首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT This paper examines the diagenetic history of dual (i.e. matrix and fracture) porosity reservoir lithologies in Cretaceous to Eocene carbonate turbidites of the Ionian fold and thrust belt, close to the oil‐producing centre of Fier–Ballsh (central Albania). The first major diagenetic event controlling reservoir quality was early cementation by isopachous and syntaxial low‐Mg calcite. These cements formed primarily around crinoid and rudist fragments, which acted as nucleation sites. In sediments in which these bioclasts are the major rock constituent, this cement can make up 30% of the rock volume, resulting in low effective porosity. In strata in which these bioclasts are mixed with reworkedmicrite, isopachous/syntaxial cements stabilized the framework, and matrixporosity is around 15%. The volumetric importance of these cements, their optical and luminescence character (distribution and dull orange luminescence) and stable isotopic signal (δ18O and δ13C averaging respectively; ?0·5‰ VPDB and +2‰ VPDB) all support a marine phreatic origin. Within these turbidites and debris flows, several generations of fractures alternated with episodes of cementation. A detailed reconstruction of this history was based on cross‐cutting relationships of fractures and compactional and layer‐parallel shortening (LPS) stylolites. The prefolding calcite veins possess orange cathodoluminescence similar to that of the host rock. Their stable isotope signatures (δ18O of ?3·86 to ?0·85‰ VPDB and δ13C of – 0·14 to + 2·98‰ VPDB) support a closed diagenetic rock‐buffered system. A similar closed system accounts for the selectively reopened and subsequently calcite‐cemented LPS stylolites (δ18O of ?1·81 to ?1·14‰ VPDB and δ13C of +1·52 to +2·56‰ VPDB). Within the prefolding veins, brecciated host rock fragments and complex textures such as crack and seal features resulted from hydraulic fracturing. They reflect expulsion of overpressured fluids within the footwall of the frontal thrusts. After folding and thrust sheet emplacement, some calcite veins are still rock buffered (δ18O of ?0·96 to +0·2‰ VPDB and δ13C of +0·79 to +1·37‰ VPDB), whereas others reflect external (i.e. extraformational) and thus large‐scale fluid fluxes. Some of these veins are linked to basement‐derived fluid circulation or originated from fluid flow along evaporitic décollement horizons (δ18O around +3·0‰ VPDB and δ13C around +1·5‰ VPDB). Others are related to the maturation of hydrocarbons in the system (δ18O around ?7·1‰ VPDB and δ13C around +9·3‰ VPDB). An open joint system reflecting an extensional stress regime developed during or after the final folding stage. This joint system enhanced vertical connectivity. This open joint network can be explained by the high palaeotopographical position and the folding of the reservoir analogue within the deformational front. The joint system is pre‐Burdigalian in age based upon a dated karstified discordance contact. Sediment‐filled karst cavity development is linked to meteoric water infiltration during emergence of some of the structures. Despite its sediment fill, the karst network is locally an important contributor to reservoir matrix porosity in otherwise tight lithologies. Development of secondary porosity along bed‐parallel and bed‐perpendicular (i.e. layer‐parallel shortening) stylolites is interpreted as a late‐stage diagenetic event associated with migration of acidic fluids during hydrocarbon maturation. Development of porosity along the LPS system enhanced the vertical reservoir connectivity.  相似文献   

2.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

3.
Septarian concretions in the Staffin Shales Formation (Kimmeridgian, Isle of Skye) allow controls on concretion rheology and septarian cracking to be investigated. Stratabound concretions consist of anhedral ferroan calcite microspar enclosing clay and minor pyrite. Intergranular volumes range from 77% to 88%, and calcite δ13C and δ18O values in most concretion bodies range from ?10·0‰ to ?17·3‰ and +0·3‰ to ?0·6‰ respectively, consistent with rapid and pervasive cementation in marine pore fluids. Septarian rupture occurred during incipient cementation, with a sediment volume reduction of up to 43%. Crack‐lining brown fibrous calcite records pore fluid re‐oxygenation during a depositional hiatus, followed by increasing Fe content and δ13C related to bacterial methanogenesis. Brown colouration results from an included gel‐like polar organic fraction that probably represents bacterially degraded biomass. A new hypothesis for concretion growth and septarian cracking argues that quasi‐rigid ‘proto‐concretions’ formed via binding of flocculated clays by bacterial extracellular polysaccharide substances (EPS). This provided rheological and chemical conditions for tensional failure, subcritical crack growth, volume contraction, calcite nucleation, and incorporation of degraded products into crack‐lining cements. Bacterial decay of EPS and syneresis of host muds provided internal stresses to initiate rupture at shallow burial. Development of septarian (shrinkage) cracks in muds is envisaged to require pervasive in situ bacterial colonization, and to depend on rates of carbonate precipitation versus EPS degradation and syneresis. Subsequent modification of septarian concretions included envelopment by siderite and calcite microspar, hydraulic fracturing associated with Cretaceous shallow burial or Palaeogene uplift; and cementation by strongly ferroan, yellow sparry calcite that records meteoric water invasion of the host mudrocks. An abundance of fatty acids in these spars indicates aqueous transport of organic breakdown products, and δ13C data suggest a predominantly methanogenic bicarbonate source. However, the wide δ18O range for petrographically identical cement (?1·3‰ to ?15·6‰) is difficult to explain.  相似文献   

