首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 775 毫秒
1.
Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different Δ33S (≡δ33S-0.515 δ34S) values of up to 0.04‰ even if δ34S values are identical. Detection of such small Δ33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006‰ (2σ).Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10°N, 13°N, and 21°S and Mid-Atlantic Ridge (MAR) 37°N yield Δ33S values ranging from −0.002 to 0.033 and δ34S from −0.5‰ to 5.3‰. The combined δ34S and Δ33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13°N and marcasite from MAR 37°N are in isotope disequilibrium not only in δ34S but also in Δ33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low Δ33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles.  相似文献   

2.
The role of sulfur in two hydrothermal vent systems, the Logatchev hydrothermal field at 14°45′N/44°58′W and several different vent sites along the southern Mid-Atlantic Ridge (SMAR) between 4°48′S and 9°33′S and between 12°22′W and 13°12′W, is examined by utilizing multiple sulfur isotope and sulfur concentration data. Isotope compositions for sulfide minerals and vent H2S from different SMAR sites range from + 1.5 to + 8.9‰ in δ34S and from + 0.001 to + 0.051‰ in Δ33S. These data indicate mixing of mantle sulfur with sulfur from seawater sulfate. Combined δ34S and Δ33S systematics reveal that vent sulfide from SMAR is characterized by a sulfur contribution from seawater sulfate between 25 and 33%. This higher contribution, compared with EPR sulfide, indicates increased seawater sulfate reduction at MAR, because of a deeper seated magma chamber and longer fluid upflow path length, and points to fundamental differences with respect to subsurface structures and fluid evolution at slow and fast spreading mid-ocean ridges.Additionally, isotope data uncover non-equilibrium isotopic exchange between dissolved sulfide and sulfate in an anhydrite bearing zone below the vent systems at fluid temperatures between 335 and 400 °C. δ34S values between + 0.2 to + 8.8‰ for dissolved and precipitated sulfide from Logatchev point to the same mixing process between mantle sulfur and sulfur from seawater sulfate as at SMAR. δ34S values between ? 24.5 and + 6.5‰ and Δ33S values between + 0.001 and + 0.125‰ for sulfide-bearing sediments and mafic/ultramafic host rocks from drill cores taken in the region of Logatchev indicate a clear contribution of biogenic sulfides formed via bacterial sulfate reduction. Basalts and basaltic glass from SMAR sites with Δ33S = ? 0.008‰ reveal lower Δ33S lower values than suggested on the basis of previously published isotopic measurements of terrestrial materials.We conclude that the combined use of both δ34S and Δ33S provides a more detailed picture of the sulfur cycling in hydrothermal systems at the Mid-Atlantic Ridge and uncovers systematic differences to hydrothermal sites at different mid-ocean ridge sites. Multiple sulfur isotope measurements allow identification of incomplete isotope exchange in addition to isotope mixing as a second important factor influencing the isotopic composition of dissolved sulfide during fluid upflow. Furthermore, based on Δ33S we are able to clearly distinguish biogenic from hydrothermal sulfides in sediments even when δ34S were identical.  相似文献   

3.
Variations in sulfur mineralogy and chemistry of serpentinized peridotites and gabbros beneath the Lost City Hydrothermal Field at the southern face of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were examined to better understand serpentinization and alteration processes and to study fluid fluxes, redox conditions, and the influence of microbial activity in this active, peridotite-hosted hydrothermal system. The serpentinized peridotites are characterized by low total sulfur contents and high bulk δ34S values close to seawater composition. Low concentrations of 34S-enriched sulfide phases and the predominance of sulfate with seawater-like δ34S values indicate oxidation, loss of sulfide minerals and incorporation of seawater sulfate into the serpentinites. The predominance of pyrite in both serpentinites and gabbros indicates relatively high fO2 conditions during progressive serpentinization and alteration, which likely result from high fluid fluxes during hydrothermal circulation and evolution of the Lost City system from temperatures of ∼250 to 150 °C. Sulfate and sulfide minerals in samples from near the base of hydrothermal carbonate towers at Lost City show δ34S values that reflect the influence of microbial activity. Our study highlights the variations in sulfur chemistry of serpentinized peridotites in different marine environments and the influence of long-lived, moderate temperature peridotite-hosted hydrothermal system and high seawater fluxes on the global sulfur cycle.  相似文献   

