首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
探索利用高光谱数据的岩性填图新方法是遥感地质应用领域的重要需求之一。本文运用随机森林方法和EO-1Hyperion高光谱数据,对新疆塔里木西北部柯坪地区的局部区域进行岩性分类,并对相关问题进行分析。分别利用光谱特征以及加入光谱一阶导数特征进行岩性分类,并对不同特征对岩性分类的重要性进行分析,同时与现有的基于光谱角制图方法(SAM)进行比较。结果表明,与SAM方法相比,随机森林方法得到了更高精度的岩性分类结果,是一种有效可行的岩性分类方法。根据特征重要性的排序,蓝绿光波段、短波红外波段以及相应的一阶导数特征对研究区Hyperion数据的沉积岩岩性分类贡献更大。  相似文献   

2.
The study was carried out for Indian capital city Delhi using Hyperion sensor onboard EO-1 satellite of NASA. After MODTRAN-4 based atmospheric correction, MNF, PPI and n-D visualizer were applied and endmembers of 11 LCLU classes were derived which were employed in classification of LULC. To incur better classification accuracy, a comparative study was also carried out to evaluate the potential of three classifier algorithms namely Random Forest (RF), Support Vector Machines (SVM) and Spectral Angle Mapper (SAM). The results of this study reemphasize the utility of satellite borne hyperspectral data to extract endmembers and also to delineate the potential of random forest as expert classifier to assess land cover with higher classification accuracy that outperformed the SVM by 19% and SAM by 27% in overall accuracy. This research work contributes positively to the issue of land cover classification through exploration of hyperspectral endmembers. The comparison of classification algorithms’ performance is valuable for decision makers to choose better classifier for more accurate information extraction.  相似文献   

3.
Semi-detailed gravity investigations were carried out over an area of approximately 2750 sq km with maximum N-S and E-W extents of 55 and 50 km respectively in the Gadag region in the Dharwar craton with a view to obtain a clearer perception of the structural configuration of the region. From qualitative analysis of the gravity data, several tectonic features are inferred: the high density Gadag schist belt is characterized by a gravity high and occurs in two discontinuous segments — the main N-S trending segment, and its thinner NW-SE trending extension, the two separated by a NE-SW trending deep seated fault. While the N-S trend of the Gadag schist belt is bounded on its east by the NW-SE trending Chitradurga thrust fault and on its west by another major NNWSSE trending fault, the NW-SE extension is likewise bounded by two other NW-SE major faults. Quantitative evaluation from forward modeling/inversion of five profiles in the region, assuming a density contrast of 0.29gm/cc of the anomalous schistose body with the gneissic host rocks indicated a synclinal structure plunging to the southeast along its axis for the Gadag schist belt. The maximum width and depth from surface of the schist belt are 22 km and 5.6 km respectively.  相似文献   

4.
Hyperion高光谱遥感在青海东昆仑东大滩地区找矿中的应用   总被引:5,自引:2,他引:3  
利用ENVI软件,对青海东昆仑东大滩地区Hyperion高光谱数据进行处理后,运用光谱角填图法、波谱特征拟合法及匹配滤波法,对高光谱数据进行了矿物蚀变信息的提取,获得了东大滩地区矿物蚀变图像。在磨石沟二长花岗岩、花岗闪长岩岩体外围的南东侧,存在着硅酸盐、碳酸盐、三价铁等矿物蚀变。野外对蚀变异常地段进行验证,野外观察的矿物蚀变异常与遥感图像显示的蚀变异常区域基本吻合;结合区域地质背景与成矿条件,进行了区内成矿预测与优选靶区圈定,并发现了东大滩铜矿化点,说明高光谱遥感能为找矿提供准确且可靠的信息。  相似文献   

5.
基于改进的SVM技术和高光谱遥感的标准矿物定量计算   总被引:2,自引:0,他引:2  
基于支持向量机(SVM)统计理论,并对其从核函数构造方面进行改进,通过主成分分析、包络线去除、光谱导数变换等对原始Hyperion高光谱数据进行降维、变换与特征提取,分析比较了这些变换后不同的回归效果,并将其应用在内蒙古霍林郭勒地区岩石中氧化物质量分数的反演中。同时,鉴于某些重要矿物本身并没有明显的特征光谱曲线,提出一种新的矿物定量方法。首先,基于高光谱遥感数据,利用改进的SVM回归技术反演矿物中的化学成分,然后通过标准矿物计算(CIPW)推导岩石中标准矿物的质量分数。研究结果表明:基于改进核函数后的SVM回归精度有所提高,其中导数变换后的反演精度达74.87%,比原始光谱反演精度提高了4.11%。CIPW应用于高光谱遥感地质填图效果良好,为岩性鉴定和评价提供了科学依据。  相似文献   

