首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文利用电子探针显微分析仪对来自冲绳海槽的海底玄武岩的基质结构及基质矿物成分进行了初步研究。电子探针下观察,海底玄武岩的基质只有在冷凝边处是纯玻璃质的,向内基质发生了不同程度的结晶作用。电子探针成分分析显示,基质矿物组成与斑晶矿物组成相同,均是由斜长石、辉石和橄榄石组成;与斑晶矿物相比基质斜长石贫Ca、富Na,基质辉石、橄榄石贫Mg、富Fe。  相似文献   

2.
中国西南乡城地区玻镁安山岩和伴生的高镁玄武岩及高铁玄武岩构成了晚三叠世义敦岛弧的下部弧火山序列。玻镁安山岩主要呈互层的枕状、块状和球颗状熔岩产出,以缺乏橄榄石和低钙辉石斑晶以及低CaO/Al  相似文献   

3.
报道了徐淮地区早白垩世埃达克质岩中首次发现的含橄榄石单斜辉石岩捕虏体的岩相学与矿物化学资料, 该类捕虏体显示堆积结构、块状构造, 主要由单斜辉石(~80%)、斜方辉石(~5%)、橄榄石(~5%)和普通角闪石(~10%)组成.橄榄石外侧发育有斜方辉石反应边, 角闪石沿辉石粒间分布, 呈嵌晶结构.矿物化学分析结果表明: 橄榄石的镁橄榄石分子值(Fo)=77.7~79.3, Ni=623×10-6~773×10-6; 斜方辉石的Mg#=75.6~80.2, Cr=161×10-6~684×10-6, Ni=79×10-6~708×10-6; 单斜辉石的Mg#=84.5~86.4, CaO=21.59%~23.13%, Al2O3=1.72%~2.44%.上述矿物与中、新生代玄武岩中橄榄石、斜方辉石和单斜辉石斑晶以及堆积成因辉石岩中的斜方辉石和单斜辉石成分类似.此外, 单斜辉石的稀土配分型式以相对富含中稀土元素的上凸型为特征, 稀土元素含量较低(∑REE=10.14×10-6~12.71×10-6), 无明显的铕异常(δEu=0.90~1.16), 类似于新生代玄武岩中单斜辉石斑晶.捕虏体中的普通角闪石的Mg#=74.0~80.4、SiO2=43.2%~44.5%、Na2O=2.04%~2.29%, 稀土元素分馏不明显, 显示亏损高场强元素(HFSEs, 如Nb、Ta、Zr、Hf), 富集Sr、Rb、Ba的特征, 与新生代玄武岩中角闪石捕虏晶成分不同.结合其嵌晶结构, 普通角闪石应是寄主岩浆贯入结晶的产物.综合上述特征, 可以看出含橄榄石单斜辉石捕虏体为镁铁质岩浆高压堆晶成因.结合华北克拉通东部早白垩世双峰式火山岩组合的出现, 推断含橄榄石单斜辉石岩捕虏体可能是早白垩世基性岩浆底侵的产物.   相似文献   