4.
The sulfur isotopic composition of carbonate associated sulfate (CAS) has been used to investigate the geochemistry of ancient seawater sulfate. However, few studies have quantified the reliability of δ34S of CAS as a seawater sulfate proxy, especially with respect to later diagenetic overprinting. Pyrite, which typically has depleted δ34S values due to authigenic fractionation associated with bacterial sulfate reduction, is a common constituent of marine sedimentary rocks. The oxidation of pyrite, whether during diagenesis or sample preparation, could thus adversely influence the sulfur isotopic composition of CAS. Here, we report the results of CAS extractions using HCl and acetic acid with samples spiked with varying amounts of pyrite. The results show a very strong linear relationship between the abundance of fine-grained pyrite added to the sample and the resultant abundance and δ34S value of CAS. This data represents the first unequivocal evidence that pyrite is oxidized during the CAS extraction process. Our mixing models indicate that in samples with much less than 1 wt.% pyrite and relatively high δ34Spyrite values, the isotopic offset imparted by oxidation of pyrite should be much less than ? 4‰. A wealth of literature exists on the oxidation of pyrite by Fe3+ and we believe this mechanism drives the oxidation of pyrite during CAS extraction, during which the oxygen used to form sulfate is taken from H2O, not O2. Consequently, extracting CAS under anaerobic conditions would only slow, but not halt, the oxidation of pyrite. Future studies of CAS should attempt to quantify pyrite abundance and isotopic composition.  相似文献   

5.
Previous geochemical and microbiological studies in the Cariaco Basin indicate intense elemental cycling and a dynamic microbial loop near the oxic-anoxic interface. We obtained detailed distributions of sulfur isotopes of total dissolved sulfide and sulfate as part of the on-going CARIACO time series project to explore the critical pathways at the level of individual sulfur species. Isotopic patterns of sulfate (δ34SSO4) and sulfide (δ34SH2S) were similar to trends observed in the Black Sea water column: δ34SH2S and δ34SSO4 were constant in the deep anoxic water (varying within 0.6‰ for sulfide and 0.3‰ for sulfate), with sulfide roughly 54‰ depleted in 34S relative to sulfate. Near the oxic-anoxic interface, however, the δ34SH2S value was ∼3‰ heavier than that in the deep water, which may reflect sulfide oxidation and/or a change in fractionation during in situ sulfide production through sulfate reduction (SR). δ34SH2S and Δ33SH2S data near the oxic-anoxic interface did not provide unequivocal evidence to support the important role of sulfur-intermediate disproportionation suggested by previous studies. Repeated observation of minimum δ34SSO4 values near the interface suggests ‘readdition’ of 34S-depleted sulfate during sulfide oxidation. A slight increase in δ34SSO4 values with depth extended over the water column may indicate a reservoir effect associated with removal of 34S-depleted sulfur during sulfide production through SR. Our δ34SH2S and Δ33SH2S data also do not show a clear role for sulfur-intermediate disproportionation in the deep anoxic water column. We interpret the large difference in δ34S between sulfate and sulfide as reflecting fractionations during SR in the Cariaco deep waters that are larger than those generally observed in culturing studies.  相似文献   