6.
植被覆盖区卫星高光谱遥感岩性分类   总被引:1,自引:0,他引:1  
植被高覆盖区岩石和土壤在遥感图像上表现为弱信息、小目标,如何利用卫星高光谱遥感提取岩性弱信息是目前遥感地质应用中的最大挑战之一。以黑龙江呼玛地区为例,选择美国EO-1卫星Hyperion高光谱数据。由于植被与下伏岩石-土壤的光谱混合,分别计算研究区含土壤因子和不含土壤因子的植被指数,并对两类不同的植被指数进行主成分分析,以此分离植被和岩石-土壤组分。在含土壤因子植被指数主成分分析的二维组分散点图上,明显区分出背景植被与异常岩石-土壤组分,证实了植被与岩石-土壤组分经主成分分析分离的效果。同时在不添加土壤因子植被指数的分析中,明显区分出植被覆盖信息。通过对实验区典型岩石进行野外光谱测试,然后对光谱进行连续统去除处理,将其作为参考光谱,与分离后的岩石-土壤光谱进行光谱特征拟合(SFF),从而成功地识别出研究区内不同岩石类型,特别是玄武岩、流纹岩、砂砾岩、安山质凝灰岩、大理岩和石英片岩识别效果较好。根据研究区内不同岩石地层单元内岩石组合特征,通过分离后的组分合成图像,成功地实现了岩性分类。与已知地质图叠加,证实通过卫星高光谱数据提取的不同岩石类型颜色边界与地质图岩性界线吻合较好。结果表明:通过植被与岩石-土壤光谱组分分离,结合高光谱遥感的光谱特征拟合,能够识别不同的岩石类型,实现植被覆盖区岩性分类。  相似文献   

7.
We present a mineral systems approach to predictive mapping of orogenic gold prospectivity in the Giyani greenstone belt (GGB) by using layers of spatial evidence representing district-scale processes that are critical to orogenic gold mineralization, namely (a) source of metals/fluids, (b) active pathways, (c) drivers of fluid flow and (d) metal deposition. To demonstrate that the quality of a predictive map of mineral prospectivity is a function of the quality of the maps used as sources of spatial evidence, we created two sets of prospectivity maps — one using an old lithologic map and another using an updated lithological map as two separate sources of spatial evidence for source of metals/fluids, drivers of fluid flow and metal deposition. We also demonstrate the importance of using spatially-coherent (or geologically-consistent) deposit occurrences in data-driven predictive mapping of mineral prospectivity. The best predictive orogenic gold prospectivity map obtained in this study is the one that made use of spatial evidence from the updated lithological map and spatially-coherent orogenic gold occurrences. This map predicts 20% of the GGB to be prospective for orogenic gold, with 89% goodness-of-fit between spatially-coherent inactive orogenic gold mines and individual layers of spatial evidence and 89% prediction-rate against spatially-coherent orogenic gold prospects. In comparison, the predictive gold prospectivity map obtained by using spatial evidence from the old lithological map and all gold occurrences has 80% goodness-of-fit but only 63% prediction-rate. These results mean that the prospectivity map based on spatially-coherent gold occurrences and spatial evidence from the updated lithological map predicts exploration targets better (i.e., 28% smaller prospective areas with 9% stronger fit to training gold mines and 26% higher prediction-rate with respect to validation gold prospects) than the prospectivity map based on all known gold occurrences and spatial evidence from the old lithological map.  相似文献   

8.
The susceptibility of slopes in open pit coal mines to various modes of failure (i.e., plane, wedge, circular and toppling failure) could be envisaged by virtue of processing and analysis of pertinent satellite data. The aim of the present study was to integrate thematic maps generated using remote sensing image processing techniques, in order to finally produce slope failure hazard zonation maps in and around Singrauli coalfield, India. The various failure-inducing factors, variables and parameters can be extracted from different satellite data and imageries. The data acquired by different sensors such as TM, ETM+, etc., of LANDSAT series and CARTOSAT of ISRO Bhuvan was used in this study. All these data were subsequently used to create different thematic maps such as slope map, lithological map, land use/land cover map, principal component analysis map, digital elevation model (DEM), etc. An advanced analysis for extraction of lineament attributes was also undertaken.  相似文献   

