首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Taking insight into genetic mechanisms of coalbed methane (CBM) can provide an effective approach for evaluating the value of CBM resources. In this study, the geo-temperature and the thermal subsidence history were used to investigate the effect of the present geothermal field characteristic on the genetic mechanisms of CBM at the Huaibei Coalfield. The results showed that the Permian coal strata in the study areas had a relatively low geo-temperature (< 50°C), high vitrinite reflectance (Ro,max; 0.75%-1.2%) and a coal rank typical of intermediate-high metamorphic bituminous. Comprehensive analyses of the characteristics of the present geothermal field indicate that the CBM at the Huaibei Coalfield are dominated by secondary biogenic gases. Furthermore, the genetic mechanism towards CBM was further proposed based on the tectonic evolution history: (1) Tectonic thrusting contributed to Ro,max values ranging from 0.5% to 3.0%, with maximum geo-temperatures of 140–180°C, which resulted in the generation of thermogenic CBM. (2) An extensional regime contributed to gradual uplift of the Permian coal-bearing strata, with the gradual escape of CBM at burial depths greater than 700m. (3) A large number of faults and hydrodynamic environments greatly promoted the microbial degradation of the early thermogenic gases, resulting in generation of secondary biogenic gases.  相似文献   

2.
据煤田地质勘查资料和油田钻井资料,对新疆吐哈盆地沙尔湖煤田瓦斯赋存规律进行分析,认为张性断层、贫水区无封闭作用、煤变质程度低等因素是导致沙尔湖煤田瓦斯含量低的主要原因,同时指出随着埋深的增加瓦斯会相应增加,这是今后煤田勘探开发值得注意的问题。  相似文献   

3.
Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600 m; 2000 ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (Ro) values between about 0.4 and 0.8%. This range of Ro values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100 m; 300 ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar Ro values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from ~ 1650 m; 5400 ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher Ro values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1 m; 3.3 ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank.  相似文献   

4.
The Early Cretaceous coal deposits of the Khasyn coalfield are intruded by Palaeogene diabase dikes. The coal has vitrinite reflectance values of 2.0–2.5% Ro, and characteristics of normal anthracite at some distance from the dikes, but at direct contact with the dike two morphological coal varieties occur: coal inclusions in the diabase dike and dispersed carbonaceous matter within the dike rock. Both types of coaly matter have properties typical of anthracites: strong anisotropy, altered internal structure and high vitrinite reflectance values ranging from 3.8 to 5.5% Ro. The X-ray diffraction measurements of the interplanar spacing d(002) and the crystallite sizes Lc and La show rather similar values for coal inclusions in the dike and dispersed carbonaceous matter. The additional reflection at 3.37 Å, corresponding to semi-graphite admixture, occurs in the coal and carbonaceous matter inside the dike and is absent in the natural coal outside the dike.  相似文献   

5.
Organic-rich samples derived from a Middle Cambrian Formation in the Georgina Basin, and from the Middle Proterozoic of the McArthur Basin in northern and central Australia, yielded alginite ranging from immature oil shale material to overmature residue. A maturation scale has been developed based on the thermal evolution of alginite as determined from reflectance and fluorescence. The coalification path of alginite is marked by jumps in contrast to the linear path of wood-derived vitrinite. Six zones have been recognised, ranging from undermature (zone I), through the mature (zones II/III), followed by a stable stage of no change (zone IV) to the overmature (zones V and VI). The onset of oil generation in alginite as evident from the present study is at 0.3% Ro Alg. and is expressed in a change of fluorescence from yellow to brown, and a coalification jump from 0.3 to 0.6% Ro of Alg. In many boreholes zone III can be distinguished between 0.6 and 0.8% Ro of Alg. where subsequent oil generation occurs. Zones II and III represent the oil window.A zone of little or no change designated zone IV, at of alginite follows zones II/III. A marked coalification jump characterises zone V, where a pronounced change in reflectance occurs to >1.0% Ro Alg., signifying peak gas generation. The border of oil preservation lies at the transition of zone V and VI, at 1.6% Ro Alg. In zone VI gas generation only occurs.Comparison of reflectance results with experimental and geochemical pyrolysis data supports high activation energies for hydrocarbon generation from alginite, and therefore a later onset of oil generation than other liptinite macerals (i.e. cutinite, exinite, resinite) as well as a narrow oil window.Transmission electron microscopy (TEM) confirms that alginite does not go through a distinct intermediate stage but that the percentage of unreacted organic matter decreases as maturation proceeds. A clear distinction can be made in TEM between immature alginite, alginite after oil generation, and alginite residue following gas generation. Alginite beyond 1.6% Ro acquires very high densities and the appearance of inertinite in TEM.Bitumens/pyrobitumens make a pronounced contribution to the organic matter throughout the basins and have been shown to effect pyrolysis results by suppressing Tmax. The bitumens/pyrobitumens have been divided into four groups, based on their reflectance and morphology, which in turn appears to be an expression of their genetic history. Their significance is in aiding the understanding of the basins' thermal history, and the timing of oil and gas generation.  相似文献   

