首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
利用稳定同位素大气水平衡模式,模拟了2012年全球大气水汽和降水中δ18O的空间分布和时间变化以及降水中δ18O与降水量、温度之间的关系.其目的在于检验稳定同位素大气水平衡模式模拟水稳定同位素循环的能力,揭示稳定同位素效应产生的主要原因,改善对水循环中稳定同位素效应的理解和认识.模拟结果很好地再现了全球降水中δ18O的纬度效应、大陆效应和季节差异.在水循环过程中,引起降水中稳定同位素空间变化和时间变化的原因与蒸发对水汽同位素的富集作用、降水对水汽同位素的贫化作用、凝结温度对水汽同位素贫化程度的影响有关.模拟的降水量效应主要出现在中低纬度海洋和季风区,这种分布形势与δ18O季节差和降水量季节差的分布相对应;模拟的温度效应主要出现在中高纬度陆地,这种分布形势与降水中δ18O季节差的分布形势相对应.在一些低纬度地区,伴随强降水量效应的出现,温度效应也同时出现.  相似文献   

2.
北美洲降水中稳定同位素的时空分布以及与ENSO的关系   总被引:4,自引:1,他引:3  
分析了北美洲降水中δ18O的时空分布特征以及与温度、降水量、ENSO的关系.结果表明:无论是在陆地还是在海洋,北美降水中平均δ18O的纬向分布是非常显著的.随着纬度的升高,降水中δ18O迅速减小.整个北美大陆均存在温度效应,并随纬度的增加而加强.不同季节温度效应分布的差异仅表现在其范围和强度的变化上.降水量效应主要出现在低纬度海洋、中低纬度太平洋的东海岸和湾流的西北海岸.在内陆区,降水量效应不存在.不同季节降水量效应分布的差异也仅表现在其范围和强度的变化上.在大陆内部和高纬度地区,对应显著的温度效应,δ18O的季节差异Δδ18O具有较大的正值;在低纬度海洋,对应显著的降水量效应,Δδ18O较小或为负值;在相同的纬度,陆地上的Δδ18O明显大于海洋.代表大陆性特征的渥太华站和代表海洋性特征的中途岛站降水中δ18O与Ni o-4的SST具有显著的正相关关系,其中,尤以5月的δ18O与Ni o-4的SST的连续相关关系最显著,表明ENSO事件的强信号对该时期陆地和海洋降水中稳定同位素的变化具有重要影响.  相似文献   

3.
广州大气降水中δ^18O与气象要素及季风活动之间的关系   总被引:1,自引:0,他引:1  
根据2004年5月至2005年6月广州日大气降水中δ18O资料和GNIP提供的广州、香港多年月平均降水中δ D、δ18O资料, 研究了天气尺度下广州大气降水中δ18O与降水量、水汽压、气温和露点温度等气象要素之间的关系, 并就季风活动对本地降水中δ18O的影响作了初步分析. 结果表明: 在天气尺度下, 广州大气降水中δ18O与降水量、水汽压、气温和露点温度均存在显著的负相关关系, 同温度露点差存在显著的正相关关系, 表明广州大气降水中δ18O变化具有显著的降水量效应和湿度效应. 夏季风期间季风活动对天气尺度下降水中δ18O的变化具有显著影响, 使得天气尺度下大气降水中δ18O变化有时并不遵循降水量效应. 从多年气候平均状况来看, 广州、香港降水中δ18O的季节变化同亚洲夏季风的爆发和推进演变过程较为相似, 在夏季风活跃的时期, 大气降水中δ18O值也较低, 反映了季风降水再循环活动对降水中稳定同位素含量具有显著影响.  相似文献   