6.
We present multiple sulfur isotope measurements of sulfur compounds associated with the oxidation of H2S and S0 by the anoxygenic phototrophic S-oxidizing bacterium Chlorobium tepidum. Discrimination between 34S and 32S was +1.8 ± 0.5‰ during the oxidation of H2S to S0, and −1.9 ± 0.8‰ during the oxidation of S0 to , consistent with previous studies. The accompanying Δ33S and Δ36S values of sulfide, elemental sulfur, and sulfate formed during these experiments were very small, less than 0.1‰ for Δ33S and 0.9‰ for Δ36S, supporting mass conservation principles. Examination of these isotope effects within a framework of the metabolic pathways for S oxidation suggests that the observed effects are due to the flow of sulfur through the metabolisms, rather than abiotic equilibrium isotope exchange alone, as previously suggested. The metabolic network comparison also indicates that these metabolisms work to express some isotope effects (between sulfide, polysulfides, and elemental sulfur in the periplasm) and suppress others (kinetic isotope effects related to pathways for oxidation of sulfide to sulfate via the same enzymes involved in sulfate reduction acting in reverse). Additionally, utilizing fractionation factors for phototrophic S oxidation calculated from our experiments and for other oxidation processes calculated from the literature (chemotrophic and inorganic S oxidation), we constructed a set of ecosystem-scale sulfur isotope box models to examine the isotopic consequences of including sulfide oxidation pathways in a model system. These models demonstrate how the small δ34S effects associated with S oxidation combined with large δ34S effects associated with sulfate reduction (by SRP) and sulfur disproportionation (by SDP) can produce large (and measurable) effects in the Δ33S of sulfur reservoirs. Specifically, redistribution of material along the pathways for sulfide oxidation diminishes the net isotope effect of SRP and SDP, and can mask the isotopic signal for sulfur disproportionation if significant recycling of S intermediates occurs. We show that the different sulfide oxidation processes produce different isotopic fields for identical proportions of oxidation, and discuss the ecological implications of these results to interpreting minor S isotope patterns in modern systems and in the geologic record.  相似文献   

7.
We examine models for volcanogenic massive sulfide (VMS) mineralization in the ~2.7-Ga Noranda camp, Abitibi subprovince, Superior Province, Canada, using a combination of multiple sulfur isotope and trace element data from ore sulfide minerals. The Noranda camp is a well-preserved, VMS deposit-rich area that is thought to represent a collapsed volcanic caldera. Due to its economic value, the camp has been studied extensively, providing a robust geological framework within which to assess the new data presented in this study. We explore previously proposed controls on mineralization within the Noranda camp and, in particular, the exceptional Au-rich Horne and Quemont deposits. We present multiple sulfur isotope and trace element compositional data for sulfide separates representing 25 different VMS deposits and “showings” within the Noranda camp. Multiple sulfur isotope data for this study have δ34SV-CDT values of between ?1.9 and +2.5?‰, and Δ33SV-CDT values of between ?0.59 and ?0.03?‰. We interpret the negative Δ33S values to be due to a contribution of sulfur that originated as seawater sulfate to form the ore sulfides of the Noranda camp VMS deposits. The contribution of seawater sulfate increased with the collapse and subsequent evolution of the Noranda caldera, an inference supported by select trace and major element analyses. In particular, higher concentrations of Se occur in samples with Δ33S values closer to 0?‰, as well as lower Fe/Zn ratios in sphalerite, suggesting lower pressures and temperatures of formation. We also report a relationship between average Au grade and Δ33S values within Au-rich VMS deposits of the Noranda camp, whereby higher gold grades are associated with near-zero Δ33S values. From this, we infer a dominance of igneous sulfur in the gold-rich deposits, either leached from the volcanic pile and/or directly degassed from an associated intrusion.  相似文献   