4.
报道了徐淮地区早白垩世埃达克质岩中首次发现的含橄榄石单斜辉石岩捕虏体的岩相学与矿物化学资料,该类捕虏体显示堆积结构、块状构造,主要由单斜辉石(~80%)、斜方辉石(~5%)、橄榄石(~5%)和普通角闪石(~10%)组成.橄榄石外侧发育有斜方辉石反应边,角闪石沿辉石粒间分布,呈嵌晶结构.矿物化学分析结果表明:橄榄石的镁橄榄石分子值(Fo)=77.7~79.3,Ni=623×10-6~773×10-6;斜方辉石的Mg#=75.6~80.2,Cr=161×10-6~684×10-6,Ni=79×10-6~708×10-6;单斜辉石的Mg#=84.5~86.4,CaO=21.59%~23.13%,Al2O3=1.72%~2.44%.上述矿物与中、新生代玄武岩中橄榄石、斜方辉石和单斜辉石斑晶以及堆积成因辉石岩中的斜方辉石和单斜辉石成分类似.此外,单斜辉石的稀土配分型式以相对富含中稀土元素的上凸型为特征,稀土元素含量较低(∑REE=10.14×10-6~12.71×10-6),无明显的铕异常(δEu=0.90~1.16),类似于新生代玄武岩中单斜辉石斑晶.捕虏体中的普通角闪石的Mg#=74.0~80.4、SiO2=43.2%~44.5%、Na2O=2.04%~2.29%,稀土元素分馏不明显,显示亏损高场强元素(HFSEs,如Nb、Ta、Zr、Hf),富集Sr、Rb、Ba的特征,与新生代玄武岩中角闪石捕虏晶成分不同.结合其嵌晶结构,普通角闪石应是寄主岩浆贯入结晶的产物.综合上述特征,可以看出含橄榄石单斜辉石捕虏体为镁铁质岩浆高压堆晶成因.结合华北克拉通东部早白垩世双峰式火山岩组合的出现,推断含橄榄石单斜辉石岩捕虏体可能是早白垩世基性岩浆底侵的产物.  相似文献   

5.
对近年来我国"大洋一号"科考船在西南印度洋中脊(SWIR)多金属硫化物调查区4个站位所获得的玄武岩进行了岩石学及元素地球化学研究。其岩相学特征为以斑状结构为主,斑晶矿物主要由斜长石、辉石和橄榄石组成。基质以间隐结构为主,主要由斜长石、橄榄石和辉石微晶组成。全岩元素地球化学分析结果表明样品属于亏损型洋中脊玄武岩。矿物化学成分表明斜长石主要为倍长石和拉长石,橄榄石为贵橄榄石。研究区玄武岩具低的Na8、K/Ti比值和LREE/HREE以及较高的Fe8值,可整体归入SWIR 49°E-70°E区指示岩浆熔融程度最高、熔融深度最深的区域内。本次研究为探索SWIR洋脊玄武岩和岩浆熔融等相关研究提供了49.6°E和50.5°E区的新资料,也指示了区内岩浆活动或成矿围岩物质来源的复杂性。  相似文献   

6.
克拉玛依西山的枕状玄武岩与浊积岩-凝灰岩共生,厚度大于400米的枕状玄武岩层被火山角砾岩-安山岩-硅质岩-凝灰岩覆盖,岩枕之间充填着硅质泥岩。锆石 SHRIMP 定年结果表明,枕状玄武岩可能在早寒武世形成(>517Ma,这套地层曾经一直被认为属于石炭系)。枕状玄武岩的稀土元素含量(117.4×10~(-6)~153.6×10~(-6))和配分模式与洋岛玄武岩(OIB)基本一致。枕状玄武岩中大离子亲石元素(Cs、Rb、Ba、K、Pb 和 Sr)的含量变化较大(明显偏离 OIB),高场强元素(Nb、Ta、Zr、Hf、Ti 和 P)相对 OIB 和原始地幔没有表现出明显异常[e.g.,(Nb/Ta)_(PM)=0.92~0.98,(Zr/Hf)_(PM)=1.08~1.18]。西准噶尔地区存在这套 OIB 型海相火山-沉积建造说明古亚洲洋在西准噶尔地区于寒武纪就已经存在。这套海相玄武岩岩枕中存在大量古元古代—新太古代(1883~2536Ma)岩浆锆石的事实说明,早古生代洋岛玄武岩岩浆源区存在古老大陆地壳物质。  相似文献   