9.
Mediterranean forest mapping using hyper-spectral satellite imagery   总被引:2,自引:0,他引:2  
Mediterranean forests are characterized by spatiotemporal heterogeneity that is associated with Mediterranean climate, floristic biodiversity and topographic variability. Satellite remote sensing can be an effective tool for characterizing and monitoring forest vegetation distribution within these fragmented Mediterranean landscapes. The heterogeneity of Mediterranean vegetation, however, often exceeds the resolution typical of most satellite sensors. Hyper-spectral remote sensing technology demonstrates the capacity for accurate vegetation identification. The objective of this research is to determine to what extent forest types can be discriminated using different image analysis techniques and spectral band combinations of Hyperion satellite imagery. This research mapped forest types using a pixel-based Spectral Angle Mapper (SAM), nearest neighbour and membership function classifiers of the object-oriented classification. Hyperion classification was done after reducing Hyperion data using nine selected band combinations. Results indicate that the selection of band combination while reducing the Hyperion dataset improves classification results for both the overall and the individual forest type accuracy, in particular for the selected optimum Hyperion band combination. One shortcoming is that the performance of the best selected band combination was superior in terms of both overall and individual forest type accuracy when applying the membership classifier of the object-oriented method compared to SAM and nearest neighbour classifiers. However, all techniques seemed to suffer from a number of problems, such as spectral similarity among forest types, overall low energy response of the Hyperion sensor, Hyperion medium spatial resolution and spatiotemporal and spectral heterogeneity of the Mediterranean ecosystem at multiple scales.  相似文献   

10.
为推进航空高光谱遥感矿物信息提取技术及其在地质工程化中的应用,2010—2015年,以我国西部成矿带为调查区,使用CASI/SASI/TASI航空高光谱数据,在进行矿物光谱特征分析、高光谱影像数据预处理、矿物信息提取、蚀变异常信息筛选及区域找矿预测基础上,编制了矿物种类分布图、单矿物丰度分布图和找矿预测图等高光谱地质调查系列专题图件; 建立了一套高光谱遥感矿物填图技术体系,解决了高光谱数据预处理与矿物提取等方面的技术问题,推进了地质填图向精细化和微观化方向发展。该研究为高光谱技术在地质工程化中的应用奠定了基础,丰富了地质填图的产品类型和内容,并服务于地质找矿等地质工作。  相似文献   

11.
Identifying a good site for groundwater exploitation in hard-rock terrains is a challenging task. In Sinai, Egypt, groundwater is the only source of water for local inhabitants. Interpretation of satellite data for delineation of lithological units and weathered zones, and for mapping of lineament density and their trends, provides a valuable aid for the location of groundwater promising areas. Complex deformational histories of the wide range of lithological formations add to the difficulty. Groundwater prospect mapping is a systematic approach that considers the major controlling factors which influence the aquifer and quality of groundwater. The presented study aims to delineate, identify, model and map groundwater potential zones in arid South Sinai using remote sensing data and a geographic information system (GIS) to prepare various hydromorphogeological thematic maps such as maps of slope, drainage density, lithology, landforms, structural lineaments, rainfall intensity and plan curvature. The controlling-factor thematic maps are each allocated a fixed score and weight, computed by using a linear equation approach. Furthermore, each weighted thematic map is statistically computed to yield a groundwater potential zone map of the study area. The groundwater potential zones thus obtained were divided into five categories (very poor, poor, moderate, good and very good) and were validated using the relation between the zone and the spatial distribution of productive wells and of previous geophysical investigations from a literature review. The results show the groundwater potential zones in the study area, and create awareness for better planning and management of groundwater resources.  相似文献   

12.
高光谱遥感数据具有波段多、数据量大、处理复杂等特点, 基于GPU的高性能计算在遥感领域得到了快速发展, 为高光谱数据的快速处理提供了硬件和技术条件。采用GPU对高光谱遥感数据常用的SAM、PPI等处理算法进行应用实验, 验证基于GPU的高光谱遥感数据快速处理技术。实验采用新疆东天山地区的一景星载Hyperion数据, 利用支持IDL开发语言的GPULib、CUDA运行时API库进行算法效率的验证, 结果表明, 基于GPU的高光谱数据处理效率比常规的多核CPU主机处理效率有较大提升, 具有一定的应用推广价值。   相似文献   