4.
The Catalan Coastal Ranges (NE part of the Eastern Iberian Margin) correspond to a system of grabens formed at the north-western margin of the Valencia Trough. Extensional activity in the Catalan Coastal Ranges occurred at least from early to late Miocene and reactivated earlier transpressive faults related to the Palaeogene compression. In the central part of the Catalan Coastal Ranges, tectonic micro and macrostructures (faults, joints, stylolites) are well developed in the Mesozoic (mainly Cretaceous) limestones as well as in the Miocene graben fill deposits. In these rocks, seven generations of fractures, which formed during different tectonic phases, have been distinguished. Type 1–4 fractures affect only the Cretaceous limestones, type 5 and 6 fractures the Cretaceous and Miocene deposits, and type 7 fractures only the Miocene sediments. The fractures are filled with calcites, and locally with an internal sediment or a dolomite cement. The Cretaceous host-rock has an average δ18O value of –4·3‰ PDB (Peedee Belemnite), an average δ13C value of +0·6‰ PDB, a 87Sr/86Sr ratio of 0·70741, up to 5630 p.p.m. of Mg2+, up to 2615 p.p.m. of Sr2+, and up to 1560 p.p.m. of Fe2+. Type 2 fractures are related to Palaeogene compression. The calcite cement filling this type of fracture has an average δ18O value of –8·2‰ PDB, an average δ13C value of –0·6‰ PDB, a 87Sr/86Sr ratio of 0·70714, up to 4560 p.p.m. of Mg2+, up to 3275 p.p.m. of Sr2+, and up to 3540 p.p.m. of Fe2+. These results indicate a fluid characterized by a high rock–fluid interaction approaching a closed system equilibrium. Type 5 fractures are related to the syn-rift stage. The calcite cement filling this type of fracture has an average δ18O value of –6·9‰ PDB, an average δ13C value of –4·3‰ PDB, a 87Sr/86Sr ratio of 0·70787, up to 5375 p.p.m. of Mg2+, up to 1750 p.p.m. of Sr2+ and up to 2855 p.p.m. of Fe2+. These results indicate a fluid characterized by a low rock–fluid interaction and an open hydrogeological system. The cements filling the compressional fractures are characterized by undulose extinction, subgrain formation and deformed mechanical twin planes indicating formation under stressed conditions. In contrast, cements filling extensional fractures are characterized by translucent crystals with uniform extinction, indicating free growth not subjected to stress.  相似文献   

5.
Two types of ‘pseudobreccia’, one with grey and the other with brown mottle fabrics, occur in shoaling‐upward cycles of the Urswick Limestone Formation of Asbian (Late Dinantian, Carboniferous) age in the southern Lake District, UK. The grey mottle pseudobreccia occurs in cycle‐base packstones and developed after backfilling and abandonment of Thalassinoides burrow systems. Burrow infills consist of a fine to coarse crystalline microspar that has dull brown to moderate orange colours under cathodoluminescence. Mottling formed when an early diagenetic ‘aerobic decay clock’ operating on buried organic material was stopped, and sediment entered the sulphate reduction zone. This probably occurred during progradation of grainstone shoal facies, after which there was initial exposure to meteoric water. Microspar calcites then formed rapidly as a result of aragonite stabilization. The precipitation of the main meteoric cements and aragonite bioclast dissolution post‐date this stabilisation event. The brown mottle pseudobreccia fabrics are intimately associated with rhizocretions and calcrete, which developed beneath palaeokarstic surfaces capping cycle‐top grainstones and post‐date all depositional fabrics, although they may also follow primary depositional heterogeneities such as burrows. They consist of coarse, inclusion‐rich, microspar calcites that are always very dull to non‐luminescent under cathodoluminescence, sometimes with some thin bright zones. These are interpreted as capillary rise and pedogenic calcrete precipitates. The δ18O values (?5‰ to ?8‰, PDB) and the δ13C values (+2‰ to ?3‰, PDB) of the ‘pseudobreccias’ are lower than the estimated δ18O values (?3‰ to ?1‰ PDB) and δ13C values of (+2‰ to +4‰ PDB) of normal marine calcite precipitated from Late Dinantian sea water, reflecting the influence of meteoric waters and the input of organic carbon.  相似文献   