8.
An anomalous enrichment in marine sulfate δ34SSO4 is preserved in globally-distributed latest Ediacaran-early Cambrian strata. The proximity of this anomaly to the Ediacaran-Cambrian boundary and the associated evolutionary radiation has invited speculation that the two are causally related. Here we present a high-resolution record of paired sulfate (δ34SSO4) and pyrite (δ34Spyr) from sediments spanning ca. 547-540 million years ago (Ma) from the Ara Group of the Huqf Supergroup, Sultanate of Oman. We observe an increase in δ34SSO4 from ∼20‰ to ∼42‰, beginning at ca. 550 Ma and continuing at least through ca. 540 Ma. There is a concomitant increase in δ34Spyr over this interval from ∼ −15‰ to 10‰. This globally correlative enrichment, here termed the Ara anomaly, constitutes a major perturbation to the sulfur cycle. The absolute values of δ34Spyr reported here and in equivalent sections around the world, require the isotopic composition of material entering the ocean (δ34Sin) to be significantly more enriched than modern (∼3‰) values, likely in excess of 12‰ during the late Ediacaran-early Cambrian. Against this background of elevated δ34Sin, the Ara anomaly is explained not by increased fractionation between sulfate and pyrite (Δδ34S), but by an increase in pyrite burial (fpyr), most likely driven by enhanced primary production and sequestration of organic carbon, consistent with earlier reports of elevated organic carbon burial and widespread phosphorite deposition.  相似文献   

9.
The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The δ34S-values of pyrite down to −38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.  相似文献   

10.
The Palinuro volcanic complex and the Panarea hydrothermal field, both located in the Tyrrhenian Sea (Italy), are associated with island arc magmatism and characterized by polymetallic sulfide mineralization. Dissolved sulfide concentrations, pH, and Eh measured in porewaters at both sites reveal a variable hydrothermal influence on porewater chemistry.Multiple sulfur isotopic measurements for disseminated sulfides (CRS: chromium reducible sulfur) extracted from sediments at Palinuro yielded a broad range in δ34S range between ?29.8 and + 10.2‰ and Δ33S values between + 0.015 and + 0.134‰. In contrast, sediments at Panarea exhibit a much smaller range in δ34SCRS with less negative values between ?11.3 and ?1.8‰. The sulfur isotope signatures are interpreted to reflect a mixture between hydrothermal and biogenic sulfide, with a more substantial biogenic contribution at Panarea.Multiple sulfur isotope measurements were performed on sulfides and elemental sulfur from drill core material from the Palinuro massive sulfide complex. δ34S and Δ33S values for pyrite between ?32.8 and ?1.1‰ and between ?0.012 to + 0.042‰, respectively, as well as for elemental sulfur with δ34S and Δ33S values between ?26.7 and ?2.1‰ and between + 0.035 and + 0.109‰, respectively, point to a microbial origin for much of the sulfide and elemental sulfur studied. Moreover, data suggest a coupling of bacterial sulfate reduction, sulfide oxidation and sulfur disproportionation. In addition, δ34S values for barite between + 25.0 and + 63.6‰ are also in agreement with high microbial turnover of sulfate at Palinuro.Although a magmatic SO2 contribution towards the formation of the Palinuro massive sulfide complex is very likely, the activity of different sulfur utilizing microorganisms played a fundamental role during its formation. Thus, porewater and multiple sulfur isotope data reveal differences in the hydrothermal activity at Palinuro and Panarea drill sites and underline the importance of microbial communities for the origin of massive sulfide mineralizations in the hydrothermal subsurface.  相似文献   

11.
A diffusion-diagenesis model of the sulfur cycle is developed to calculate theoretical distributions of stable sulfur isotopes in marine sediments. The model describes the depth variation in δ34S of dissolved sulfate and H2S. and of pyrite. The effects of sulfate reduction, sulfate and H2S diffusion. and of sedimentation are considered as well as the bacterial isotope fractionation and the degree of pyrite formation. Under open system conditions of sulfur diagenesis the isotopic difference, ΔSO2?4 — H2S, tends to increase with depth being smaller than the bacterial fractionation factor near the sediment surface and larger in deeper layers. The two isotopes in SO2?4 or in H2S do not diffuse in the same proportion as they occur in the porewater. This explains why sulfur, which is incorporated from seawater sulfate by diffusion and precipitation as pyrite, can be enriched in 32S relative to the seawater sulfate. The model calculations demonstrate the importance of taking the whole dynamic sulfur cycle into account before drawing conclusions about sulfur diagenesis from the stable isotope distribution.  相似文献   

12.
In the Eastern Pontide Region of northeastern Turkey, volcanogenic Cu-Zn-Pb deposits of the Kuroko type are widespread within the dacitic series of the Liassic-Eocene volcano-sedimentary succession. Sulfide mineralization within the studied deposits shows four different depositional styles: disseminated ore; polymetallic stockwork ores; polymetallic massive ores; and disseminated pyrite in the hanging-wall tuff units. Only the stockwork and massive ores are economically important, and usually one or the other dominates in each ore body.

