首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
Here we report on an experimental investigation of the relation between the dissolution rate of albite feldspar and the Gibbs free energy of reaction, ΔGr. The experiments were carried out in a continuously stirred flow-through reactor at 150 °C and pH(150 °C) 9.2. The dissolution rates R are based on steady-state Si and Al concentrations and sample mass loss. The overall relation between ΔGr and R was determined over a free energy range of −150 < ΔGr < −15.6 kJ mol−1. The data define a continuous and highly non-linear, sigmoidal relation between R and ΔGr that is characterized by three distinct free energy regions. The region furthest from equilibrium, delimited by −150 < ΔGr < −70 kJ mol−1, represents an extensive dissolution rate plateau with an average rate . In this free energy range the rates of dissolution are constant and independent of ΔGr, as well as [Si] and [Al]. The free energy range delimited by −70 ? ΔGr ? −25 kJ mol−1, referred to as the ‘transition equilibrium’ region, is characterized by a sharp decrease in dissolution rates with increasing ΔGr, indicating a very strong inverse dependence of the rates on free energy. Dissolution nearest equilibrium, defined by ΔGr > −25 kJ mol−1, represents the ‘near equilibrium’ region where the rates decrease as chemical equilibrium is approached, but with a much weaker dependence on ΔGr. The lowest rate measured in this study, R = 6.2 × 10−11 mol m−2 s−1 at ΔGr = −16.3 kJ mol−1, is more than two orders of magnitude slower than the plateau rate. The data have been fitted to a rate equation (adapted from Burch et al. [Burch, T. E., Nagy, K. L., Lasaga, A. C., 1993. Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8. Chem. Geol.105, 137-162]) that represents the sum of two parallel reactions
R=k1[1-exp(-ngm1)]+k2[1-exp(-g)]m2,  相似文献   

2.
The solubility of cyclooctasulfur in water and sea water at various temperatures in the range between 4 and 80 °C was determined. Cyclooctasulfur in equilibrium with rhombic sulfur reacted with hot acidic aqueous potassium cyanide to form thiocyanate anion which was measured by anion chromatography. Sulfur solubility in pure water was found to increase with temperature by more than 78 times: from 6.1 nM S8 at 4 °C to 478 nM S8 at 80 °C. The following thermodynamic values for solubilisation of S8 in water were calculated from the experimental data: K° = 3.01 ± 1.04 × 10−8, ΔGr° = 42.93 ± 0.73 kJ mol−1, ΔHr° = 47.4 ± 3.6 kJmol−1, ΔSr° = 15.0 ± 11.7 J mol−1 K−1). Solubility of cyclooctasulfur in sea water was found to be 61 ± 13% of the solubility in pure water regardless of the temperature.  相似文献   

3.
Solid phases of silicon dioxide react with water vapor with the formation of hydroxides and oxyhydroxides of silica. Recent transpiration and mass-spectrometric studies convincingly demonstrate that H4SiO4 is the predominant form of silica in vapor phase at water pressure in excess of 10−2 MPa. Available literature transpiration and solubility data for the reactions of solid SiO2 phases and low-density water, extending from 424 to 1661 K, are employed for the determination of ΔfG0, ΔfH0 and S0 of H4SiO4 in the ideal gas state at 298.15 K, 0.1 MPa. In total, there are 102 data points from seven literature sources. The resulting values of the thermodynamic functions of H4SiO4(g) are: ΔfG0 = −1238.51 ± 3.0 kJ mol−1, ΔfH0 = −1340.68 ± 3.5 kJ mol−1 and S0 = 347.78 ± 6.2 J K−1 mol−1. These values agree quantitatively with one set of ab initio calculations. The relatively large uncertainties are mainly due to conflicting data for H4SiO4(g) from various sources, and new determinations of would be helpful. The thermodynamic properties of this species, H4SiO4(g), are necessary for realistic modeling of silica transport in a low-density water phase. Applications of this analysis may include the processes of silicates condensation in the primordial solar nebula, the precipitation of silica in steam-rich geothermal systems and the corrosion of SiO2-containing alloys and ceramics in moist environments.  相似文献   