4.
不同时间尺度下的稳定同位素变化   总被引:7,自引:4,他引:7  
根据北半球IAEA/WM0监测网12个具有长序列站点的资料,分析了在不同时间尺度下降水中δ^18O的时空变化特征,被选出的12个取样站都存在显的降水量效应,δ^18O/降水量变化率的大小与降水量存在一定程度的反比关系,降水量效应不仅与产生降水的强对流现象相联系,而且与降水量的季节分布有关,在年尺度下,12个站中的11个站具有一定程度的温度效应,相对而言,位于中低纬度取样站的平均δ^18O/平均温度变化率大于中高纬度,与单站相比,合计的δ^18O和温度之间的正相关关系要显得多,说明δ^18O的年际变化主要受大尺度气象条件的制约且反映大尺度空间的环境和气候变化。分析表明,12个站合计的年加权平均δ^18O和合计的年平均温度的逐年变化具有较好的一致性。  相似文献   

5.
利用稳定同位素大气水平衡模式(iAWBM),在一个水平衡和水稳定同位素平衡的框架下以及在相同的气象驱动下,模拟在不同的下垫面蒸发和不同的云中凝结分馏条件下降水中稳定同位素效应的空间分布特征,并通过与GNIP实测数据的比较以及模拟试验结果之间的相互比较,揭示云中的稳定同位素分馏和从下垫面蒸发的水汽同位素δe对降水中稳定同位素变化的可能影响,增进对全球水循环中稳定同位素效应的理解和认识。结果显示:iAWBM的4个模拟试验均很好地再现了全球降水中平均δ18O和平均δ18O季节差的空间分布特征;很好地模拟了降水同位素的温度效应、降水量效应的分布特点以及全球的大气水线MWL;比较而言,平衡分馏假设下模拟的全球降水中平均δ18O的空间分布与根据GNIP数据得到的实际空间分布以及模拟的全球MWL与实际MWL最接近,且模拟效果亦最好;动力分馏假设下模拟的降水中δ18O平均季节差的空间分布与根据GNIP数据得到的实际分布之间的相关程度较好,且拟合水平明显提高;在动力分馏和δe季节性的假设下,iAWBM再现全球δ18O-T和δ18O-P相关关系空间分布的能力较强。  相似文献   

6.
湿度效应及其对降水中δ18O季节分布的影响   总被引:6,自引:3,他引:3  
提出了湿度效应的概念,即降水中稳定同位素比率与大气的温度露点差ΔTd存在显著的正相关关系.对两个气候特征完全不同的取样站乌鲁木齐和昆明降水中δ18O与温度露点差之间的关系进行了分析,尽管两站的δ18O与ΔTd的季节变化存在差异,但它们的湿度效应是显著的.利用稳定同位素动力分馏模型并根据500hPa月平均温度的季节分布对昆明站云中凝结物中δ18O进行了模拟,模拟的月平均δ18O与月平均温度的变化具有非常好的一致性,说明昆明站云中凝结物中的氧稳定同位素具有温度效应.这个结果与地面降水中氧稳定同位素的降水量效应截然不同.昆明站降水中δ18O一定程度上指示大气的干湿状况,同时也间接地指示降水量的多寡或季风的强弱.湿度效应的存在,影响降落雨滴中稳定同位素蒸发富集的强度以及雨滴与大气之间稳定同位素物质迁移的方向.它不仅改变降水中稳定同位素比率的大小,也改变其季节分布的特点.  相似文献   

7.
利用稳定同位素大气水平衡模式(iAWBM)的模拟数据,分析了在不同的下垫面蒸发和不同的凝结分馏条件下降水中δ18O的时间变化、降水量效应、负温度效应和大气水线。并通过与长沙站5年实测数据的比较以及模拟试验结果之间的相互比较,揭示下垫面蒸发水汽中稳定同位素的季节性变化和云中稳定同位素分馏对降水中稳定同位素变化的可能影响,增进对季风区水稳定同位素效应的理解和认识。iAWBM给出的4个模拟试验均很好地再现了监测站降水中δ18O的时间变化,模拟出季风区降水中稳定同位素在暖半年被贫化、在冷半年被富集的基本特点。与平衡分馏相比,动力分馏下降水中稳定同位素被贫化的程度加强、季节差和离散程度减小;由下垫面蒸发水汽中稳定同位素δe季节性变化所引起的降水中稳定同位素的变化在不同季节完全相反:在长沙,暖半年降水中δ18O更低,冷半年降水中δ18O更高,使得降水中稳定同位素季节差和离散程度增大。4个模拟试验均很好地再现了季风区的降水量效应和负温度效应。与平衡分馏相比,动力分馏下模拟的降水量效应和负温度效应的斜率相对较小;δe季节性变化导致模拟的降水量效应和负温度效应的斜率增大。利用iAWBM,模拟出季风区湿热气候条件下的MWL。动力分馏以及δe季节变化均使模拟得到的MWL的斜率和截距减小。  相似文献   