The δ34S of sulfide minerals belonging to the various styles of mineralization are in the range from ?2.6 to +5.2% (VCDT): pyrite has the highest values and the galena lowest values in agreement with the usual isotopic-fractionation trends. Massive ores have heavier sulfur-isotope composition among the mineralization styles and the heaviest values are recorded in barite- and gypsum-rich deposits. The close similarity of the δ34S among the various mineralization episodes in some deposits indicates a single sulfur source having a stable and homogenous composition.

The δ34S of sulfates fall into three groups: barites and primary gypsum (15.4 to 20.4%), close to coeval seawater sulfate; one value of barite (25.4%) heavier than coeval sea water; and values of secondary gypsum (2.2 to 8.0%) either very light compared to coeval seawater sulfate, or within the range recorded from sulfide minerals. The δ34S values of pyrite disseminated in the brecciated dacite tuff units are very close to zero and similar to the ones reported for magmatic rocks, suggesting a magmatic source for the sulfur of the earliest sulfide mineralization episode. These δ34S data are not sufficient to calculate the fraction of the reduced sulfur derived from seawater sulfate, as the associated fractionation factor cannot be constrained.  相似文献   

13.
Large rounded pyrite grains (>1 mm), commonly referred to as “buckshot” pyrite grains, are a characteristic feature of the auriferous conglomerates (reefs) in the Witwatersrand and Ventersdorp supergroups, Kaapvaal Craton, South Africa. Detailed petrographic analyses of the reefs indicated that the vast majority of the buckshot pyrite grains are of reworked sedimentary origin, i.e., that the pyrite grains originally formed in the sedimentary environment during sedimentation and diagenesis. Forty-one of these reworked sedimentary pyrite grains from the Main, Vaal, Basal, Kalkoenkrans, Beatrix, and Ventersdorp Contact reefs were analyzed for their multiple sulfur isotope compositions (δ34S, Δ33S, and Δ36S) to determine the source of the pyrite sulfur. In addition, five epigenetic pyrite samples (pyrite formed after sedimentation and lithification) from the Middelvlei and the Ventersdorp Contact reefs were measured for comparison. The δ34S, Δ33S, and Δ36S values of all 41 reworked sedimentary pyrite grains indicate clear signatures of mass-dependent and mass-independent fractionation and range from ?6.8 to +13.8?‰, ?1.7 to +1.7?‰, and ?3.9 to +0.9?‰, respectively. In contrast, the five epigenetic pyrite samples display a very limited range of δ34S, Δ33S, and Δ36S values (+0.7 to +4.0?‰, ?0.3 to +0.0?‰. and ?0.3 to +0.1?‰, respectively). Despite the clear signatures of mass-independent sulfur isotope fractionation, very few data points plot along the primary Archean photochemical array suggesting a weak photolytic control over the data set. Instead, other factors command a greater degree of influence such as pyrite paragenesis, the prevailing depositional environment, and non-photolytic sulfur sources. In relation to pyrite paragenesis, reworked syngenetic sedimentary pyrite grains (pyrite originally precipitated along the sediment-water interface) are characterized by negative δ34S and Δ33S values, suggesting open system conditions with respect to sulfate supply and the presence of microbial sulfate reducers. On the contrary, most reworked diagenetic sedimentary pyrite grains (pyrite originally precipitated below the sediment-water interface) show positive δ34S and negative Δ33S values, suggesting closed system conditions. Negligible Δ33S anomalies from epigenetic pyrite suggest that the sulfur was sourced from a mass-dependent or isotopically homogenous metamorphic/hydrothermal fluid. Contrasting sulfur isotope compositions were also observed from different depositional environments, namely fluvial conglomerates and marine-modified fluvial conglomerates. The bulk of the pyrite grains from fluvial conglomerates are characterized by a wide range of δ34S values (?6.2 to +4.8?‰) and small Δ33S values (±0.3?‰). This signature likely represents a crustal sulfate reservoir derived from either volcanic degassing or from weathering of sulfide minerals in the hinterland. Reworked sedimentary pyrite grains from marine-modified fluvial conglomerates share similar isotope compositions, but also produce a positive Δ33S/δ34S array that overlaps with the composition of Archean barite, suggesting the introduction of marine sulfur. These results demonstrate the presence of multiple sources of sulfur, which include atmospheric, crustal, and marine reservoirs. The prevalence of the mass-dependent crustal sulfur isotope signature in fluvial conglomerates suggests that sulfate concentrations were probably much higher in terrestrial settings in comparison to marine environments, which were sulfate-deficient. However, the optimum conditions for forming terrestrial sedimentary pyrite were probably not during fluvial progradation but rather during the early phases of flooding of low angle unconformities, i.e., during retrogradational fluvial deposition, coupled in some cases with marine transgressions, immediately following inflection points of maximum rate of relative sea level fall.  相似文献   