4.
The dissolution-precipitation of quartz controls porosity and permeability in many lithologies and may be the best studied mineral-water reaction. However, the rate of quartz-water reaction is relatively well characterized far from equilibrium but relatively unexplored near equilibrium. We present kinetic data for quartz as equilibrium is approached from undersaturation and more limited data on the approach from supersaturated conditions in 0.1 molal NaCl + NaOH + NaSiO(OH)3 solutions with pH 8.2-9.7 at 398, 423, 448, and 473 K. We employed a potentiometric technique that allows precise determination of solution speciation within 2 kJ mol−1 of equilibrium without the need for to perturb the system through physical sampling and chemical analysis. Slightly higher equilibrium solubilities between 423 and 473 K were found than reported in recent compilations. Apparent activation energies of 29 and 37 kJ mol−1 are inferred for rates of dissolution at two surface sites with different values of connectedness: dissolution at Q1 or Q2 silicon sites, respectively. The dissolution mechanism varies with ΔG such that reactions at both sites control dissolution up until a critical free energy value above which only reactions at Q1 sites are important. When our near-equilibrium dissolution rates are extrapolated far from equilibrium, they agree within propagated uncertainty at 398 K with a recently published model by Bickmore et al. (2008). However, our extrapolated rates become progressively slower than model predictions with increasing temperature. Furthermore, we see no dependence of the postulated Q1 reaction rate on pH, and a poorly-constrained pH dependence of the postulated Q2 rate. Our slow extrapolated rates are presumably related to the increasing contribution of dissolution at Q3 sites far from equilibrium. The use of the potentiometric technique for rate measurement will yield both rate data and insights into the mechanisms of dissolution over a range of chemical affinity. Such measurements are needed to model the evolution of many natural systems quantitatively.  相似文献   

5.
Experimental studies on the stability of several Mg-sulfate hydrates including epsomite (MgSO4·7H2O), hexahydrite (MgSO4·6H2O), starkeyite (MgSO4·4H2O), and kieserite (MgSO4·H2O) as a function of temperature and relative humidity are in poor agreement with calculations based on thermodynamic properties of these substances taken from the literature. Therefore, we synthesized four different MgSO4 hydrates and measured their enthalpies of formation by solution calorimetry at T = 298.15 K. The resulting enthalpies of formation from the elements are:
ΔfH0298 (epsomite) = −3387.7 ± 1.3 kJmol−1
ΔfH0298 (hexahydrite) = −3088.1 ± 1.1 kJmol−1
ΔfH0298 (sanderite, MgSO4·2H2O) = −1894.9 ± 1.3 kJmol−1
ΔfH0298 (kieserite) = −1612.4 ± 1.3 kJmol−1
Using mathematical programming (MAP) techniques, standard thermodynamic values consistent both with our calorimetric data and previously published humidity brackets could be derived:
Epsomite: ΔfH0298 = −3388.7 kJmol−1, S0298 = 371.3 Jmol−1 K−1, ΔfG0298 = −2871.0 kJmol−1
Hexahydrite: ΔfH0298 = −3087.3 kJmol−1, S0298 = 348.5 Jmol−1 K−1, ΔfG0298 = −2632.3 kJmol−1
Starkeyite: ΔfH0298 = −2496.1 kJmol−1, S0298 = 259.9 Jmol−1 K−1, ΔfG0298 = −2153.8 kJmol−1
Kieserite: ΔfH0298 = −1611.5 kJmol−1, S0298 = 126.0 Jmol−1 K−1, ΔfG0298 = −1437.9 kJmol−1
Additionally, heat capacity measurements and standard entropy determinations of several magnesium sulfate hydrate minerals from the literature are analyzed and judged against estimates obtained from a linear combination of the heat capacities of MgSO4 and hexagonal ice. The results of the MAP analysis are compared to these estimates to conclude that heat capacity and entropy correlate well with the number of waters of hydration. However, even the good correlation is not good enough to capture the fine variations in these properties. Consequently, their experimental measurement is inevitable if reliable thermodynamic data are sought. Our MAP thermodynamic data show that epsomite, hexahydrite, and kieserite have stability fields in the T-%RH space. Starkeyite is metastable. Although no MAP data could have been derived for pentahydrite (MgSO4·5H2O) and sanderite, their transient existence suggest that both of them are metastable as well.  相似文献   