8.
利用稳定同位素大气水平衡模式(i AWBM)模拟了季风区长沙站大气水汽和降水中δ18O的时间变化,并与实际监测结果进行比较,其目的在于检验i AWBM在模拟季风区大气中水稳定同位素循环方面的能力,揭示影响水稳定同位素变化的主要原因,改善对季风区水循环中稳定同位素效应的理解和认识.模拟结果很好地再现了长沙降水中δ18O的季节变化,季风区降水中稳定同位素雨季被贫化旱季被富集的基本特点以及存在的显著降水量效应均被模拟出.在2010年1月-2012年12月,模拟的冬季风盛行期间的加权平均δ18O为-6.58‰,与该时段的实际监测值相当;模拟的夏季风盛行期间的加权平均δ18O为-9.58‰,低于该时段的实际监测值.i AWBM主要利用大气的可降水量、水汽通量、蒸发量和降水量4个驱动变量来模拟水稳定同位素的循环.其中,可降水量对水稳定同位素变化的贡献被包含在其他3个驱动变量中.水汽通量对水汽同位素变化的贡献具有富集和贫化的双重作用,蒸发量和降水量对水汽同位素变化的贡献分别具有富集和贫化的作用.在对水汽同位素起富集作用的两个因子中,水汽通量的平均同位素贡献为1.66‰,贡献率为63.97%;蒸发量的平均同位素贡献为0.91‰,贡献率为36.03%,水汽通量的同位素贡献起主要作用.在对水汽同位素起贫化作用的两个因子中,水汽通量的平均同位素贡献为-1.40‰,贡献率为53.47%;降水量的平均同位素贡献为-1.09‰,贡献率为46.53%,水汽通量和降水量的同位素贡献大致相当.  相似文献   

9.
青藏高原及其毗邻地区降水中稳定同位素成分的经向变化   总被引:8,自引:6,他引:2  
分析了从南亚经青藏高原到毗邻的我国西北地区一个经向剖面上降水中稳定同位素成分的时空分布以及与温度、降水量、水汽来源的关系.在青藏高原南部和南亚,温度效应均不存在.在所统计的站点中,大约一半的取样站具有降水量效应,但降水中稳定同位素比率的季节变化并不与降水量强度的变化相一致.在季节变化中,δ18O的最大值往往出现在雨季到来之前的春季,最小值则出现在雨季后期或雨季结束的秋季.在青藏高原中、北部和毗邻的我国西北地区,各取样站均具有显著的温度效应,且降水中δ18O的季节变化与温度的季节变化几乎一致.说明在这些地区,温度是制约降水中稳定同位素变化的主要影响因子.由于来自源区水汽的直接凝结,南亚地区降水中平均稳定同位素成分相对较重.稳定同位素比率的季节差异较小;从青藏高原南坡的坚景到唐古拉山,由于翻越喜马拉雅山时水汽受强烈的洗涤作用,降水中稳定同位素比率急剧减小,达经向分布中δ18O的最低值段;从31°N到青藏高原北部,降水中稳定同位素比率随纬度而增大,并最终过渡到与我国西北地区降水中稳定同位素比率的变化型相类似.  相似文献   