6.
This paper describes and interprets the mineral and facies assemblages that occur in carbonate–evaporite shallow lacustrine deposits, considering the importance of the processes pathway (i.e. dolomitization, gypsum calcitization and silicification). The Palaeogene deposits of the Deza Formation (Almazán Basin, central‐northern Spain) are selected as a case study to determine the variety of physicochemical processes taking place in carbonate–evaporite shallow lakes and their resulting diagenetic features. Dolostones are the predominant lithology and are composed mainly of dolomite with variable amounts of secondary calcite (5 to 50%), which mainly mimic lenticular gypsum (pseudomorphs). Five morphological types of dolomite crystal were identified as follows: dolomite tubes, dolomite cylinders, rhombohedral dolomite, spheroidal and quasi‐rhombohedral dolomite, and cocoon‐shaped dolomite. The dolomite cylinders and tubes are interpreted as the dolomitized cells of a widespread microbial community. The sequence of diagenetic processes started with growth of microlenticular interstitial gypsum in a calcareous mud deposited on the playa margin mudflats, and that sometimes included microbial sediments. Immediately following growth of gypsum, dolomite replaced the original calcite (or possibly aragonite) muds, the microbial community and the gypsum. Partial or total replacement of gypsum by dolomite was related mainly to the biomineralization of endolithic microbial communities on gypsum crystals. Later calcitization took place under vadose, subaerial exposure conditions. The development of calcrete in distal alluvial settings favoured the release of silica and subsequent silicification on the playa margin mudflats. Stable isotope compositions of calcite range from ?9·02 to ?5·83‰ δ13CPDB and ?7·10 to 1·22‰ δ18OPDB; for the dolomite, these values vary from ?8·93 to ?3·96‰ δ13CPDB and ?5·53 to 2·4‰ δ18OPDB. Quartz from the cherts has δ18OSMOW values ranging from 27·1 to 31·1‰. Wide variation and relatively high δ18OSMOW values for dolomite indicate evaporitic and closed hydrological conditions; increased influx of meteoric waters reigned during the formation of secondary calcite spar.  相似文献   

7.
Stable isotope and trace element analyses of 230 Jurassic (Pliensbachian–Toarcian) samples from northern Spain have been performed to test the use of geochemical variations in fossils (belemnites and brachiopods) and whole‐rock hemipelagic carbonates as palaeoceanographic indicators. Although the succession analysed (Reinosa area, westernmost Basque–Cantabrian Basin) has been subject to severe thermal alteration during burial diagenesis, the samples appear to be well preserved. The degree of diagenetic alteration of the samples has been assessed through the application of integrated petrographic, chemical and cathodoluminescence analyses. It is demonstrated that brachiopods and whole‐rock carbonates, although widely used for palaeoceanic studies, do not retain their primary marine geochemical composition after burial diagenesis. In contrast, there is strong evidence that belemnite rostra preserve original isotopic values despite pervasive diagenesis of the host rock. Well‐preserved belemnite shells (non‐luminescent to slightly luminescent) typically show stable isotope values of +4·3‰ to –0·7‰δ13C, +0·7‰ to –3·2‰δ18O, and trace element contents of <32 μg g–1 Mn, <250 μg g–1 Fe, >950 μg g–1 Sr and Sr/Mn ratios >80. This study suggests that the degree to which diagenesis has affected the preservation of an original isotopic composition may differ for different low‐Mg calcite fossil shells and hemipelagic bulk carbonates, behaviour that should be considered when marine isotopic signatures from other ancient carbonate rocks are investigated. Multiple non‐luminescent contemporaneous belemnite samples passed the petrographic and geochemical tests to be considered as palaeoceanic recorders, yet their δ13C and δ18O values exhibited moderate scatter. Such variability is likely to be related to the palaeoecological behaviour of belemnites and/or high‐frequency secular variations in sea‐water chemistry superimposed on the long‐term isotopic trend. A pronounced positive carbon‐isotope excursion (up to +4·3‰) is documented in the early Toarcian serpentinus biozone, which correlates with the Toarcian δ13C maximum reported in other European and Tethyan regions.  相似文献   