7.
北祁连西段熬油沟组玄武岩地球化学特征及构造意义   总被引:1,自引:1,他引:0  
北祁连造山带是一典型的板块缝合带,其中镶嵌着众多大小不一的由前震旦系变质岩系组成微陆壳残块,为解析北祁连前造山构造过程提供了重要的研究载体。北祁连西段卡瓦—祁青一带分布有较为完整的中元古界长城系朱龙关群熬油沟组火山岩—碎屑岩—碳酸盐岩建造。岩石地球化学研究表明,熬油沟组玄武岩主量元素含量变化较为稳定,具高K_2O(4.27%~6.07%),TFe_2O_3(10.49%~13.01%),Ti O_2(1.96%~2.90%)以及中等的Mg O(5.37%~6.71%,Mg~#48~51),Ca O(2.57%~5.51%),为钾玄碱性玄武岩。岩石Cr和Ni含量随着Mg~#降低而减小、Ca O与Ca O/Al_2O_3呈正相关,明显富集轻稀土元素(LREE)和大离子亲石元素(LILE),轻微正Eu异常,高含量的高场强元素(Nb,Ta,Ti),以及元素对Gd/Yb(2.5~3.0),Zr/Y(8.6~10.2),Ta/Yb(0.96~1.23),Ti/Yb(5 074~6 021),Zr/Yb(81~97),Ce/Nb(1.87),Zr/Nb(6.41)值均揭示了熬油沟组玄武岩具有洋岛玄武岩(OIB)地球化学特征。结合区域地质背景研究表明,熬油沟组碱性玄武岩源于类似于OIB的深部富集地幔,在岩浆作用过程中发生过橄榄石和单斜辉石的分离结晶作用以及一定程度的大陆地壳物质的混染作用,形成于大陆裂谷背景,并认为其是对中元古代Columbia超大陆裂解的响应,进一步为中元古代华北克拉通裂解与Columbia超大陆裂解事件的关系提供了重要的岩石学证据。  相似文献   

8.
武尊火山岩下降液相线已被确定下来。矿物组合和斑晶的化学成分随基质(岩浆流体)化学成分的变化而系统地变化。随着基质SiO_2含量的增加结晶顺序如下:在SiO_2含量为53.5~57~*Wt%之间的岩浆中,橄榄石、紫苏辉石、普通辉石、斜长石及磁铁矿共生。SiO_2含量高于57Wt%的液体中橄揽石消失。普通辉石、紫苏辉石、磁铁矿和斜长石继续结晶,直到液体SiO_2的含量至少达到70Wt%。据估计,在分离结晶过程中结晶矿质的量为46Wt%(斜长石22;紫苏辉石6;普通辉石11;磁铁矿7),而岩浆中SiO_2含量的变化从57到70Wt%之间。依据斜长石与其它斑晶的估计比值和肉眼观察的斑晶模式成分比值之间的差值推出了在分离结晶作用过程中斜长石的堆积作用。随着基质SiO_2含量的增加,基质辉石组合依下列顺序变化:普通辉石 易变辉石→易变辉石→易变辉石 紫苏辉石→紫苏辉石。这一变化反映了岩浆标准透辉石含量的减少。分离结晶作用的化学和矿物学特点与日本其它一些岛弧拉斑玄武岩类似,尽管武尊火山的一些岩石标准透辉石含量稍低于其它一些火山的岩石,并且在SiO高于65Wt%的岩石中出现基质紫苏辉石。  相似文献   

9.
程石  周怀阳 《岩石学报》2019,35(11):3565-3577
人们对超慢速扩张洋中脊深部岩浆过程的了解至今仍十分模糊。我们对西南印度洋洋中脊(Southwest Indian Ridge,SWIR) 63. 9°E处采集到的斜长石超斑状玄武岩(Plagioclase Ultra-Phyric Basalt,PUB)进行了岩石学和地球化学研究。样品具有以下几个特征:斜长石斑晶的体积分数高达~25%,而橄榄石斑晶的体积分数约1%;尽管该样品中玻璃的成分与同一洋脊段玄武岩的成分基本一致,但高Fo橄榄石斑晶与玻璃基质的成分不平衡;不同类型的斜长石晶体之间存在成分差异,单个斜长石大斑晶中的An值也呈现出与正常的结晶分异过程不符的环带;斜长石斑晶中发育溶蚀、筛状等不平衡结构。因此,我们认为,斜长石超斑状玄武岩经历了多期次熔体的作用,是由通过密度分选聚集在岩浆房顶部的斜长石斑晶被之后的火山喷发带出海底形成。尽管斜长石超斑状玄武岩与同一洋脊段的非斑状玄武岩之间并不存在母熔体成分上的差别,但超斑状玄武岩的出现进一步反映了超慢速扩张洋壳岩浆活动的多样性。  相似文献   