10.
全球降水中氢氧稳定同位素GCM模拟空间分布的比较   总被引:1,自引:0,他引:1  
利用大气环流模式模拟降水中氢氧稳定同位素可以深入了解水循环过程中水稳定同位素的迁移变化规律并弥补实测数据在空间和时间方面的不连续性。利用10个引入水稳定同位素循环的GCM(General Circulation Models)模拟数据,分析了全球降水中稳定同位素效应的空间分布特征,对不同模式的模拟结果之间以及模拟结果与全球降水同位素监测网络(GNIP)的实际监测结果之间进行了比较,旨在对稳定同位素大气环流模式模拟结果的有效性进行评价,改善对水循环中水稳定同位素效应的理解和认识。结果显示,在δ~(18)O的全球空间分布模拟方面,iso GSM,ECHAM4,LMDZ4和Had AM3模拟效果较佳;在δ~(18)O的季节差的空间分布模拟方面各模式模拟效果总体较好,仅Had AM3模拟效果稍差;在δ~(18)O与气温相关关系的空间分布模拟方面,iso GSM,GISS E-F,ECHAM4,GISS E-N和LMDZ4模拟结果与实测较匹配;在δ~(18)O与降水量相关关系的空间分布模拟方面LMDZ4,iso GSM,GISS E-F,ECHAM4和MUGCM模拟能力较强;在全球大气降水线模拟方面GISS E-F,iso GSM和GISS E-N优势明显。  相似文献   

11.
黑河上游河水中δ18O季节变化特征及其影响因素研究   总被引:2,自引:1,他引:1  
根据2006年5月至2007年5月间在黑河上游莺落峡、祁连和扎麻什3个水文站等地点所采集的河水与降水样品,重点分析了其中的δ18O变化,揭示出黑河干流上游山区河水中δ18O具有夏季高冬季低的季节变化特征,这种变化特征主要受控于降水中δ18O的变化.祁连水文站河水中δ18O月平均值与月平均流量乘积和该站降水中δ18O加权月平均值与月降水量乘积之间存在着高度相关性,从同位素示踪的角度说明降水是黑河干流上游山区径流的主要补给来源.进一步的研究表明,黑河上游祁连山区降水中δ18O变化存在明显的"海拔效应",并且3个水文站点河水中δ18O值均低于其降水中δ18O值,这表明上游径流主要形成于高海拔山区.根据黑河出山口莺落峡水文站河水中δ18O值以及上游山区降水中δ18O的"海拔效应",估计黑河干流出山径流主要形成于海拔3 350~4 600 m之间的高山地区,该高度区域对应的植被带主要为亚高山灌丛草甸和高山寒漠草甸.  相似文献   

12.
黑河流域不同水体中δ18O的变化   总被引:4,自引:3,他引:4       下载免费PDF全文
水资源短缺和合理利用是干旱半干旱区黑河流域面临的一个严峻问题,解决问题的关键是要深入了解水循环机理,而分析不同水体中环境同位素变化特征是应用同位素示踪技术研究水循环机理所必须的前提。根据测得的黑河流域降水、河水和地下水中δ18O,分析了取样期间不同水样δ18O的变化,揭示了降水中δ18O存在显著的温度效应、季节效应、高程效应以及与降水量的正相关关系;河水中δ18O的时空变化特征,即出山口地区河水中δ18O统计值低于山区和盆地,山区河水中δ18O的时间分布与大气降水一致,出山口河水中δ18O时间分布与大气降水相反,河水中δ18O沿黑河流程存在显著递增趋势;地下水中δ18O在张掖变化幅度较大,在临泽较均一且9月份普遍高于6月份,而在高台则分为显著的2组,较高的一组9月份普遍低于6月份。研究了不同因素对水循环过程中δ18O变化的影响及相互作用,为同位素技术在黑河流域水循环研究中的应用提供科学依据。  相似文献   

13.
东亚水循环中水稳定同位素的GCM模拟和相互比较   总被引:4,自引:1,他引:3  
利用引入稳定同位素循环的ECHAM4、GISS E和HadCM3模式的模拟,对东亚降水中年平均δD和过量氘d的空间分布以及大气水线(MWL)进行了分析.根据模拟的空间分布,降水同位素在很大程度上反映不同气团的地理背景以及它们之间的相互作用,模拟结果很好地再现了由GNIP实测资料得到的降水稳定同位素的纬度效应、大陆效应和...  相似文献   