8.
《Sedimentology》2018,65(3):745-774
This paper explores little investigated diagenesis of spicule‐dominated sediments, based on Permian spiculites and cool‐water carbonates of the Tempelfjorden Group in central Spitsbergen. Field observations, petrography, stable isotope geochemistry, and mineralogical and chemical analyses reveal that the strata have been subjected to multistage diagenesis as the result of silica phase transitions at medium burial depths and deep‐burial overprinting. The growth of silica concretions occurred during the opal‐A/opal‐CT conversion and was controlled by the content and distribution of clay and spicules in the sediment, resulting in a variety of megascopic silica fabrics. Opal‐CT was subsequently dissolved, and all silica is now in a stable quartz stage. Petrographically, the rocks are characterized by a variety of chalcedony and quartz cements which perfectly preserve precursor textures. Most cements precipitated from silica‐oversaturated fluids, and their shapes reflect the silica saturation state and geometry of the pore space. Some microquartz and cryptoquartz also formed by a solid–solid inversion (recrystallization) of chalcedony. The cements have δ 18O values between +30‰ and +20‰ Standard Mean Ocean Water and display a systematic depletion in 18O from the first to the last crystallized, interpreted to reflect a gradual increase in temperature during burial. The precipitation of quartz cements started in the Middle Triassic when the strata passed the 19°C isotherm at burial depths of ca 600 m, and was completed in the mid‐Cretaceous, 2·3 km beneath the sea floor at temperatures of 75°C. Late diagenetic overprinting of the chert includes fracturing, brecciation and cementation with carbonate cements having δ 18O values between +2‰ and −30‰ Pee Dee Belemnite and δ 13C values between +4‰ and −14‰ Pee Dee Belemnite; they are linked to hot solutions introduced during Cretaceous volcanism or Palaeogene tectonism. This study illustrates the diagenetic pathway during burial of spicule‐rich sediments in a closed system and thereby provides a baseline for studies of more complexly altered chert deposits.  相似文献   

9.
ABSTRACT A calcite mass more than 1·5 km long and 20 m wide crops outs along the faulted margin of the Albian carbonate platform of Jorrios in northern Spain. The mass contains abundant dissolution cavities up to 7 m long and 1 m high, filled with cross‐stratified quartz sandstone and alternating sandstone–calcite laminae. Similar cavities are also present in a 50‐m‐wide zone of platform limestones adjacent to the calcite mass that are filled with limestone breccias and sandstone. The calcite mass has mean δ18O values of 19·6‰ (SMOW), whereas platform limestones have mean δ18O values of 24·4‰ (SMOW). Synsedimentary faulting of the carbonate margin and circulation of heated fault‐related waters resulted in replacement of a band of limestone by calcite. Soon after this replacement, dissolution by undersaturated fluids affected both the calcite mass and the adjacent limestones. Percolating marine quartz sand filled all dissolution cavities, sometimes alternating with precipitating calcite. The resulting cavities and fills, which recall products of meteoric diagenesis, are attributed to a hydrothermal origin based on their geometry, occurrence along the profile and synsedimentary tectonic relationships. The early faulting and diagenesis are related to local extensional tectonism in a large‐scale strike‐slip setting. Movements occurred during the early dispar/appenninica zone of the Late Albian.  相似文献   

10.
Development of a diagenetic anhydrite bed at the base of the Cretaceous Maha Sarakham Saline Formation (the `Basal Anhydrite' member) of the Khorat Plateau in north-eastern Thailand took place due to leaching and/or pressure dissolution of salt at the contact between an underlying active sandstone aquifer system and an overlying massive halite-dominated evaporite sequence. Basal evaporites composed of halite with intercalated anhydrite of the latter sequence are undergoing dissolution as a result of subsurface flushing, with anhydrite produced as the insoluble residue. The result is a 1·1 m thick interval of nodular anhydrite displaying unique, basin-wide continuity. Observed textures, petrographic features and chemical data from the anhydrite and associated authigenic minerals support the origin of the Basal Anhydrite Member as an accumulation residue from the dissolution of the Maha Sarakham salts. Petrographically, the anhydrite in this unit is made up of crystals that are blocky and recrystallized, sheared, generally elongated and broken, and is bounded at the bottom by organic-rich stylolite surfaces. Authigenic and euhedral dolomite and calcite crystals are associated with the anhydrite. Traces of pyrite, galena and chalcopyrite are present along the stylolite surfaces suggesting supply of fresh water from the underlying sandstone at highly reducing conditions of burial. The δ34S of sulphate in the Basal Anhydrite averages 15 ‰ (CDT) and falls within the isotopic composition of the anhydrite in the Cretaceous Maha Sarakham Formation proper and the Cretaceous values of marine evaporites. Measured δ18O in dolomite range from ?4·37 to ?14·26‰ (PDB) suggesting a re-equilibration of dolomite with basinal water depleted in 18O and possible recrystallization of dolomite under relatively elevated temperatures. The δ13C, however, varies from +1·57 to ?2·53‰ (PDB) suggesting a contribution of carbon from oxidation of organic matter. This basal anhydrite bed, similar to basinwide beds found at the bottom of many giant evaporite sequences, has always been considered to be depositional. Here, at the base of the Maha Sarakham Formation, we demonstrate that the anhydrite is diagenetic in origin and was formed by accumulation of original anhydrite by dissolution of interbedded halite from waters circulating though the underlying aquifer: it represents an `upside-down' caprock.  相似文献   