14.
Pyrite from altered basalts from Nàmafjall and Krafla high-temperature fields and deep zones at Reykir, Leira and other low-temperature fields, and aqueous sulfides from Nàmafjall, have δ34S values of 0 to 2.6%. These values are close to those for postglacial basaltic lavas from the Reykjanes Peninsula. The major source of sulfur in these meteoric hydrothermal systems is the upper-mantle or basalt. At the low-temperature fields, however, the δ34S values of sulfide decrease with decreasing depth, suggesting the presence of a light sulfur source in the shallower aquifers.In contrast, in the Reykjanes and Svartsengi geothermal fields, where seawater contributes to the hydrothermal systems, sulfide sulfur is distinctly enriched in 34S at all depths except for one Reykjanes pyrite from 84 m depth. The enrichment is about 8%. at the deepest core (1734 m) of Reykjanes and decreases with decreasing depth. These enrichments are most likely due to seawater sulfate being involved in the hydrothermal systems. However, in the Reykjanes fluid, dissolved heavy sulfates are not in isotopic equilibrium with sulfide. Disequilibrium between sulfate and sulfide is also demonstrated in all other Icelandic geothermal systems studied.  相似文献   

15.
In order to better understand the paleoceanographic sedimentary environment of the Lower Cambrian black shales extensively distributed in South China, outcropped along the present southern margin of the Yangtze Platform with a width of ca. 200-400 km and a length of more than 1500 km, we present new paired δ13C data on carbonates (δ13Ccarb) and associated organic carbon (δ13Corg) and δ34Spy data on sedimentary pyrite in black shales from three sections (Ganziping, Shancha and Xiaohekou) located in NW Hunan, China. In these sections, a total of 82 Lower Cambrian black shale samples have δ13Ccarb values ranging from -4.0‰ to 1.7‰ with an average value of -2.1‰, and δ13Corg values between -34.9‰ and -28.8‰, averaging -31.9‰. The ?34Spy values of 16 separated sedi-mentary pyrite samples from the black shales vary between +10.2‰ and +28.7‰ with an average value of +19.5‰, presenting a small isotope fractionation between seawater sulfate and sedimentary sulfide. The model calculation based on credible data from the paired analyses for δ13Ccarb and δ13Corg of 11 black shale samples shows a high CO2 concentration in the Early Cambrian atmosphere, about 20 times higher than pre-industrial revolution values, consis-tent with previous global predictions. The small sulfur isotope fractionation between seawater sulfate and sedimen-tary sulfide in black shales, only 15.5‰ on average, implies a low sulfate level in the Early Cambrian seawater around 1 mmol. In combination with a high degree of pyritization (DOP) in the black shales, it is suggested that sul-fidic deep-ocean water could have lingered up to the earliest Cambrian in this area. The black shale deposition is envisaged in a stratified marine basin, with a surface euphotic and oxygenated water layer and sulfidic deeper water, controlled by a continental margin rift.  相似文献   