14.
大气降水δ18O值的变化是一个蒸发和凝结的物理过程,与纬度、海拔、距海岸的距离、季节和降水量等因素有关,具有规律变化的特征。根据黄河流域上中下游地区取得的降水同位素数据和降水气象资料,分析了该区域降水中δ18O的时空变化特征。研究了流域上中下游降水中稳定同位素与温度和降水量的关系,揭示了流域降水中稳定同位素的变化规律。结果表明,流域上游和中下游降水中稳定同位素具有不同的季节变化特征,上游地区表现为夏季富集、冬季贫化,中游和下游则与之相反;在空间变化上,流域降水稳定同位素自上而下整体趋于逐渐贫化,波动明显,存在显著的极值区;黄河流域上、中下游具有不同的同位素过程,上游地区受海拔效应和内陆循环影响显著,而中下游则主要受季风系统和局地因素的影响。局地大气水线以及d与大气水汽压关系的分析表明,流域降水在从云层底部降落到地面的过程中,具有明显的二次蒸发现象,并伴随着同位素的分馏。  相似文献   

15.
将稳定同位素效应引入CLM(Community Land Model),并对巴西马瑙斯站在平衡年的稳定水同位素的逐日变化进行模拟和分析.结果表明: 降水、水汽和地表径流中δ18O存在明显的季节变化,并与相应的水量存在显著的负相关关系,但凝结物中δ18O与地面凝结量存在显著的正相关关系,蒸发水汽中δ18O与蒸发量之间无显著的相关关系.受土壤贮水削峰功能的影响,表层土壤和根区水中δ18O的季节变化全无.植被层蒸发水汽中稳定同位素的丰度与大气的干湿程度存在密切联系: 当降水量少时,大气干燥,植被层的蒸发较少,植被蒸发中δ18O较高;当降水量较大时,空气湿润,植被层的蒸发量较大,蒸发中δ18O则较低.植被蒸腾中δ18O的变化与源区水体中δ18O的变化保持一致,尤其是与根区水中的δ18O.由于地下径流直接源自根区水的补充,因此,地下径流中δ18O等于根区水中的δ18O.模拟结果还显示,降水MWL (大气水线)的梯度项和常数项均比全球平均MWL略偏小.尽管主要来自降水的贡献,但地表径流和植被层水体的MWLs与降水MWL存在较大的差异,这一方面与两类水体在蒸发过程中的稳定同位素的富集作用有关,另一方面与CLM模拟的水量有关.大气水汽线与降水的MWL的梯度值相近,说明大气水汽与降水近似处于稳定同位素平衡状态.另外,模拟的地面的凝结线与植被层的凝结线均与全球大气水线相近,且具有非常高相关程度,说明CLM的模拟是合理的.  相似文献   

16.
重要海-气-天文事件与新德里季风降水中δ18O的关系   总被引:5,自引:2,他引:3  
通过分析西南季风区印度新德里站夏季降水资料发现, 降水中δ18O变化趋势大致与太阳黑子变化趋势一致, 是温度效应的具体体现. 温度和降水的耦合导致温度和降水量的比值(T/P)与δ18O具有显著的正相关关系; ENSO与δ18O的遥相关关系是热带印度洋和太平洋海气耦合作用的结果, 是降水量效应的反映. 在500 hPa高度, 云滴的蒸发以及与下层向上层传输的季风水汽之间发生稳定同位素交换, 可能是导致500 hPa高度风的速率与δ18O正相关的主要原因, 温度效应及降水量效应对这一关系的形成起促进作用.  相似文献   

