opened in the Early Permian and collapsed and closed in the Middle–Late Triassic. Marine sedimentation ceased in the Late Triassic in the Malay Peninsula due to tectonic and isostatic uplift, and Jurassic–Cretaceous continental red beds form a cover sequence. A significant Late Cretaceous tectono-thermal event affected the Peninsula with major faulting, granitoid intrusion and re-setting of palaeomagnetic signatures.  相似文献   

14.
《地学前缘(英文版)》2019,10(3):1101-1111
Different final closing ages have been proposed for the evolution of the Paleo-Asian Ocean (PAO), including Late Silurian, pre-Late Devonian, Early Permian, Late-Permian and Late Permian–Early Triassic. Ophiolites represent fragments of ancient oceanic crust and play an important role in identifying the suture zone and unveiling the evolutionary history of fossil oceans. Our detailed geological, geochemical and geochronological investigations argue for the existence of Early Permian (297 Ma) SSZ type ophiolites in the Sunidyouqi area of central Inner Mongolia, China. The gabbros and basalts show LREE depleted REE patterns and left-leaning primitive mantle-normalized spider diagrams with variable negative Nb-Ta anomalies (Nb* = 0.24–1.28 and 0.29–0.55, respectively). The Sunidyouqi ophiolites were generated in a mature back-arc basin. The Sunidyouqi ophiolites share the same petrological, geochemical and geochronological characteristics with the other ophiolites along the Solonker suture zone, delineating a Late Paleozoic ocean and arc-trench system. This Late Paleozoic ocean and arc-trench system coincides with a Permian paleobiogeographical boundary, i.e. the boundary between the northern cold climate (Boreal faunal–Angaraland floral realm), and a southern warm climate (Tethys faunal–Cathaysian floral realm). A tectonic scenario was proposed at last for the closure of the SE PAO involving (1) Late Ordovician to Middle Permian continuous southward subduction beneath the northern margin of North China; (2) Carboniferous to Middle Permian continuous northward subduction the forming the Northern Accretionary Orogen; (3) Late Permian final closure of the SE PAO.  相似文献   

15.
选取青海南部治多-杂多地区石炭纪-三叠纪的砂岩、粉砂岩样品,进行主量元素地球化学分析,利用分析结果判别物源区大地构造背景,探讨北羌塘盆地的性质及演化。研究结果表明:北羌塘中段的治多-杂多地区物源区大地构造背景早石炭世为被动大陆边缘;早中二叠世为被动大陆边缘、活动大陆边缘和大陆岛弧;晚三叠世为被动大陆边缘、活动大陆边缘和大陆岛弧。结合地层学、沉积学和岩石学,治多-杂多地区的沉积盆地经历了早石炭世被动陆缘克拉通盆地-早中二叠世裂陷盆地和早中三叠世被动边缘克拉通盆地-晚三叠世弧后前陆盆地的两个演化旋回,体现了金沙江缝合带和甘孜-理塘缝合带成生发展在研究区内的沉积响应。  相似文献   

16.
金沙江(-哀牢山)弧盆系是西南三江多岛弧盆系的重要组成部分,恢复其时空格架及其形成演化过程对理解古特提斯多岛弧盆系的时空格局具有重要意义。根据新的地质调查资料、研究成果并结合分析数据,系统总结了金沙江弧盆系不同构造单元的物质组成及其构造属性,讨论了其构造演化过程及其对VMS型矿床的控制作用。金沙江洋壳发育时限主要为晚志留世—二叠纪,古洋壳地幔受到了早期俯冲带物质富集组分的影响,主体形成于弧后盆地的构造环境。江达-德钦-维西岩浆弧为一复杂的陆缘弧,经历了俯冲消减(300~260 Ma)、早碰撞聚合(255~250 Ma)、同碰撞伸展(249~237 Ma)和晚碰撞造山(236~212 Ma)等构造事件叠加改造,形成了不同类型、不同环境的岩浆活动及其盆地。金沙江带新发现的贡觉榴辉岩、维西退变榴辉岩等高压变质带,为恢复金沙江古特提斯洋的俯冲-碰撞造山的复杂演化过程提供了重要证据。在此基础上,结合区域地质资料,构建了金沙江弧盆系的演化历史,认为经历了晚志留世—早二叠世金沙江(-哀牢山)弧后洋盆扩张、早二叠世晚期—晚二叠世洋壳俯冲消减、早三叠世—晚三叠世弧-陆碰撞造山与盆-山转换、晚三叠世末期后碰撞陆内造山至陆内汇聚-走滑转换等阶段的演化过程,每个阶段控制着不同类型的VMS型矿床。  相似文献   

17.
The Black Sea region comprises Gondwana-derived continental blocks and oceanic subduction complexes accreted to Laurasia. The core of Laurasia is made up of an Archaean–Palaeoproterozoic shield, whereas the Gondwana-derived blocks are characterized by a Neoproterozoic basement. In the early Palaeozoic, a Pontide terrane collided and amalgamated to the core of Laurasia, as part of the Avalonia–Laurasia collision. From the Silurian to Carboniferous, the southern margin of Laurasia was a passive margin. In the late Carboniferous, a magmatic arc, represented by part of the Pontides and the Caucasus, collided with this passive margin with the Carboniferous eclogites marking the zone of collision. This Variscan orogeny was followed by uplift and erosion during the Permian and subsequently by Early Triassic rifting. Northward subduction under Laurussia during the Late Triassic resulted in the accretion of an oceanic plateau, whose remnants are preserved in the Pontides and include Upper Triassic eclogites. The Cimmeride orogeny ended in the Early Jurassic, and in the Middle Jurassic the subduction jumped south of the accreted complexes, and a magmatic arc was established along the southern margin of Laurasia. There is little evidence for subduction during the latest Jurassic–Early Cretaceous in the eastern part of the Black Sea region, which was an area of carbonate sedimentation. In contrast, in the Balkans there was continental collision during this period. Subduction erosion in the Early Cretaceous removed a large crustal slice south of the Jurassic magmatic arc. Subduction in the second half of the Early Cretaceous is evidenced by eclogites and blueschists in the Central Pontides and by a now buried magmatic arc. A continuous extensional arc was established only in the Late Cretaceous, coeval with the opening of the Black Sea as a back-arc basin.  相似文献   

18.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号