6.
The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG° = −33 kJ mol−1, but the in situ energy yield strongly depends on the concentrations of substrates and products in the pore water of the sediment. In this work ΔG for the AOM-SRR process was calculated from the pore water concentrations of methane, sulfate, sulfide, and dissolved inorganic carbon (DIC) in sediment cores from different sites of the European continental margin in order to determine the influence of thermodynamic regulation on the activity and distribution of microorganisms mediating AOM-SRR. In the zone of methane and sulfate coexistence, the methane-sulfate transition zone (SMTZ), the energy yield was rarely less than −20 kJ mol−1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic and kinetic drive, whereas the rate activity mainly depends on kinetic regulation.  相似文献   

7.
Here we report on two separate ongoing, multi-year investigations on the dependence of the dissolution rate (R) of albite feldspar on fluid saturation state, as defined by the Gibbs free energy of reaction (ΔGr) for dissolution. The investigations are based on dissolution at pH 9.2, 150 °C and pH 3.3, 100 °C. Both studies reveal that the R–ΔGr relation is highly non-linear and sigmoidal. The kinetic data from the first study, being the most complete, can be fitted with a sigmoidal rate curve that is composed of two separate, parallel rate laws that represent distinct mechanisms of dissolution. The switch between one dominant mechanism and the other may be controlled by a critical free energy. The fact that in both studies the same type of sigmoidal R–ΔGr relation exists for dissolution at different pH and temperature condition suggests that this behavior may be universal for albite and other feldspars. Moreover, the experimental data contradict the commonly used R–ΔGr relation that is loosely based on transition state theory (TST). This has important implications with respect to the accuracy of geochemical codes that model water–rock interactions at near-equilibrium conditions.  相似文献   

8.
Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3 (r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.  相似文献   

9.
The leaching kinetics of chalcopyrite (CuFeS2) concentrate in sulfuric acid leach media with and without the initial addition of Fe3+ under carefully controlled solution conditions (Eh 750 mV SHE, pH 1) at various temperatures from 55 to 85 °C were measured. Kinetic analyses by (i) apparent rate (not surface area normalised), and rate dependence using (ii) a shrinking core model and (iii) a shrinking core model in conjunction with Fe3+ activity, were performed to estimate the activation energies (Ea) for Cu and Fe dissolution.The Ea values determined for Cu and Fe leaching in the absence of added Fe3+ are within experimental error, 80 ± 10 kJ mol−1 and 84 ± 10 kJ mol−1, respectively (type iii analyses Ea are quoted unless stated otherwise), and are indicative of a chemical reaction controlled process. On addition of Fe3+ the initial Cu leach rate (up to 10 h) was increased and Cu was released to solution preferentially over Fe, with the Ea value of 21 ± 5 kJ mol−1 (type ii analysis) suggestive of a transport controlled rate determining process. However, the rate of leaching rapidly decreased until it was consistently slower than for the equivalent leaches where Fe3+ was not added. The resulting Ea value for this leach regime of 83 ± 10 kJ mol−1 is within experimental error of that determined in the absence of added Fe3+. In contrast to Cu release, Fe release to solution was consistent with a chemical reaction controlled leach rate throughout. The Fe release Ea of 76 ± 10 kJ mol−1 is also within experimental error of that determined in the absence of added Fe3+. Where type (ii) and (iii) analyses were both successfully carried out (in all cases except for Cu leaching with added Fe3+, <10 h) the Ea derived are within experimental error. However, the type (iii) analyses of the leaches in the presence of added Fe3+ (>10 h), as compared to in the absence of added Fe3+, returned a considerably smaller pre-exponential factors for both Cu and Fe leach analyses commensurate with the considerably slower leach rate, suggestive of a more applicable kinetic analysis.XPS examination of leached chalcopyrite showed that the surface concentration of polysulfide and sulfate was significantly increased when Fe3+ was added to the leach liquor. Complementary SEM analysis revealed the surface features of chalcopyrite, most likely due to the nature of the polysulfide formed, are subtly different with greater surface roughness upon leaching in the absence of added Fe3+ as compared to a continuous smooth surface layer formed in the presence of added Fe3+. These observations suggest that the effect of Fe3+ addition on the rate of leaching is not due to the change in the chemical reaction controlled mechanism but due to a change in the available surface area for reaction.  相似文献   