16.
Sulfate reduction during seawater reaction with fayalite and with magnetite was rapid at 350°C, producing equilibrium assemblages of talc-pyrite-hematite-magnetite at low water/rock ratios and talc-pyrite-hematite-anhydrite at higher water/rock ratios. At 250°C, seawater reacting with fayalite produced detectable amounts of dissolved H2S, but extent of reaction of solid phases was minor after 150 days. At 200°C, dissolved H2S was not detected, even after 219 days, but mass balance calculations suggest a small amount of pyrite may have formed. Reaction stoichiometry indicates that sulfate reduction requires large amounts of H+, which, in subseafloor hydrothermal systems is provided by Mg metasomatism. Seawater contains sufficient Mg to supply all the H+ necessary for quantitative reduction of seawater sulfate.Systematics of sulfur isotopes in the 250 and 350°C experiments indicate that isotopic equilibrium is reached, and can be modeled as a Rayleigh distillation process. Isotopic composition of hydrothermally produced H2S in natural systems is strongly dependent upon the seawater/basalt ratio in the geothermal system, which controls the relative sulfide contributions from the two important sulfur sources, seawater sulfate and sulfide phases in basalt. Anhydrite precipitation during geothermal heating severely limits sulfate ingress into high temperature interaction zones. Quantitative sulfate reduction can thus be accomplished without producing strongly oxidized rocks and resultant sulfide sulfur isotope values represent a mixture of seawater and basaltic sulfur.  相似文献   

17.
The latest Permian was a time of major change in ocean chemistry, accompanying the greatest mass extinction of the Phanerozoic. To examine the nature of these changes, samples from two well-studied marine sections that span the Permian-Triassic boundary have been analyzed: the Meishan and Shangsi sections located in Southern China. Isotopic analysis of the carbonate-associated sulfate in these samples provides a detailed record of several isotopic shifts in δ34SCAS approaching and across the PTB, ranging from +30 to −15‰ (VCDT), with repeated asynchronous fluctuations at the two locations. We interpret the patterns of isotopic shifts, in conjunction with other data, to indicate a shallow unstable chemocline overlying euxinic deep-water which periodically upwelled into the photic zone. These chemocline upward excursion events introduced sulfide to the photic zone stimulating a bloom of phototrophic sulfur oxidizing bacteria. We hypothesize that elemental sulfur globules produced by these organisms and 34S-depleted pyrite produced in the euxinic water column were deposited in the sediment; later oxidation led to incorporation as CAS. This created the large changes to the δ34SCAS observed in the latest Permian at these locations.  相似文献   

18.
The δ34S values of dissolved sulfide and the sulfur isotope fractionations between dissolved sulfide and sulfate species in Floridan ground water generally correlate with dissolved sulfate concentrations which are related to flow patterns and residence time within the aquifer. The dissolved sulfide derives from the slow in situ biogenic reduction of sulfate dissolved from sedimentary gypsum in the aquifer. In areas where the water is oldest, the dissolved sulfide has apparently attained isotopic equilibrium with the dissolved sulfate (Δ34S = 65 per mil) at the temperature (28°C) of the system. This approach to equilibrium reflects an extremely slow reduction rate of the dissolved sulfate by bacteria; this slow rate probably results from very low concentrations of organic matter in the aquifer.In the reducing part of the Edwards aquifer, Texas, there is a general down-gradient increase in both dissolved sulfide and sulfate concentrations, but neither the δ34S values of sulfide nor the sulfide-sulfate isotope fractionation correlates with the ground-water flow pattern. The dissolved sulfide species appear to be derived primarily from biogenic reduction of sulfate ions whose source is gypsum dissolution although upgradient diffusion of H2S gas from deeper oil field brines may be important in places. The sulfur isotope fractionation for sulfide-sulfate (about 38 per mil) is similar to that observed for modern oceanic sediments and probably reflects moderate sulfate reduction in the reducing part of the aquifer owing to the higher temperature and significant amount of organic matter present; contributions of isotopically heavy H2S from oil field brines are also possible.  相似文献   