6.
淮南煤田煤层气成藏动力学系统的机制与地质模型研究   总被引:4,自引:0,他引:4  
淮南煤田由次生生物成因和热成因气组成的混合型煤层气藏,受各种地质和水文地质条件的影响和控制。本文通过热流场和地温场、古构造应力场和原地应力场以及地下水动力场的系统分析,探讨了煤层气成藏动力学系统的形成机制,进而提出了相应的成藏地质模型。淮南煤田的煤层气藏虽然属向斜式(或盆心)聚气模型,但是,该模型强调,作为附加气源的次生生物气的补充,成藏动力学系统演化、构造样式和能量场的耦合关系,是混合型煤层气富集成藏的主因。   相似文献   

7.
一种页岩含气性热演化规律研究的模拟实验方法   总被引:2,自引:1,他引:1  
目前针对页岩气赋存规律研究的热模拟实验主要是沿袭常规油气热模拟方法,以粉末态样品开展模拟,研究对象为岩石生成并排出的烃类气体,这种模拟方式未明确页岩气的实质为"滞留气",并且模拟后样品无法开展扫描电镜分析,不能确定岩石孔隙结构变化规律。本文通过石英玻璃管封装块状样开展页岩生烃热模拟实验,并结合一套数据处理方法,尝试建立了一种适合页岩气研究的热模拟实验方法,研究泥页岩在不同演化阶段(Ro范围为0.596%~2.143%)不同赋存状态气体的含量以及岩石微观孔隙特征的变化情况。结果表明,泥岩及油页岩样品的排出气及解析气含量在高成熟度阶段(400℃以后)有明显增加的趋势,结合扫描电镜微观结构分析显示这是由于有机质生气量以及无机孔隙均有增加。本方法可以研究页岩热演化过程中不同赋存状态气体含量及微观孔隙结构的变化,为页岩气勘探开发提供了一种可参考的方法。  相似文献   

8.
Thermally altered pods of coal of very high rank have been observed in a high-volatile-bituminous coal seam in the eastern side of Eagle Mountain, Elk Valley Coalfield, British Columbia. Rank changes have been measured over a strike distance of 7.5 m from 1.24% to 7.1% Ro max, corresponding to a rank gradient of 0.78% Rom−1.Petrologically, unaltered to extremely altered vitrinite showing nongranular (basic) anisotropy, mosaic-textured liptinite and pyrolytic carbon are the most abundant components. The limited presence of mosaic on vitrinite is an indication that the coal seam may have been weathered prior to being heat-affected.Evidence points to localized temperatures as high as 1,000°C, which could have been caused by a lightning strike. The eastern side of Eagle Mountain has experienced higher temperatures than the western side, and it appears that the heat ‘front’ and zone of alteration have an irregular pattern, pointing to saturation of parts of the coal seam by water.Four types of pyrolytic carbon having distinct morphology, anisotrophy and optical path with increasing temperature were observed. Reflectance of pyrolytic carbon falls within the zone of heat-affected coals, whereas the optical path of heat-affected Seam 15 samples is different from that of fresh coal with increasing rank.Finally, the reflectance of vitrinite in heat-affected coal is higher than the reflectance of vitrinite in carbonaceous shale in the Seam 15 section.  相似文献   