10.
The oxygen isotope fractionation factor of dissolved oxygen gas has been measured during inorganic reduction by aqueous FeSO4 at 10−54 °C under neutral (pH 7) and acidic (pH 2) conditions, with Fe(II) concentrations ranging up to 0.67 mol L−1, in order to better understand the geochemical behavior of oxygen in ferrous iron-rich groundwater and acidic mine pit lakes. The rate of oxygen reduction increased with increasing temperature and increasing Fe(II) concentration, with the pseudo-first-order rate constant k ranging from 2.3 to 82.9 × 10−6 s−1 under neutral conditions and 2.1 to 37.4 × 10−7 s−1 under acidic conditions. The activation energy of oxygen reduction was 30.9 ± 6.6 kJ mol−1 and 49.7 ± 13.0 kJ mol−1 under neutral and acidic conditions, respectively. Oxygen isotope enrichment factors (ε) become smaller with increasing temperature, increasing ferrous iron concentration, and increasing reaction rate under acidic conditions, with ε values ranging from −4.5‰ to −11.6‰. Under neutral conditions, ε does not show any systematic trends vs. temperature or ferrous iron concentration, with ε values ranging from −7.3 to −10.3‰. Characterization of the oxygen isotope fractionation factor associated with O2 reduction by Fe(II) will have application to elucidating the process or processes responsible for oxygen consumption in environments such as groundwater and acidic mine pit lakes, where a number of possible processes (e.g. biological respiration, reduction by reduced species) may have taken place.  相似文献   

11.
We have used a direct imaging technique, in situ atomic force microscopy (AFM), to observe the dissolution of the basal biotite surface by oxalic acid over a range of temperatures close to ambient conditions, using a specially designed AFM liquid cell and non-invasive intermittent contact mode of operation. From the 3-dimensional nanometre-resolution data sets, we observe a process characterised by the slow formation of shallow etch pits in the (0 0 1) surface and fast growth of etch pits from the resulting steps, which represent proxies for the {h k 0} surface. Measurements of dissolution rates as a function of temperature allow a determination of an apparent activation energy (Ea,app) for the process, via mass-loss calculations from image analysis. We obtain a value of Ea,app = 49 ± 2 kJ mol−1, which is consistent with separate calculations based on planar area etch pit growth, and measurements of etch pit perimeters, indicating that this value of Ea,app is representative of {h k 0} surface dissolution. The measurement of etch pit perimeters also enables an estimation of apparent activation energy as a function of step density indicating substantially higher apparent activation energy, up to Ea,app = 140 kJ mol−1, on extrapolation towards a pristine surface with no defects. We suggest that this higher value of Ea,app represents the slow formation of etch pits into the (0 0 1) surface.  相似文献   

12.
To understand possible volcanogenic fluxes of CO2 to the Martian atmosphere, we investigated experimentally carbonate solubility in a synthetic melt based on the Adirondack-class Humphrey basalt at 1-2.5 GPa and 1400-1625 °C. Starting materials included both oxidized and reduced compositions, allowing a test of the effect of iron oxidation state on CO2 solubility. CO2 contents in experimental glasses were determined using Fourier transform infrared spectroscopy (FTIR) and Fe3+/FeT was measured by Mössbauer spectroscopy. The CO2 contents of glasses show no dependence on Fe3+/FeT and range from 0.34 to 2.12 wt.%. For Humphrey basalt, analysis of glasses with gravimetrically-determined CO2 contents allowed calibration of an integrated molar absorptivity of 81,500 ± 1500 L mol−1 cm−2 for the integrated area under the carbonate doublet at 1430 and 1520 cm−1. The experimentally determined CO2 solubilities allow calibration of the thermodynamic parameters governing dissolution of CO2 vapor as carbonate in silicate melt, KII, (Stolper and Holloway, 1988) as follows: , ΔV0 = 20.85 ± 0.91 cm3 mol−1, and ΔH0 = −17.96 ± 10.2 kJ mol−1. This relation, combined with the known thermodynamics of graphite oxidation, facilitates calculation of the CO2 dissolved in magmas derived from graphite-saturated Martian basalt source regions as a function of P, T, and fO2. For the source region for Humphrey, constrained by phase equilibria to be near 1350 °C and 1.2 GPa, the resulting CO2 contents are 51 ppm at the iron-wüstite buffer (IW), and 510 ppm at one order of magnitude above IW (IW + 1). However, solubilities are expected to be greater for depolymerized partial melts similar to primitive shergottite Yamato 980459 (Y 980459). This, combined with hotter source temperatures (1540 °C and 1.2 GPa) could allow hot plume-like magmas similar to Y 980459 to dissolve 240 ppm CO2 at IW and 0.24 wt.% of CO2 at IW + 1. For expected magmatic fluxes over the last 4.5 Ga of Martian history, magmas similar to Humphrey would only produce 0.03 and 0.26 bars from sources at IW and IW + 1, respectively. On the other hand, more primitive magmas like Y 980459 could plausibly produce 0.12 and 1.2 bars at IW and IW + 1, respectively. Thus, if typical Martian volcanic activity was reduced and the melting conditions cool, then degassing of CO2 to the atmosphere may not be sufficient to create greenhouse conditions required by observations of liquid surface water. However, if a significant fraction of Martian magmas derive from hot and primitive sources, as may have been true during the formation of Tharsis in the late Noachian, that are also slightly oxidized (IW + 1.2), then significant contribution of volcanogenic CO2 to an early Martian greenhouse is plausible.  相似文献   