11.
Limestone consisting of finely to medium crystalline calcite mosaics is present in the upper part of the Winnipegosis Formation on the east‐central margin of the Elk Point Basin where the overlying Prairie Evaporite deposits have been removed. This type of crystalline limestone is interpreted as dedolomite, based on petrographic observations. The δ18O and δ13C values of the Winnipegosis dedolomite vary from ?12·8‰ to ?11·9‰ VPDB (Vienna Pee Dee Belemnite) and from ?0·5‰ to +1·7‰ VPDB, respectively; both values are significantly lower than those for the corresponding dolomite. The 87Sr/86Sr ratios of the dedolomite are significantly higher, between 0·7082 and 0·7087. The spatial distribution and geochemical data of the Winnipegosis dedolomite suggest that dedolomitization was related to an influx of fresh groundwater and dissolution of the Prairie Evaporite anhydrite during the latest Mississippian to the Early Cretaceous when the basin was subjected to uplift and erosion. The Winnipegosis dedolomite displays a series of replacement fabrics showing progressive calcitization of dolomite, including the occurrence of dedolomite restricted along fractures and adjacent areas, dolomite patches ‘floating’ in the dedolomite masses and massive dedolomite with sparsely scattered dolomite relicts. However, the characteristic fabrics resulting from dedolomitization documented in the literature have not been observed in the Winnipegosis dedolomite. Coarsely to very coarsely crystalline, subhedral to euhedral calcite cement is restricted in the dedolomite. The petrographic features, isotopic compositions and homogenization temperatures, coupled with the burial history of the Winnipegosis Formation, constrain the precipitation of the calcite cement from a mixing of basinal brines and fresh groundwater during Late Cretaceous to Neogene time. The more negative C‐isotopic signatures of the calcite cement (?5·3‰ to ?2·3‰ VPDB) probably reflect a hydrocarbon‐derived carbon.  相似文献   

12.
《Sedimentology》2018,65(6):1827-1858
Dedolomitization is a common diagenetic process in shallow burial environments and is often associated with sulphates in mixed carbonate‐evaporite successions. In these settings, elevated Ca2+/Mg2+ ratios necessary for dedolomitization result from the dissolution of sulphate phases by the incursion of undersaturated groundwater. Reported dedolomite textures from other studies are varied, but the most prevalent is a rhombic texture interpreted to result from the partial to complete pseudomorphic replacement of secondary dolomite rhombs formed in the burial diagenetic realm. In this study of primary cryptocrystalline to finely crystalline dolomicrites in the Prairie Evaporite Formation of north‐eastern Alberta, dedolomitization has resulted in sutured to loosely packed mosaics of dedolomite that range from subhedral to distinctly euhedral (rhombic) crystal fabrics; however, no prior aggrading neomorphism producing dolomite rhombs is evident in the precursor dolomicrites. Non‐pseudomorphic dedolomitization of the dolomicrites results in textures that include rhombic dedolomite crystals with cloudy cores comprising remnant dolomicrite and clear rims. These textures are similar to those observed in the pseudomorphic dedolomitization of secondary dolomite rhombs. The Prairie Evaporite Formation of north‐eastern Alberta has experienced extensive karstification near the erosional margin of the sedimentary succession. Dedolomitization of dolomicrites occurs in marker beds within the Prairie Evaporite succession associated with evaporite karstification. Along with stratigraphic and petrographic considerations, stable isotope results support the interpretation of a shallow dedolomitization event influenced by meteoric waters derived from the basin margin. Negative δ 18O and low δ 13C values (averages of −13·6‰VPDB and 0·5‰VPDB, respectively) of the dedolomite, compared with those of the primary dolomicrite (averages of −6·0‰VPDB and 1·2‰VPDB, respectively), point to isotopically light diagenetic fluids. These results show that rhombic dedolomite textures can form through shallow, non‐pseudomorphic dedolomitization of dolomicrites by meteoric fluids in the presence of sulphates, with resulting textures that are similar to the pseudomorphic dedolomitization of secondary dolomite rhombs.  相似文献   