9.
The quantitative maceral study of the Queen seam from Mailaram coalfield of Godavari valley has displayed alternate coal bands rich in vitrinite/liptinite or inertinite. The random vitrinite reflectance (Ro max. %) of these coals, from top part ranges from 0.50 to 0.64%. However, the bottom part of the seam has indicated lower reflectance, between 0.49 and 0.52%. Thus, the Queen seam, in general, has attained high volatile bituminous C rank. The study indicates that the depositional site has been a slowly sinking basin that witnessed alternate dry (oxidizing) and wet (reducing) spells. This subsequently caused fluctuation in water table of the basin and the formation of oxic and anaoxic moor condition, where accumulated vegetal resource transformed into mixed and fusic coal types in due course of time. Being high in liptinite and vitrinite contents and low mineral matter, the Queen seam of Mailaram coalfield has high economic potential.  相似文献   

10.
According to the adsorption-desorption characteristics of coalbed gas and analysis of various experimental data, this paper proposes that the generation of secondary biogenic gas (SBG) and its mixing of with the residual thermogenic gas at an early stage inevitably lead to secondary changes of the thermogenic gas and various geochemical additive effects. Experimental results also show that the fractionation of the carbon isotope of methane of coal core desorption gas changes very little; the δ13C1 value of the mixed gas of biogenic and thermogenic gases is between the δ13C1 values of the two “original” gases, and the value is determined by the carbon isotopic compositions and mixing proportions of the two “original” methanes. Therefore this paper proposes that the study on the secondary changes of the thermogenic gas and various additive effects is a new effective way to study and identify SBG. Herein, a systematic example of research on the coalbed gas (Huainan coalbed gas) is further conducted, revealing a series of secondary changes and additive effects, the main characteristics and markers of which are: (1) the contents of CO2 and heavy-hydrocarbons decrease significantly; (2) the content of CH4 increases and the gas becomes drier; (3) the δ13C and δD values of methane decrease significantly and tend to have biogenetic characteristics; and (4) the values of δ13C2 and δ13CCO2 grow higher. These isotopic values also change with the degradation degrees by microbes and mixing proportions of the two kinds of gases in different locations. There exists a negative correlation between the δ13C1 vs δ13CCO2 values. The △δ13CC2–C1 values obviously become higher. The distributions of the △δ13CCO2–C1 values are within certain limits and show regularity. There exist a positive correlation between the N2 versus Ar contents, and a negative correlation between the N2 versus CH4 contents, indicating the down forward infiltration of the surface water containing air. These are important markers of the generation and existence of SBG.  相似文献   

11.
利用四川盆地西南缘志留系龙马溪组最新钻井、露头资料及样品分析结果,从富有机质泥页岩区域分布、岩性、有机地球化学特征、储层特征、含气性、地层压力等方面,重点研究四川盆地西南缘龙马溪组页岩气形成条件与有利区优选。研究发现,五峰组—龙马溪组页岩具有有机质含量高(TOC 0.12%~6.49%,平均2.06%)、有效厚度大(普遍大于30m)、热演化程度高(Ro2.62%~2.80%)、脆性矿物含量高(56%~92%)、孔隙度较高(0.50%~11.36%,平均3.85%)等特征,钻井岩心现场解析气量最大值达3.38 m3/t、埋深适中(浅于3500m),这些条件均有利于页岩气的形成与富集。综合对比研究结果表明,云南云荞、木杆、高桥地区是四川盆地西南缘页岩气勘探的3个有利区。  相似文献   

12.
In this article, we describe the geological features of the Ediacaran (upper Sinian), lower Cambrian and lower Silurian shale intervals in the Upper Yangtze Platform, South China, and report on the gas potential of 53 samples from these major marine shale formations. Reflected light microscopy, total organic carbon (TOC) measurement, Rock-Eval, carbon isotope ratio analysis, thermovaporization gas chromatography (Tvap-GC), and open pyrolysis gas chromatography (open py-GC) were used to characterize the organic matter. Measured TOC in this research is normally >2% and averages 5%. TOC contents are roughly positively correlated with increasing geological age, i.e. lower Silurian shales exhibit generally lower TOC contents than lower Cambrian shales, which in turn commonly have lower TOC contents than Ediacaran shales. Kerogen has evolved to the metagenesis stage, which was demonstrated by the abundant pyrobitumen on microphotographs, the high calculated vitrinite reflectance (Ro = 3%) via bitumen reflectance (Rb), as well as δ13 C of gas (methane) inclusions. Pyrolysates from Tvap-GC and open py-GC are quantitatively low and only light hydrocarbons were detected. The lower Silurian shale generally exhibits higher generation of hydrocarbon than the lower Cambrian and Ediacaran shale. Cooles’ method and Claypool’s equations were used to reconstruct the original TOC and Rock-Eval parameters of these overmature samples. Excellent original hydrocarbon generation was revealed in that the original TOC (TOCo) is between 5% and 23%, and original S1+S2 (S1o+S2o) is ranging from 29 to 215 mg HC/g rock.  相似文献   