13.
Most studies agree that the dissolution rate of aluminosilicates in the presence of oxalic and other simple carboxylic acids is faster than the rate with non-organic acid under the same pH. However, the mechanisms by which organic ligands enhance the dissolution of minerals are in debate. The main goal of this paper was to study the mechanism that controls the dissolution rate of kaolinite in the presence of oxalate under far from equilibrium conditions (−29 < ΔGr < −18 kcal mol−1). Two types of experiments were performed: non-stirred flow-through dissolution experiments and batch type adsorption isotherms. All the experiments were conducted at pH 2.5-3.5 in a thermostatic water-bath held at a constant temperature of 25.0, 50.0 or 70.0 ± 0.1 °C. Kaolinite dissolution rates were obtained based on the release of silicon and aluminum at steady state. The results show good agreement between these two estimates of kaolinite dissolution rate. At constant temperature, there is a general trend of increase in the overall dissolution rate as a function of the total concentration of oxalate in solution. The overall kaolinite dissolution rates in the presence of oxalate was up to 30 times faster than the dissolution rate of kaolinite at the same temperature and pH without oxalate as was observed in our previous study. Therefore, these rate differences are related to differences in oxalate and aluminum concentrations. Within the experimental variability, the oxalate adsorption at 25, 50, and 70 °C showed the same dependence on the sum of the activities of oxalate and bioxalate in solution. The change of oxalate concentration on the kaolinite surface (Cs,ox) as a function of the sum of the activities of the oxalate and bioxalate in solution may be described by the general adsorption isotherm:
  相似文献   

14.
Although iron isotopes provide a new powerful tool for tracing a variety of geochemical processes, the unambiguous interpretation of iron isotope ratios in natural systems and the development of predictive theoretical models require accurate data on equilibrium isotope fractionation between fluids and minerals. We investigated Fe isotope fractionation between hematite (Fe2O3) and aqueous acidic NaCl fluids via hematite dissolution and precipitation experiments at temperatures from 200 to 450 °C and pressures from saturated vapor pressure (Psat) to 600 bar. Precipitation experiments at 200 °C and Psat from aqueous solution, in which Fe aqueous speciation is dominated by ferric iron (FeIII) chloride complexes, show no detectable Fe isotope fractionation between hematite and fluid, Δ57Fefluid-hematite = δ57Fefluid − δ57Fehematite = 0.01 ± 0.08‰ (2 × standard error, 2SE). In contrast, experiments at 300 °C and Psat, where ferrous iron chloride species (FeCl2 and FeCl+) dominate in the fluid, yield significant fluid enrichment in the light isotope, with identical values of Δ57Fefluid-hematite = −0.54 ± 0.15‰ (2SE) both for dissolution and precipitation runs. Hematite dissolution experiments at 450 °C and 600 bar, in which Fe speciation is also dominated by ferrous chloride species, yield Δ57Fefluid-hematite values close to zero within errors, 0.15 ± 0.17‰ (2SE). In most experiments, chemical, redox, and isotopic equilibrium was attained, as shown by constancy over time of total dissolved Fe concentrations, aqueous FeII and FeIII fractions, and Fe isotope ratios in solution, and identical Δ57Fe values from dissolution and precipitation runs. Our measured equilibrium Δ57Fefluid-hematite values at different temperatures, fluid compositions and iron redox state are within the range of fractionations in the system fluid-hematite estimated using reported theoretical β-factors for hematite and aqueous Fe species and the distribution of Fe aqueous complexes in solution. These theoretical predictions are however affected by large discrepancies among different studies, typically ±1‰ for the Δ57Fe Fe(aq)-hematite value at 200 °C. Our data may thus help to refine theoretical models for β-factors of aqueous iron species. This study provides the first experimental calibration of Fe isotope fractionation in the system hematite-saline aqueous fluid at elevated temperatures; it demonstrates the importance of redox control on Fe isotope fractionation at hydrothermal conditions.  相似文献   