13.
The prime contribution of this assignment was to examine the hyperspectral remote sensing, based on iron ore minerals identification using spectral angle mapper (SAM) technique. Correlation analyses between field iron contents and environmental variables (soil, water, and vegetation) have been performed. Spectral feature fitting (SFF) and multi-range spectral feature fitting (MRSFF) methods were used for accuracy assessment in extracting iron ore minerals from Hyperion EO-1 data. Spectral inspections as a reference were used in SAM technique for image classification for iron ore minerals: Hematite (24.26%), Goethite (32.98%) and Desert (42.76). Iron ore minerals classification is justified by the United States Geological Survey (USGS) spectral library and field sample points. The regression analysis of USGS and Hyperion reflectance spectra has shown the moderate positive correlation. The regression analyses between iron ore contents and environmental parameters (soil, water, and vegetation) have shown the moderate negative correlation. The examination was significantly effectual in extracting iron ore minerals: Hematite (SFF RMSE?≤?0.51 MRSFF RMSE?≤?0.48), Goethite (SFF RMSE?≤?0.047 MRSFF RMSE?≤?0.438) and Desert (SFF RMSE?≤?0.63 and MRSFF RMSE?≤?0.50); and the MRSFF RMSE histograms indicate the above result likened to a conventional SFF RMSE. MRSFF RMS error result is best because multiple absorption features typically characterize spectral signatures. This analysis demonstrates the potential applicability of the methodology for iron minerals identification framework and iron minerals impact on environmental parameters.  相似文献   

14.
Metamorphosed black shale is an essential component of the Early Proterozoic Outokumpu rock assemblage, together with serpentinite, calc-silicate rock and quartz rock. This rock assemblage, hosting the major Cu-Co-Zn deposits of Outokumpu and considered ophiolitic in origin, has also been encountered to the northwest in the Kainuu schist belt. The rift basin encompassing the two areas was intruded by ophiolite complexes 1.96–1.97 billion years ago. Remnants of ultramafites are met as serpentinite and talc-carbonate rock lenses bounded by faults along the western margin of the Kainuu schist belt. The black schist formations range in thickness from tens of metres to 400 m. Metal-rich layers occur close to the serpentinite bodies. The most extensive formations of metal-rich black schist (300 Mt, 0.26% Ni, 0.14% Cu, 0.53% Zn) have been encountered at Talvivaara. The lithological, mineralogical and geochemical results indicate a genetic link between the Jormua, Talvivaara, Alanen and Pappilanmäki prospects in the Kainuu schist belt and the Outokumpu rock assemblage.  相似文献   

15.
The Mesoproterozoic Bushmanland Group is situated in the central region of the 1000 to 1200 Ma Namaqualand Metamorphic Complex (NMC). The NMC comprises a belt of highly deformed medium- to high-grade metamorphic rocks to the west of the Archean Kaapvaal Craton of southern Africa. The Bushmanland Group, one of the many supracrustal sequences that make up the NMC, is a metavolcano-sedimentary succession that hosts economically significant concentrations of sillimanite and base-metal sulfide deposits. The present investigation was carried out to study the geochemistry of a large set of representative samples of psammo-pelitic schists from the Bushmanland Group, which includes data from three different schist units: Namies Schist Formation, Shaft Schist Formation and Ore Equivalent Schist. The objective was three-fold: to test the lateral correlatability of these schist units as determined by field relationships, to identify the geochemical signature of the schists and to test the validity of an Artificial Neural Network approach as an exploration tool. Two multidimensional datasets, respectively comprising 10 major and 18 trace elements, were constructed using selected published schist analyses. Both schist datasets were analyzed using self-organizing neural maps for visualizing and clustering high-dimensional geochemical data. Geochemical differences between the various schists were visualized using colored two-dimensional maps that can be visually and quantitatively interpreted. The results of this study confirm the lateral correlatability of the schist units evaluated in this communication. It was also found that each schist unit or portions of them represent a distinct geochemical signature that is related to true lithological variations. The results show that the Artificial Neural Network approach can be used as a powerful tool for regional mineral exploration in poly-deformed and metamorphosed terrains where identification of stratigraphic units through lateral correlation by means of fieldwork and petrography remains highly speculative.  相似文献   

16.
The Neoproterozoic Wadi Kid metamorphic belt in southeastern Sinai in Egypt represents a structurally and metamorphically complex assemblage of metasedimentary and metavolcanic rocks folded into a series of ENE–WSW-trending antiforms and synforms. Geological mapping in this region is challenging, primarily due to difficult access, complexity of structures, and lack of resolution and areal integrity of lithological differentiation using conventional mapping techniques. Spectral ratioing of selected bands of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the area, in synergy with geological field observation, proved effective in resolving geological mapping problems in the region. A new ASTER band-ratio image 4/7-4/6-4/10 is applied successfully for lithological mapping in the Wadi Kid area, showing improvement over previous techniques in detailing the main rock units. These are gneiss and migmatite, amphibolite, volcanogenic sediments with banded iron formation, meta-pelites, talc schist, meta-psammites, meta-acidic volcanics, meta-pyroclastics volcaniclastics, albitites and granitic rocks. Validating the use of the new ASTER band-ratio image relied on both calculating statistical optimum index factor (OIF) and matching interpreted lithological boundaries to field data and previously published geologic maps. The adopted ASTER band-ratio image demonstrates the benefit of using ASTER remote sensing data in lithological mapping of the Wadi Kid area and therefore for lithological mapping in the Arabian–Nubian shield and other arid areas.  相似文献   