10.
我国华北北部新近纪喷发的汉诺坝玄武岩,岩层出露比较完整,普遍含有超镁铁岩包体和各种高压巨晶。大麻坪代黄沟剖面出露较好,主要岩性为玄武岩,从上到下可分为上三、二、一层和底层。岩相学观察显示这些玄武岩含有1%~5%的捕虏晶且斑晶数量很少。橄榄岩包体为尖晶石二辉橄榄岩,轻稀土略微亏损,轻重稀土无分馏,显示这是只经过少量部分熔融后的原始地幔包体。通过对代黄沟碱性玄武岩中橄榄石、辉石和斜长石等斑晶或捕虏晶的矿物学分析,得出它们的成分变化是玄武岩混合了分解的地幔橄榄岩快速上升造成的。玄武岩的主量元素与二辉橄榄岩相平衡的原生熔体相比,Mg#(52.0~62.7)以及CaO(7.3%~8.5%)、Ni((82~192)×10-6)和Cr((65~192)×10-6)含量都较低。玄武岩的稀土分配模式为轻稀土富集的右倾型,δEu=1.01~1.05,δCe=0.95~1.02,富集高场强元素Nb、Ta、Zr及大离子亲石元素Ba、Sr。玄武岩痕量元素Ba/Rb和Rb/Sr的比值显示源区可能遭受过流体的交代作用。同时,痕量元素显示这一系列玄武岩主要受到部分熔融的控制,大量的结晶分异并未发生,且源区残留石榴子石。分析认为玄武岩岩浆应该是原生岩浆,而不是演化岩浆,影响整个岩浆的形成的过程可能是部分熔融而不是分离结晶。基于目前已发表的实验岩石学结果和理论分析认为汉诺坝玄武岩与辉石岩类相平衡,源区主要矿物相为单斜辉石和石榴子石,可能存在少量的橄榄石。  相似文献   

11.
Basaltic andesite flows erupted between 1973 and 1980 from Arenal Volcano contain abundant inclusions of anorthosite, olivine gabbro, and pyroxenites, and megacrysts of olivine and anorthite. The anorthosites with large (20 mm) anorthite grains (An96-92) exhibit deformation twinning and granulation between grain boundaries. Some olivine gabbros have angular clasts of anorthite with bent twins, pyroxene, and olivine in a finer-grained matrix which is distinctly foliated. These textural features suggest that these inclusions were deformed. An exotic (xenolithic) origin is supported in part by the mineral compositions and the estimated temperatures of equilibration: a temperature of about 975° C is obtained by two-pyroxene and Fe-Ti oxide geothermometers for the gabbros, but two-pyroxene temperatures are higher (1064 to 1120° C) for the basaltic andesite host. The olivine gabbro is thought to have crystallized at a pressure between 8.5 and 9.5 kb; whereas the lava phenocrysts crystallized at a much lower pressure of less than 5 kb. These xenoliths probably represent fragments of the lower crust below Arenal volcano. The lava flows show evidence for some contamination especially from fragments of anorthite broken apart from the larger megacrysts and xenoliths. A few phenocrysts of plagioclase in the lava samples have deformation twins. The unusually high Al2O3 content (19.4 to 23.2 wt%) of the lava samples can be attributed directly to the addition of anorthite; in fact the observed chemical variation in the lava flows (the increasing alumina and lime contents with decreasing silica) can be explained by this contamination.  相似文献   