13.
The partly dolomitized Swan Hills Formation (Middle‐Upper Devonian) in the Simonette oil field of west‐central Alberta underwent a complex diagenetic history, which occurred in environments ranging from near surface to deep (>2500 m) burial. Five petrographically and geochemically distinct dolomites that include both cementing and replacive varieties post‐date stylolites in limestones (depths >500 m). These include early planar varieties and later saddle dolomites. Fluid inclusion data from saddle dolomite cements (Th=137–190 °C) suggest that some precipitated at burial temperatures higher than the temperatures indicated by reflectance data (Tpeak=160 °C). Thus, at least some dolomitizing fluids were ‘hydrothermal’. Fluorescence microscopy identified three populations of primary hydrocarbon‐bearing fluid inclusions and confirms that saddle dolomitization overlapped with Upper Cretaceous oil migration. The source of early dolomitizing fluids probably was Devonian or Mississippian seawater that was mixed with a more 87Sr‐rich fluid. Fabric‐destructive and fabric‐preserving dolostones are over 35 m thick in the Swan Hills buildup and basal platform adjacent to faults, thinning to less than 10 cm thick in the buildup between 5 and 8 km away from the faults. This ‘plume‐like’ geometry suggests that early and late dolomitization events were fault controlled. Late diagenetic fluids were, in part, derived from the crystalline basement or Palaeozoic siliciclastic aquifers, based on 87Sr/86Sr values up to 0·7370 from saddle dolomite, calcite and sphalerite cements, and 206Pb/204Pb of 22·86 from galena samples. Flow of dolomitizing and mineralizing fluids occurred during burial greater than 500 m, both vertically along reactivated faults and laterally in the buildup along units that retained primary and/or secondary porosity.  相似文献   

14.
Calcite septarian concretions from the Permian Beaufort Group in the Maniamba Graben (NW Mozambique) allow controls on the composition and nature of diagenetic fluids to be investigated. The concretions formed in lacustrine siltstones, where they occur in spherical (1 to 70 cm in diameter) and columnar (up to 50 cm long) forms within three closely spaced, discrete beds totalling 2·5 m in thickness. Cementation began at an early stage of diagenesis and entrapped non‐compacted burrows and calcified plant roots. The cylindrical concretions overgrew calcified vertical plant roots, which experienced shrinkage cracking after entrapment. Two generations of concretionary body cement and two generations of septarian crack infill are distinguished. The early generation in both cases is a low‐Mn, Mg‐rich calcite, whereas the later generation is a low‐Mg, Mn‐rich calcite. The change in chemistry is broadly consistent with a time (burial)‐related transition from oxic to sub‐oxic/anoxic conditions close to the sediment–water interface. Geochemical features of all types of cement were controlled by the sulphate‐poor environment and by the absence of bacterial sulphate reduction. All types of cement present have δ13C ranging between 0‰ and −15‰(Vienna Peedee Belemnite, V‐PDB), and highly variable and highly depleted δ18O (down to 14‰ Vienna Standard Mean Ocean Water, V‐SMOW). The late generation of cement is most depleted in both 13C and 18O. The geochemical and isotopic patterns are best explained by interaction between surface oxic waters, pore waters and underground, 18O‐depleted, reducing, ice‐meltwaters accumulated in the underlying coal‐bearing sediments during the Permian deglaciation. The invariant δ13C distribution across core‐to‐rim transects for each individual concretion is consistent with rapid lithification and involvement of a limited range of carbon sources derived via oxidation of buried plant material and from dissolved clastic carbonates. Syneresis of the cement during an advanced stage of lithification at early diagenesis is considered to be the cause of development of the septarian cracks. After cracking, the concretions retained a small volume of porosity, allowing infiltration of anoxic, Ba‐bearing fluids, resulting in the formation of barite. The results obtained contribute to a better understanding of diagenetic processes at the shallow burial depths occurring in rift‐bound, lacustrine depositional systems.  相似文献   