15.
Enthalpies of formation of ferrihydrite and schwertmannite were measured by acid solution calorimetry in 5 N HCl at 298 K. The published thermodynamic data for these two phases and ε-Fe2O3 were evaluated, and the best thermodynamic data for the studied compounds were selected.Ferrihydrite is metastable in enthalpy with respect to α-Fe2O3 and liquid water by 11.5 to 14.7 kJ•mol−1 at 298.15 K. The less positive enthalpy corresponds to 6-line ferrihydrite, and the higher one, indicating lesser stability, to 2-line ferrihydrite. In other words, ferrihydrite samples become more stable with increasing crystallinity. The best thermodynamic data set for ferrihydrite of composition Fe(OH)3 was selected by using the measured enthalpies and (1) requiring ferrihydrite to be metastable with respect to fine-grained lepidocrocite; (2) requiring ferrihydrite to have entropy higher than the entropy of hypothetical, well-crystalline Fe(OH)3; and (3) considering published estimates of solubility products of ferrihydrite. The ΔG°f for 2-line ferrihydrite is best described by a range of −708.5±2.0 to −705.2±2.0 kJ•mol−1, and ΔG°f for 6-line ferrihydrite by −711.0±2.0 to −708.5±2.0 kJ•mol−1.A published enthalpy measurement by acid calorimetry of ε-Fe2O3 was re-evaluated, arriving at ΔH°f (ε-Fe2O3) = −798.0±6.6 kJ•mol−1. The standard entropy (S°) of ε-Fe2O3 was considered to be equal to S° (γ-Fe2O3) (93.0±0.2 J•K−1•mol−1), giving ΔG°f (ε-Fe2O3) = −717.8±6.6 kJ•mol−1. ε-Fe2O3 thus appears to have no stability field, and it is metastable with respect to most phases in the Fe2O3-H2O system which is probably the reason why this phase is rare in nature.Enthalpies of formation of two schwertmannite samples are: ΔH°f (FeO(OH)0.686(SO4)0.157•0.972H2O) = −884.0±1.3 kJ•mol−1, ΔH°f (FeO(OH)0.664(SO4)0.168•1.226H2O) = −960.7±1.2 kJ•mol−1. When combined with an entropy estimate, these data give Gibbs free energies of formation of −761.3 ± 1.3 and −823.3 ± 1.2 kJ•mol−1 for the two samples, respectively. These ΔGf° values imply that schwertmannite is thermodynamically favored over ferrihydrite over a wide range of pH (2-8) when the system contains even small concentration of sulfate. The stability relations of the two investigated samples can be replicated by schwertmannite of the “ideal” composition FeO(OH)3/4(SO4)1/8 with ΔG°f = −518.0±2.0 kJ•mol−1.  相似文献   