12.
The least-altered, Permian mafic volcanic rocks from the Pang Mayao area, Phrao District, Chiang Mai Province, part of Chiang Rai–Chiang Mai volcanic belt, have been analyzed and are found to be mid-ocean ridge and ocean–island basalts. The mid-ocean ridge basalts occur as lava flows or dike rocks. They are equigranular, fine- to medium-grained and consist largely of plagioclase, clinopyroxene and olivine. These basalt samples are tholeiitic, and have compositions very similar to T-MORB from the region where the Du Toit Fracture Zone intersects the Southwest Indian Ridge. The ocean–island basalt occurs as pillow breccia, and lava flows or dike rocks. They are slightly to moderately porphyritic, with phenocrysts/microphenocrysts of clinopyroxene, olivine, plagioclase and/or Fe–Ti oxide. The groundmass is very fine-grained, and made up largely of felty plagioclase laths with subordinate clinopyroxene. These basalt samples are alkalic, and chemically analogous to those from Haleakala Volcano, Maui, Hawaiian Chain. These mafic volcanic rocks may have been formed in a major ocean basin rather than in a mature back-arc basin.  相似文献   

13.
The Aoyougou ophiolite lies in an early Palaeozoic orogenic belt of the western North Qilian Mountains, near the Aoyougou valley in Gansu Province, northwestern China. It consists of serpentinite, a cumulate sequence of gabbro and diorite, pillow and massive lavas, diabase and chert. Ages of 1840±2 Ma, 1783±2 Ma and 1784±2 Ma on three zircons from diabase, indicate an early Middle Proterozoic age. The diabases and basalts show light rare-earth element enrichment and have relatively high TiO2 contents, characteristic of ocean island basalts. All of the lavas have low MgO, Cr, Ni contents and Mg numbers indicating a more evolved character. They are believed to have been derived from a more mafic parental magma by fractionation of olivine, Cr-spinel and minor plagioclase. Based on the lava geochemistry and regional geology, the Aoyougou ophiolite was probably believed to have formed at a spreading centre in a small marginal basin. Subduction of the newly formed oceanic lithosphere in the Middle Proteroz  相似文献   

14.
Bulk rock major and trace element variations in selected basalts from the Famous area, in conjunction with a detailed study of the chemical compositions of phenocryst minerals and associated melt inclusions are used to place constraints on the genetic relationship among the various lava types. The distribution of NiO in olivine and Cr-spinel phenocrysts distinguishes the picritic basalts, plagioclase phyric basalts and plagioclase-pyroxene basalts from the olivine basalts. For a given Mg/Mg+Fe2+ atomic ratio of the mineral, the NiO content of these phenocrysts in the former three basalt types is low relative to that in the phenocrysts in the olivine basalts. The Zr/Nb ratio of the lavas similarly distinguishes the olivine basalts from the plagioclase phyric and plagioclase pyroxene basalts and, in addition, distinguishes the picritic basalts from the other basalt types. These differences indicate that the different magma groups could not have been processed through the same magma chamber, and preclude any direct inter-relationship via open or closed system fractional crystallization.The Fe-Mg partitioning between olivine and host rock suggests that the picritic basalts represent olivine (±Cr-spinel) enriched magmas, derived from a less MgO rich parental magma. The partitioning of Fe and Mg between olivine, Cr-spinel and coexisting liquid is used to predict a primary magma composition parental to the picritic basalts. This magma is characterized by relatively high MgO (12.3%) and CaO (12.6%) and low FeO* (7.96%) and TiO2 (0.63%).Least squares calculations indicate that the plagioclase phyric basalts are related to the plagioclase-pyroxene basalts by plagioclase and minor clinopyroxene and olivine accumulation. The compositional variations within the olivine basalts can be accounted for by fractionation of plagioclase, clinopyroxene and olivine in an open system, steady state, magma chamber in the average proportions 453223. It is suggested that the most primitive olivine basalts can be derived from a pristine mantle composition by approximately 17% equilibrium partial melting. Although distinguished by its higher Zr/Nb ratio and lower NiO content of phenocryst phases, the magma parental to the picritic basalts can be derived from a similar source composition by approximately 27% equilibrium partial melting. It is suggested that the parental magma to the plagioclase-pyroxene and plagioclase phyric basalts might have been derived from greater depth resulting in the fractionation of the Zr/Nb ratio by equilibration with residual garnet.C.O.B. Contribution No. 722  相似文献   