13.
A worldwide data set of more than 500 humic coals from the major coal-forming geological periods has been used to analyse the evolution in the remaining (Hydrogen Index, HI) and total (Quality Index, QI) generation potentials with increasing thermal maturity and the ‘effective oil window’ (‘oil expulsion window’). All samples describe HI and QI bands that are broad at low maturities and that gradually narrow with increasing maturity. The oil generation potential is completely exhausted at a vitrinite reflectance of 2.0–2.2%Ro or Tmax of 500–510 °C. The initial large variation in the generation potential is related to the original depositional conditions, particularly the degree of marine influence and the formation of hydrogen-enriched vitrinite, as suggested by increased sulphur and hydrogen contents. During initial thermal maturation the HI increases to a maximum value, HImax. Similarly, QI increases to a maximum value, QImax. This increase in HI and QI is related to the formation of an additional generation potential in the coal structure. The decline in QI with further maturation is indicating onset of initial oil expulsion, which precedes efficient expulsion. Liquid petroleum generation from humic coals is thus a complex, three-phase process: (i) onset of petroleum generation, (ii) petroleum build-up in the coal, and (iii) initial oil expulsion followed by efficient oil expulsion (corresponding to the effective oil window). Efficient oil expulsion is indicated by a decline in the Bitumen Index (BI) when plotted against vitrinite reflectance or Tmax. This means that in humic coals the vitrinite reflectance or Tmax values at which onset of petroleum generation occurs cannot be used to establish the start of the effective oil window. The start of the effective oil window occurs within the vitrinite reflectance range 0.85–1.05%Ro or Tmax range 440–455 °C and the oil window extends to 1.5–2.0%Ro or 470–510 °C. For general use, an effective oil window is proposed to occur from 0.85 to 1.7%Ro or from 440 to 490 °C. Specific ranges for HImax and the effective oil window can be defined for Cenozoic, Jurassic, Permian, and Carboniferous coals. Cenozoic coals reach the highest HImax values (220–370 mg HC/g TOC), and for the most oil-prone Cenozoic coals the effective oil window may possibly range from 0.65 to 2.0%Ro or 430 to 510 °C. In contrast, the most oil-prone Jurassic, Permian and Carboniferous coals reach the expulsion threshold at a vitrinite reflectance of 0.85–0.9%Ro or Tmax of 440–445 °C.  相似文献   

14.
This paper presents for the first time a petrological and geochemical study of coals from the Central Asturian Coal Basin (North Spain) of Carboniferous (Pennsylvanian), mainly of Moscovian, age. A paleoenvironmental approach was used, taking into account both petrographic and organic geochemical studies. Vitrinite reflectance (Rr) ranges from 0.5% to 2.5%, which indicates a high volatile bituminous to semianthracite and anthracite coal rank. The coal samples selected for paleoenvironmental reconstruction are located inside the oil–gas-prone phase, corresponding to the interval between the onset of oil generation and first gas generation and efficient expulsion of oil. This phase is represented by coals that have retained their hydrocarbon potential and also preserved biomarker information. Paleodepositional reconstruction based on maceral and petrographic indices points to a swamp environment with vitrinite-rich coal facies and variable mineral matter content. The gelification index (GI) and groundwater influence index (GWI) indicate strong gelification and wet conditions. The biomarkers exhibit a high pristane/phytane ratio, suggesting an increase in this ratio from diagenetic processes, and a high diterpanes ratio. This, in turn, would seem to indicate a high swamp water table and a humid climate. The maximum point of coal accumulation occurred during the regressive part of the Late Moscovian sequence and in the most humid climate described for this period of time in the well-known coal basins of Europe and North America.  相似文献   