15.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

16.
The carbonatic sequence of the Calabozo Formation (Lower Callovian) developed in southwestern Gondwana, within the northern area of the Neuquén basin, and is widespread in thin isolated outcrops in southwestern Mendoza province, Argentina. This paper describes the facies, microfacies and geochemical-isotopic analysis carried out in five studied localities, which allowed to define the paleoenvironmental conditions of a homoclinal shallow ramp model, highly influenced by sea level fluctuations, where outer, mid and inner ramp subenvironments were identified. The outer ramp subenvironment was only recognized in the south of the depocenter and is characterized by proximal outer ramp facies with shale levels and interbedded mudstone and packstone layers. The mid ramp subenvironment is formed by low energy facies (wackestone) affected by storms (packstones, grainstones and floatstones). The inner ramp subenvironment is the most predominant and is characterized by tidal flat facies (wackestones, packstones and grainstones) over which a complex of shoals (grainstones and packstones) dissected by tidal channels (packstone, grainstones and floatstones) developed. In the north area, protected environment facies were recorded (bioturbated wackestones and packstones). The vertical distribution of facies indicates that the paleoenvironmental evolution of the Calabozo Formation results from a highstand stage in the depocenter, culminating in a supratidal environment, with stromatolitic levels interbedded with anhydrite originated under restricted water circulation conditions due to a progressive isolation of the basin. δ13C and δ18O values of the carbonates of the Calabozo Formation suggest an isotopic signature influenced by local palaeoenvironmental parameters and diagenetic overprints. The δ13C and δ18O oscillations between the carbonates of the different studied sections are related with lateral facies variations within the carbonate ramp accompanied with dissimilar reactivities in relation to diagenetic fluids. The δ18O values of all sections exhibit a rather broad scatter which may be attributed to diagenesis and recrystallisation while the carbon isotopic composition has been less affected by those processes. Carbon isotope system has best retained the primary isotopic signal and δ13C values (0–3.9‰) are within the Callovian isotope range. The 87Sr/86Sr ratios of the bulk carbonates of El Plomo creek, La Vaina creek and Potimalal River sections are in agreement with the Callovian seawater Sr-isotope curve.  相似文献   

17.
Carbonate concretions formed in bathyal and deeper settings have been studied less frequently than those formed in shallow‐marine deposits. Similarly, concretions affected by catagenetic conditions have rarely been reported. Calcite concretions in deep‐marine mudstones and greywackes of the Bardo Unit (Sudetes Mountains, Poland) formed during early diagenesis and were buried to significant depths. Petrographic and geochemical (elemental and stable C and O isotopic) analyses document their formation close to the sediment–water interface, prior to mechanical compaction within the sulphate reduction zone and their later burial below the oil window. Although the concretions were fully formed during early diagenesis, the effects of increased temperature and interaction with late‐diagenetic interstitial fluids can be discerned. During maximum burial, the concretions underwent thorough recrystallization that caused alteration of fabric and elemental and O isotope composition. The initial finely crystalline cement was replaced by more coarsely crystalline, sheaf‐like, poikilotopic calcite in the concretions. These large calcite crystals engulf and partially replace unstable detrital constituents. The extremely low δ18O values (down to ?21·2‰ Vienna Pee Dee Belemnite) in the concretions are the result of the increased temperature in combination with alteration of volcanic glass, both causing a significant 18O‐depletion of bicarbonate dissolved in the interstitial fluids. Recrystallization led to uniform O isotope ratios in the concretions, but did not affect the C isotope signature. The δ13C values of the late‐diagenetic cements precipitated in the greywacke and in cracks cutting through concretions imply crystallization in the catagenetic zone and decarboxylation as a source of the bicarbonate. These late‐diagenetic processes took place in a supposedly overpressured setting, as suggested by clastic dykes and hydrofractures that cut through both concretions and host rock. All of these features show how the effects of early and late diagenesis can be distinguished in such rocks.  相似文献   