16.
Vacuum evaporation experiments with Type B CAI-like starting compositions were carried out at temperatures of 1600, 1700, 1800, and 1900 °C to determine the evaporation kinetics and evaporation coefficients of silicon and magnesium as a function of temperature as well as the kinetic isotope fractionation factor for magnesium. The vacuum evaporation kinetics of silicon and magnesium are well characterized by a relation of the form J = JoeE/RT with Jo = 4.17 × 107 mol cm−2 s−1, E = 576 ± 36 kJ mol−1 for magnesium, Jo = 3.81 × 106 mol cm−2 s−1, E = 551 ± 63 kJ mol−1 for silicon. These rates only apply to evaporation into vacuum whereas the actual Type B CAIs were almost certainly surrounded by a finite pressure of a hydrogen-dominated gas. A more general formulation for the evaporation kinetics of silicon and magnesium from a Type B CAI-like liquid that applies equally to vacuum and conditions of finite hydrogen pressure involves combining our determinations of the evaporation coefficients for these elements as a function of temperature (γ = γ0eE/RT with γ0 = 25.3, E = 92 ± 37 kJ mol−1 for γSi; γ0 = 143, E = 121 ± 53 kJ mol−1 for γMg) with a thermodynamic model for the saturation vapor pressures of Mg and SiO over the condensed phase. High-precision determinations of the magnesium isotopic composition of the evaporation residues from samples of different size and different evaporation temperature were made using a multicollector inductively coupled plasma mass spectrometer. The kinetic isotopic fractionation factors derived from this data set show that there is a distinct temperature effect, such that the isotopic fractionation for a given amount of magnesium evaporated is smaller at lower temperature. We did not find any significant change in the isotope fractionation factor related to sample size, which we interpret to mean that recondensation and finite chemical diffusion in the melt did not affect the isotopic fractionations. Extrapolating the magnesium kinetic isotope fractionations factors from the temperature range of our experiments to temperatures corresponding to partially molten Type B CAI compositions (1250-1400 °C) results in a value of αMg ≈ 0.991, which is significantly different from the commonly used value of .  相似文献   

17.
The effect of pH and Gibbs energy on the dissolution rate of a synthetic Na-montmorillonite was investigated by means of flow-through experiments at 25 and 80 °C at pH of 7 and 9. The dissolution reaction took place stoichiometrically at 80 °C, whereas at 25 °C preferential release of Mg over Si and Al was observed. The TEM-EDX analyses (transmission electronic microscopy with quantitative chemical analysis) of the dissolved synthetic phase at 25 °C showed the presence of newly formed Si-rich phases, which accounts for the Si deficit. At low temperature, depletion of Si concentration was attributed to incongruent clay dissolution with the formation of detached Si tetrahedral sheets (i.e., alteration product) whereas the Al behaviour remains uncertain (e.g., possible incorporation into Al-rich phases). Hence, steady-state rates were based on the release of Mg. Ex situ AFM measurements were used to investigate the variations in reactive surface area. Accordingly, steady-state rates were normalized to the initial edge surface area (11.2 m2 g−1) and used to propose the dissolution rate law for the dissolution reactions as a function of ΔGr at 25 °C and pH∼9:
  相似文献   

18.
Atmospheric carbon dioxide is widely studied using records of CO2 mixing ratio, δ13C and δ18O. However, the number and variability of sources and sinks prevents these alone from uniquely defining the budget. Carbon dioxide having a mass of 47 u (principally 13C18O16O) provides an additional constraint. In particular, the mass 47 anomaly (Δ47) can distinguish between CO2 produced by high temperature combustion processes vs. low temperature respiratory processes. Δ47 is defined as the abundance of mass 47 isotopologues in excess of that expected for a random distribution of isotopes, where random distribution means that the abundance of an isotopologue is the product of abundances of the isotopes it is composed of and is calculated based on the measured 13C and 18O values. In this study, we estimate the δ13C (vs. VPDB), δ18O (vs. VSMOW), δ47, and Δ47 values of CO2 from car exhaust and from human breath, by constructing ‘Keeling plots’ using samples that are mixtures of ambient air and CO2 from these sources. δ47 is defined as , where is the R47 value for a hypothetical CO2 whose δ13CVPDB = 0, δ18OVSMOW = 0, and Δ47 = 0. Ambient air in Pasadena, CA, where this study was conducted, varied in [CO2] from 383 to 404 μmol mol−1, in δ13C and δ18O from −9.2 to −10.2‰ and from 40.6 to 41.9‰, respectively, in δ47 from 32.5 to 33.9‰, and in Δ47 from 0.73 to 0.96‰. Air sampled at varying distances from a car exhaust pipe was enriched in a combustion source having a composition, as determined by a ‘Keeling plot’ intercept, of −24.4 ± 0.2‰ for δ13C (similar to the δ13C of local gasoline), δ18O of 29.9 ± 0.4‰, δ47 of 6.6 ± 0.6‰, and Δ47 of 0.41 ± 0.03‰. Both δ18O and Δ47 values of the car exhaust end-member are consistent with that expected for thermodynamic equilibrium at∼200 °C between CO2 and water generated by combustion of gasoline-air mixtures. Samples of CO2 from human breath were found to have δ13C and δ18O values broadly similar to those of car exhaust-air mixtures, −22.3 ± 0.2 and 34.3 ± 0.3‰, respectively, and δ47 of 13.4 ± 0.4‰. Δ47 in human breath was 0.76  ± 0.03‰, similar to that of ambient Pasadena air and higher than that of the car exhaust signature.  相似文献   