15.
The northern Ordos Basin provides a favorable geological environment for the accumulation and development of coal measure gases (CMG). The hydrocarbon generation potential and reservoir systems of the coal measures have been studied based on data from experimental tests and production and exploration wells, respectively. Further, the coupled accumulation characteristics were determined. The results show that the source rocks are characterized by favorable hydrocarbon generation potential, high thermal evolution (Ro%?=?1.3–2.3%), and mainly type III kerogen. Coals, typically aggregated organic matter, with a huge hydrocarbon generation potential (avg. 89.11 mg/g) and total organic content (TOC) (avg. 65.52%), are predominantly involved in gaseous hydrocarbon generation. Shales with good TOC contents (avg. 2.36%) and large cumulative thicknesses have an important role in gaseous hydrocarbon generation. Coal seams, shale layers, and sandstone layers occur as variably interbedded deposits, which form a favorable environment for CMG coupled accumulation. The porosity and permeability are ranked as follows: sandstone?>?coal?>?shale, with significant stress sensitivity and anisotropy. Two continuous gas generation peaks occurred in the Late Jurassic and Late Cretaceous, with an abundant amount of coal-derived and thermogenic gas generation, respectively. Potential gas-bearing sandstone layers can be formed by gas migration via short distances from nearby coal seams and shale layers. Coupled accumulation of CMG occurred in three stages: (1) stacked and interbedded reservoirs formation stage; (2) gas generating and charging stage; and (3) coupled accumulation adjustment stage. Coalbed methane (CBM)–tight sandstone gas (TSG) assemblage is a favorable target for CMG accumulation and development.  相似文献   

16.
Low-mature gases and their resource potentiality   总被引:1,自引:0,他引:1  
In the 80’s of last century, based on the advances in natural gas exploration practice, the concepts of bio-thermocatalytic transitional-zone gas and early thermogenetic gas were proposed, and the lower limit Ro values for the formation and accumulation of thermogenetic natural gases of industrial importance have been extended to 0.3%–0.4%. In accordance with the two-stage model established on the basis of carbon isotope fractionation involved in the formation of coal-type natural gases, the upper limit Ro ...  相似文献   

17.
The objective of the study was to characterize changes of reflectance, reflectance anisotropy and reflectance indicating surface (RIS) shape of vitrinite, sporinite and semifusinite subjected to thermal treatment under inert conditions. Examination was performed on vitrinite, liptinite and inertinite concentrates prepared from channel samples of steam coal (Rr = 0.70%) and coking coal (Rr = 1.25%), collected from seam 405 of the Upper Silesian Coal Basin. The concentrates were heated at temperatures of 400–1200 °C for 1 h time in an argon atmosphere.All components examined in this study: vitrinite, sporinite and semifusinite as well as matrix of vitrinite and liptinite cokes, despite of rank of their parent coal, show, in general, the most important changes of reflectance value and optical anisotropy when heated at 500 °C, 800 °C (with the exception of bireflectance value of sporinite) and 1200 °C.After heating the steam coal at 1200 °C, the vitrinite and the semifusinite reveal similar reflectances, whereas the latter a slightly stronger anisotropy. Sporinite and matrix of liptinite coke have lower reflectances but anisotropy (Rbi and Ram values) similar to those observed for vitrinite and semifusinite. However, at 1000 °C sporinite and matrix of liptinite coke have the highest reflectivity of the studied components. The RIS at 1200 °C is the same for all components.The optical properties of the three macerals in the coking coal become similar after heating at 1000 °C. Coke obtained at 1200 °C did not contain distinguishable vitrinite grains. At 1200 °C semifusinite and vitrinite coke matrix have highest Rr values among the examined components. Maximum reflectance (Rmax) reach similar values for vitrinite and sporinite, slightly lower for semifusinite. Matrix of liptinite coke and matrix of vitrinite coke have considerably stronger anisotropy (Rbi and Ram values) than other components. RIS at 1200 °C is also similar for all components.  相似文献   