17.
The Darreh Sary metapelitic rocks are located in the northeast of Zagros orogenic belt and Sanandaj-Sirjan structural zone. The lithological composition of these rocks includes slate, phyllite, muscovitebiotite schist, garnet schist, staurolite-garnet schist and staurolite schist. The shale is the protolith of these metamorphic rocks, which was originated from the continental island arc tectonic setting and has been subjected to processes of Zagros orogeny. The deformation mechanisms in these rocks include bulging recrystallization (BLG), subgrain rotation recrystallization (SGR) and grain boundary migration recrystallization (GBM), which are considered as the key to estimate the deformation temperature of the rocks. The estimated ranges of deformation temperature and depth in these rocks show the temperatures of 275–375, 375–500, and >500°C and the depths of 10 to 17 km. The observed structures in these rocks such as faults, fractures and folds, often with the NW-SE direction coordinate with the structural trends of Zagros orogenic belt structures. The S-C mylonite fabrics is observed in these rocks with other microstructures such as mica fish, σ fabric and garnet deformation indicate the dextral shear deformation movements of study area. Based on the obtained results of this research, the stages of tectonic evolution of Darreh Sary area were developed.  相似文献   

18.
The crustal scale Shear Zone that can be traced from Gadag in the north to Mandya in the south in Dharwar Craton of southern India is considered as the boundary between two subcratonic blocks namely the Eastern Dharwar Craton (EDC) and the Western Dharwar Craton (WDC) in published literature. The present study on the Gadag-Mandya Shear Zone (GMSZ) in the Javanahalli-Hagalvadi sector has brought out a detailed account on the disposition, geometry and kinematics of the shear zone, and also the distinctive structural patterns of the two adjacent supracrustal belts, namely the Chitradurga schist belt (CSB) in the west and Javanahalli schist belt (JSB) in the east. The JSB has an overall N-S striking and gentle easterly dipping geometry, the structural features of which are indicative of a predominant noncoaxial deformation and westward transportation of the supracrustal assemblage. In contrast, deformation in the CSB, which is defined mainly by a flattening type of strain, has produced an overall verticality of the structures (dominant foliation, axial planes of regional folds).  相似文献   

19.
Comparing satellite data derived map products are affected by differences in data characteristics, image acquisition dates, processing techniques, and classification schemes used for assigning pixels to a thematic class. By comparing two forest maps generated from Landsat Enhanced Thematic Mapper Plus (ETM+) and Advanced Very High Resolution Radiometer (AVHRR) images acquired on the same day, and processed using identical classification scheme and methods these differences were minimized. The ETM+ derived map had higher classification accuracy values and more precise area estimates than the AVHRR derived map. In the ETM+ derived map, 87 of the 599 verification data were misclassified, whereas in the AVHRR derived map, 155 of the 469 verification data were misclassified. Detailed error analyses by land cover class revealed that a land use based definition of forest accounted for 74% (64 out of 87) and 57% (89 out of 155) of the classification errors in ETM+ and AVHRR derived maps, respectively.  相似文献   

20.
从岩石光谱出发,结合光谱谱带强度特征和光谱波形特征,针对机载热红外高光谱数据(TASI),在以往算法基础上,提出一种改进的算法--光谱离散能级波形匹配法(SDEM),并将其运用到岩性分类研究中。SDEM算法能识别岩石光谱间的微小差异,并在充分考虑光谱谱带强度和波形特征的同时,有效减弱数据噪声。与传统的岩性分类方法--高光谱角度制图法(SAM)相比,改进的算法能更精确地区分岩石相似光谱,识别易混淆岩性,对出现“异物同谱”现象的岩石也具有更好的区分能力。将SDEM、SAM方法应用于甘肃柳园地区TASI数据岩性分类研究中,可看出SDEM方法能识别出SAM未识别或识别错误的岩性。通过研究区野外查证,可知SDEM方法所得岩性分类结果更符合岩石实际分布情况。可见光谱离散能级波形匹配法具有较好的岩性分类效果,能更好地区分地物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号