19.
Rates of anaerobic respiration are of central importance for the long-term burial of carbon (C) in peatlands, which are a relevant sink in the global C cycle. To identify constraints on anaerobic peat decomposition, we determined detailed concentration depth profiles of decomposition end-products, i.e. methane (CH4) and dissolved inorganic carbon (DIC), along with concentrations of relevant decomposition intermediates at an ombrotrophic Canadian peat bog. The magnitude of in situ net production rates of DIC and CH4 was estimated by inverse pore-water modeling. Vertical transport in the peat was slow and dominated by diffusion leading to the buildup of DIC and CH4 with depth (5500 μmol L−1 DIC, 500 μmol L−1 CH4). Highest DIC and CH4 production rates occurred close to the water table (decomposition constant kd ∼ 10−3-10−4 a−1) or in some distinct zones at depth (kd ∼ 10−4 a−1). Deeper into the peat, decomposition proceeded very slowly at about kd = 10−7 a−1. This pattern could be related to thermodynamic and transport constraints. The accumulation of metabolic end-products diminished in situ energy yields of acetoclastic methanogenesis to the threshold for microbially mediated processes (−20 to −25 kJ mol−1 CH4). The methanogenic precursor acetate also accumulated (150 μmol L−1). In line with these findings, CH4 was formed by hydrogenotrophic methanogenesis at Gibbs free energies of −35 to −40 kJ mol−1 CH4. This was indicated by an isotopic fractionation αCO2-CH4 of 1.069-1.079. Fermentative degradation of acetate, propionate and butyrate attained Gibbs free energies close to 0 kJ mol−1 substrate. Although methanogenesis was apparently limited by some other factor in some peat layers, transport and thermodynamic constraints likely impeded respiratory processes in the deeper peat. Constraints on the removal of DIC and CH4 may thus slow decomposition and contribute to the sustained burial of C in northern peatlands.  相似文献   

20.
Despite reduced anthropogenic deposition during the last decades, deposition sulphate may still play an important role in the biogeochemical cycles of S and many catchments may act as net sources of S that may remain for several decades. The aim of this study is to elucidate the temporal and spatial dynamics of both SO42− and δ34SSO4 in stream water from catchments with varying percentage of wetland and forest coverage and to determine their relative importance for catchment losses of S. Stream water samples were collected from 15 subcatchments ranging in size from 3 to 6780 ha, in a boreal stream network, northern Sweden. In forested catchments (<2% wetland cover) S-SO42− concentrations in stream water averaged 1.7 mg L−1 whereas in wetland dominated catchments (>30% wetland cover) the concentrations averaged 0.3 mg L−1. A significant negative relationship was observed between S-SO42− and percentage wetland coverage (r2 = 0.77, p < 0.001) and the annual export of stream water SO42− and wetland coverage (r2 = 0.76, p < 0.001). The percentage forest coverage was on the other hand positively related to stream water SO42− concentrations and the annual export of stream water SO42− (r2 = 0.77 and r2 = 0.79, respectively). The annual average δ34SSO4 value in wetland dominated streams was +7.6‰ and in streams of forested catchments +6.7‰. At spring flood the δ34SSO4 values decreased in all streams by 1‰ to 5‰. The δ34SSO4 values in all streams were higher than the δ34SSO4 value of +4.7‰ in precipitation (snow). The export of S ranged from 0.5 kg S ha−1 yr−1 (wetland headwater stream) to 3.8 kg S ha−1 yr−1 (forested headwater stream). With an average S deposition in open field of 1.3 kg S ha−1 yr−1 (2002-2006) the mass balance results in a net export of S from all catchments, except in catchments with >30% wetland. The high temporal and spatial resolution of this study demonstrates that the reducing environments of wetlands play a key role for the biogeochemistry of S in boreal landscapes and are net sinks of S. Forested areas, on the other hand were net sources of S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号