18.
Levels of organic maturity of Mesozoic and Tertiary sequences outcropping in the Central Apennines have been established, using vitrinite reflectance techniques, the Thermal Alteration Index and fluorescence colours of organic matter dispersed in sediments. These results provide new constraints throughout the Meso-Cenozoic evolution of this crustal sector. In exploration geology, vitrinite reflectance provides data on hydrocarbon maturation by constraining organic matter maturity. In sedimentary basin modelling, it is adopted to define the palaeothermal regime. Vitrinite reflectance (Ro) also provides information on the burial history of sedimentary basins and may be employed to estimate tectonic uplift and erosion rates. Thermal Alteration Index (TAI) and fluorescence colour values can be correlated with Ro and may be used to estimate the degree of maturation when vitrinite is absent. Samples derived from the Sabini and Tiburtini Mts, in slope facies between the Latium–Abruzzi carbonate Platform and the Umbria–Marche pelagic Basin; from the Simbruini and Ernici Mts, in carbonate Platform facies, and from upper Miocene turbiditic deposits outcropping between the Olevano–Antrodoco Une, towards the West, and the Marsica slope facies, towards the East. Both the pre-terrigenous Meso-Cenozoic sequences show a low grade of organic maturity: the Sabini and Tiburtini Mts show Ro values that are less than 0.4%, and the Simbruini–Ernici Range show Ro values that range between 0.5% and 0.65%. Field analysis indicates that the cause of these low maturity levels is that thick sequences of turbidites were never deposited during the Neogene evolution of the Apennine thrust belt. Moreover, Upper Miocene turbiditic deposits also show low maturity levels, with Ro values that are less than 0.5%, indicating that these deposits were never overthrusted by huge volumes of rocks, during the chain building. The slight increase in the maturity level recorded in the Marsica area may be related to local heating along shear zones in areas of strike-slip tectonics.  相似文献   

19.
The Huanghebei Coalfield, one of the coal production bases in North China, was considered as a coalfield without coal‐bed methane (CBM) during past decades. In recent years, however, CBM has been discovered in coal‐bearing successions. In order to understand the CBM geological characteristics and accumulation process in this area, fifteen coal samples were collected and analyzed with respect to coal maceral and reflectance. The result shows that the gas distribution is uneven and the content varies in different areas even for the same coal bed. The storage of CBM is affected by geological factors such as burial depth, geological structures, and magmatic intrusion, among which the former two are more important in the formation of CBM. Deep burial of coal beds with the presence of cap‐rock mudstone can seal CBM. The CBM is also accumulated and preserved at the place where normal faults are distributed. Magmatic intrusion causes contact metamorphism and controls the CBM formation by heating the coal‐bearing successions. The obtained data indicate the geological conditions in northeastern Zhaoguan Mine are preferable for CBM formation and conservation; recent exploration estimates the CBM geological reserves up to 282.16 Mm3 and average of reserve abundance at 0.1662 × 108 m3 km?2. The Changqing Mine is a potential prospect in terms of CBM exploration since its geological conditions (structures and burial depth) are similar to the Zhaoguan Mine and its cap rock is even better.  相似文献   

20.
Natural gases and associated condensate oils from the Zhongba gas field in the western Sichuan Basin, China were investigated for gas genetic types and origin of H2S by integrating gaseous and light hydrocarbon geochemistry, formation water compositions, S isotopes (δ34S) and geological data. There are two types of natural gas accumulations in the studied area. Gases from the third member of the Middle Triassic Leikoupo Formation (T2l3) are reservoired in a marine carbonate sequence and are characterized by high gas dryness, high H2S and CO2 contents, slightly heavy C isotopic values of CH4 and widely variable C isotopic values of wet gases. They are highly mature thermogenic gases mainly derived from the Permian type II kerogens mixed with a small proportion of the Triassic coal-type gases. Gases from the second member of the Upper Triassic Xujiahe Formation (T3x2) are reservoired in continental sandstones and characterized by low gas dryness, free of H2S, slightly light C isotopic values of CH4, and heavy and less variable C isotopic values of wet gases. They are coal-type gases derived from coal in the Triassic Xujiahe Formation.The H2S from the Leikoupo Formation is most likely formed by thermochemical SO4 reduction (TSR) even though other possibilities cannot be fully ruled out. The proposed TSR origin of H2S is supported by geochemical compositions and geological interpretations. The reservoir in the Leikoupo Formation is dolomite dominated carbonate that contains gypsum and anhydrite. Petroleum compounds dissolved in water react with aqueous SO4 species, which are derived from the dissolution of anhydrite. Burial history analysis reveals that from the temperature at which TSR occurred it was in the Late Jurassic to Early Cretaceous and TSR ceased due to uplift and cooling thereafter. TSR alteration is incomplete and mainly occurs in wet gas components as indicated by near constant CH4 δ13C values, wide range variations of ethane, propane and butane δ13C values, and moderately high gas dryness. The δ34S values in SO4, elemental S and H2S fall within the fractionation scope of TSR-derived H2S. High organo-S compound concentrations together with the occurrence of 2-thiaadamantanes in the T2l reservoir provide supplementary evidence for TSR related alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号