18.
The oxygen isotope compositions of diagenetic carbonate minerals from the Lower Jurassic Inmar Formation, southern Israel, have been used to identify porewater types during diagenesis. Changes in porewater composition can be related to major geological events within southern Israel. In particular, saline brines played an important role in late (Pliocene-Pleistocene) dolomitization of these rocks. Diagenetic carbonates included early siderite (δ18OSMOW=+24.4 to +26.5‰δ13CPDB=?1.1 to +0.8‰), late dolomite, ferroan dolomite and ankerite (δ18OSMOW=+18.4 to +25.8‰; δ13CPDB=?2.1 to +0.2‰), and calcite (δ18OSMOW=+21.3 to +32.6‰; δ13CPDB=?4.2 to + 3.2‰). The petrographic and isotopic results suggest that siderite formed early in the diagenetic history at shallow depths. The dolomitic phases formed at greater depths late in diagenesis. Crystallization of secondary calcite spans early to late diagenesis, consistent with its large range in isotopic values. A strong negative correlation exists between burial depth (temperature) and the oxygen isotopic compositions of the dolomitic cements. In addition, the δ18O values of the dolomitic phases in the northern Negev and Judea Mountains are in isotopic equilibrium with present formation waters. This behaviour suggests that formation of secondary dolomite post-dates the tectonic activity responsible for the present relief of southern Israel (Upper Miocene to Pliocene) and that the dolomite crystallized from present formation waters. Such is not the case in the Central Negev. In that locality, present formation waters have much lower salinities and δ18O values, indicating invasion of freshwater, and are out of isotopic equilibrium with secondary dolomite. Recharge of the Inmar Formation by meteoric water in the Central Negev occurred in the Pleistocene, and halted formation of dolomite.  相似文献   

19.
《Sedimentology》2018,65(1):123-150
The reconstruction of past diagenetic conditions in sedimentary basins is often under‐constrained. This results from both the analytical challenge of performing the required analyses on the minute sample amounts available from diagenetic mineral phases and the lack of tracers for some of the diagenetic parameters. The carbonate clumped isotope thermometry (Δ47) opens new perspectives for unravelling the temperatures of diagenetic phases together with the source of their parent fluids, two parameters that are otherwise impossible to constrain in the absence of exploitable fluid inclusions. Here is reported the study of a large number of sedimentary and diagenetic carbonate phases (from Middle Jurassic reservoirs of the Paris Basin depocentre) by combining detailed petrographic observations with a large number of Δ47 data (n  > 45) on a well‐documented paragenetic sequence, including calcite and dolomite burial cements. The data reveal carbonate crystallization at temperatures between 29°C and 98°C from fluids with δ 18Owater values between −7‰ and +2‰, in response to the progressive burial and uplift of the Paris Basin, throughout 165 Myr of basin evolution. Coupled with the time–temperature evolution previously estimated from thermal maturity modelling, these temperatures allow determining the timing of four successive cementation episodes. The overall data set indicates a history of complex water mixing with a significant contribution of hypersaline waters from the Triassic aquifers migrated upward along faults during the Cretaceous subsidence of the basin. Subsequent large‐scale infiltrations of meteoric waters induced a dilution of these pre‐existing brines in response to the Paris Basin uplift in the Tertiary. Overall, the data presented here allow proposing an integrated approach to characterize the cementation events affecting the studied carbonate reservoir units, based on temperature, oxygen isotope composition and salinity of the parent fluids as well as on petrographic grounds.  相似文献   

20.
In topographic flat areas, sedimentary settings may vary from one outcrop to another. In these settings, calcite precipitates may yield macroscopically similar columnar features, although they are products of different sedimentary or diagenetic processes. Three columnar calcite crystal fabrics, i.e. rosettes, palisade crusts and macro-columnar crystal fans, have been differentiated near and at the contact between Upper Tournaisian dolomites and limestones along the southern margin of the Brabant-Wales Palaeohigh. Their petrographic characteristics, and geochemical and fluid inclusion data provide information on the (dia)genetic processes involved. Rosettes composed of non-luminescent columnar calcite crystal fans (1–5 cm in diameter) developed on top of one another, forming discrete horizons in repetitive sedimentary cycles. The cycles consist of three horizons: (I) a basal horizon with fragments from the underlying horizon, (II) a micrite/microspar horizon with incipient glaebules, (III) an upper horizon consisting of calcite rosettes, with desiccation features. The petrographical features and δ18O signatures of −10·0 to −5·5‰ and δ13C values of −5·5 to −3·2‰ support either evaporative growth, an evaporative pedogenic origin, or overprinting of marine precipitates. Palisade crusts, composed of a few to 10 mm long non-luminescent calcite crystals, coat palaeokarst cavities. Successive palisade growth-stages occur which are separated by thin laminae of micrite or detrital quartz, displaying a geopetal arrangement. Palisade crusts are interpreted as intra-Mississippian speleothems. This interpretation is supported by their petrographic characteristics and isotopic signature (δ18O = −8·7 to −6·5‰ and δ13C = −4·8 to −2·5‰). Macro-columnar crystals, 1–50 cm long, developed mainly perpendicular to cavity walls and dolomite clasts. Crystal growth stages in the macro-columnar crystals are missing. δ18O values vary between −16·4 and −6·8‰ and δ13C values between −5·2 and −0·9‰. These features possibly support a late diagenetic high temperature precipitation in relation to hydrothermal karstification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号