19.
In order to understand spatial variations of stable isotope geochemistry in the Quruqtagh basin (northwestern China) in the aftermath of an Ediacaran glaciation, we analyzed carbonate carbon isotopes (δ13Ccarb), carbonate oxygen isotopes (δ18Ocarb), carbonate associated sulfate sulfur (δ34SCAS) and oxygen isotopes (δ18OCAS), and pyrite sulfur isotopes (δ34Spy) of a cap dolostone atop the Ediacaran Hankalchough glacial diamictite at four sections. The four studied sections (YKG, MK, H and ZBS) represent an onshore-offshore transect in the Quruqtagh basin. Our data show a strong paleobathymetry-dependent isotopic gradient. From the onshore to offshore sections, δ13Ccarb values decrease from −2‰ to −16‰ (VPDB), whereas δ18Ocarb values increase from −4‰ to −1‰ (VPDB). Both δ34SCAS and δ34Spy show stratigraphic variations in the two onshore sections (MK and YKG), but are more stable in the two offshore sections (H and ZBS). δ18OCAS values of onshore samples are consistent with terrestrial oxidative weathering of pyrite. We propose that following the Hankalchough glaciation seawater in the Quruqtagh basin was characterized by a strong isotopic gradient. The isotopic data may be interpreted using a three-component mixing model that involves three reservoirs: deep-basin water, surface water, and terrestrial weathering input. In this model, the negative δ13Ccarb values in the offshore sections are related to the upwelling of deep-basin water (where anaerobic oxidation of dissolved organic carbon resulted in 13C-depleted DIC), whereas sulfur isotope variations are strongly controlled by surface water sulfate and terrestrial weathering input derived from oxidative weathering of pyrite. The new data provide evidence for the oceanic oxidation following the Hankalchough glaciation.  相似文献   

20.
The sulfur isotopic composition of the Herrin (No. 6) Coal from several localities in the Illinois Basin was measured. The sediments immediately overlying these coal beds range from marine shales and limestones to non-marine shales. Organic sulfur, disseminated pyrite, and massive pyrite were extracted from hand samples taken in vertical sections.The δ 34S values from low-sulfur coals (< 0.8% organic sulfur) underlying nonmarine shale were +3.4 to +7.3%0 for organic sulfur, +1.8 to +16.8%0 for massive pyrite, and +3.9 to +23.8%0 for disseminated pyrite. In contrast, the δ 34S values from high-sulfur coals (> 0.8% organic sulfur) underlying marine sediments were more variable: organic sulfur, ?7.7 to +0.5%0, pyrites, ?17.8 to +28.5%0. In both types of coal, organic sulfur is typically enriched in 34S relative to pyritic sulfur.In general, δ 34S values increased from the top to the base of the bed. Vertical and lateral variations in δ 34S are small for organic sulfur but are large for pyritic sulfur. The sulfur content is relatively constant throughout the bed, with organic sulfur content greater than disseminated pyrite content. The results indicate that most of the organic sulfur in high-sulfur coals is derived from post-depositional reactions with a 34S-depleted source. This source is probably related to bacterial reduction of dissolved sulfate in Carboniferous seawater during a marine transgression after peat deposition. The data suggest that sulfate reduction occurred in an open system initially, and then continued in a closed system as sea water penetrated the bed.Organic sulfur in the low-sulfur coals appears to reflect the original plant sulfur, although diagenetic changes in content and isotopic composition of this fraction cannot be ruled out. The wide variability of the δ 34S in pyrite fractions suggests a complex origin involving varying extents of microbial H2S production from sulfate reservoirs of different isotopic compositions. The precipitation of pyrite may have begun soon after deposition and continued throughout the coalification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号