17.
锡林河流域地表水和浅层地下水的稳定同位素研究   总被引:6,自引:3,他引:3  
2006年4—9月,在从锡林河源头沿河流进行地表水和地下水同位素样品采集和分析的基础上,利用全球降水同位素监测网(GNIP)包头站的大气降水稳定同位素资料,结合锡林河流域的气象和水文资料,对锡林河流域大气降水、地表水和地下水稳定同位素进行了研究.结果表明:地下水中δ18O和δD值分别集中在-11.7‰~-14.9‰和-80‰~-89.5‰范围内,δ18O沿地下水流向有增加的趋势,大部分地下水中δ18O的季节波动性不大;河流干流δ18O和δD的年算术平均值从源区的-12.8‰和-94.5‰到入锡林河水库处的-10.0‰和-79.3‰,差值分别约为3‰和15‰.河水中的δ18O值沿流程增加而增大的现象可归结为受含有较高δ18O值的地下水补给作用和河水的蒸发作用的共同影响,其中对δ18O蒸发富集的研究显示,蒸发引起δ18O富集值为1‰.通过地下水线(GWL)和地表水线(SWL)及区域大气降水线(LMWL)的对比分析发现,在径流季节,降水对地表水的贡献小,地下水是地表水主要的补给源,地表径流基本是地下水的排泄.  相似文献   

18.
青藏高原西部降水中δ18O变化特征   总被引:7,自引:3,他引:4  
根据青藏高原西部阿里地区狮泉河气象站和改则气象站取得的降水水样和降水气象资料, 分析了该区域降水中δ18O的变化特征.结果表明: 在长时间尺度上, 狮泉河和改则两站点历次降水中δ18O和气温之间都有较好的正相关, 尤其是降水中月平均δ18O与月平均降水温度之间相关性更加显著, 降水中δ18O主要受"温度效应"的影响.而在其中的某一年, 这种相关性不是很明显, 而且在降水中δ18O和降水时温度之间的相关性很好的年份, 在7月底或8月份初短期内降水中δ18O几乎都有一个突然降低的事件, 这可能与印度季风水汽输送有关.与狮泉河站相比, 在改则降水中δ18O和气温二者之间这种相关性相对较弱, 这与改则当地内陆水循环特别是强烈蒸发引起的降水有关.  相似文献   

19.
南京大气降水氧同位素变化及水汽来源分析   总被引:7,自引:2,他引:5       下载免费PDF全文
王涛  张洁茹  刘笑  姚龙 《水文》2013,33(4):25-31
研究结论有助于了解南京地区的水汽输送以及水汽循环过程。在全球大气降水同位素观测网(GNIP)南京站点的大气降水氢氧同位素资料基础上,并结合相关气象资料,分析了南京地区大气降水稳定同位素时间分布特征及其影响因素,并建立了局地大气降水线方程。结果表明:南京地区大气降水中δ18O春季最为富集、夏季最为贫化;年尺度下降水δ18O与温度之间不存在正相关,而与降水量之间存在负相关;季节尺度下,冬季的δ18O与温度、降水量的关系与年尺度结果相反,皆呈现出正相关关系。采用HYSPLIT模型对站点水汽来源进行追踪,并结合季风活动分析得出:全年中南京大气降水δ18O变化主要受亚洲夏、冬季风及其带来的水汽影响,在季风交替时节(春、秋季)虽降水源于局地蒸发水汽,但仍为季风带来降水的影响。  相似文献   

20.
德令哈降水中δ~(18)O年际变化与水汽输送   总被引:1,自引:0,他引:1  
根据德令哈地区1992—2001年的降水中δ18O数据及降水时刻所记录的相关气象参数,并对比中国气象局气象资料和NCEP/NCAR格点气象数据,利用相关、回归等分析方法分别对该地区降水中δ18O与温度、降水量以及水汽通量之间的关系进行分析,并讨论了降水量与大气环流的变化关系,揭示了影响该地区降水中δ18O变化的气象因素,特别是与水汽来源之间的关系。研究结果表明,德令哈降水中δ18O年际变化表现出一定程度的“温度效应”,但与温度的相关性要低于季节尺度。不同类型汽团的水汽输送是影响降水中δ18O年际变化的另一个重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号