15.
位于贝加尔裂谷带通京盆地中的呼兰霍博克火山火山锥由火山弹、火山灰等火山碎屑岩和基性熔岩(橄榄玄武岩)组成.橄榄玄武岩中橄榄石可分为具有较高Mg#值的捕虏晶和Mg#值相对较低的斑晶.部分斜长石斑晶具有核.幔.边结构,且幔部发生减压分解,一些单斜辉石晶体(俘虏晶)边部发生了减压分解.根据岩石的化学成分,该玄武岩属于橄榄粗玄岩系列,轻稀土强烈富集,重稀土相对亏损,轻重稀土之间分异较大,具有与OIB相似的微量元素和同位素地球化学特征.岩石学和元素地球化学研究表明,该橄榄玄武岩的源区和岩浆的形成可能与地幔柱活动有关;岩浆演化经历了压力骤减的过程,在岩浆快速上升过程中,深部形成的矿物(可能是地幔矿物的俘虏晶)减压分解.快速上升的岩浆几乎未受大陆地壳的混染,仅捕获了少量流纹质熔体.  相似文献   

16.
<正>GRV 020175 is an Antarctic mesosiderite,containing about 43 vol%silicates and 57 vol% metal.Metal occurs in a variety of textures from irregular large masses,to veins penetrating silicates, and to matrix fine grains.The metallic portion contains kamacite,troilite and minor taenite.Terrestrial weathering is evident as partial replacement of the metal and troilite veins by Fe oxides.Silicate phases exhibit a porphyritic texture with pyroxene,plagioclase,minor silica and rare olivine phenocrysts embedded in a fine-grained groundmass.The matrix is ophitic and consists mainly of pyroxene and plagioclase grains.Some orthopyroxene phenocrysts occur as euhedral crystals with chemical zoning from a magnesian core to a ferroan overgrowth;others are characterized by many fine inclusions of plagioclase composition.Pigeonite has almost inverted to its orthopyroxene host with augite lamellae, enclosed by more magnesian rims.Olivine occurs as subhedral crystals,surrounded by a necklace of tiny chromite grains(about 2-3μm).Plagioclase has a heterogeneous composition without zoning. Pyroxene geothermometry of GRV 020175 gives a peak metamorphic temperature(~1000℃) and a closure temperature(~875℃).Molar Fe/Mn ratios(19-32) of pyroxenes are consistent with mesosiderite pyroxenes(16-35) and most plagioclase compositions(An_(87.5_96.6)) are within the range of mesosiderite plagioclase grains(An_(88-95)).Olivine composition(Fo_(53.8)) is only slightly lower than the range of olivine compositions in mesosiderites(Fo_(55-90)).All petrographic characteristics and chemical compositions of GRV 020175 are consistent with those of mesosiderite and based on its matrix texture and relatively abundant plagioclase,it can be further classified as a type 3A mesosiderite.Mineralogical, penological,and geochemical studies of GRV 020175 imply a complex formation history starting as rapid crystallization from a magma in a lava flow on the surface or as a shallow intrusion.Following primary igneous crystallization,the silicate underwent varying degrees of reheating.It was reheated to 1000℃,followed by rapid cooling to 875℃.Subsequently,metal mixed with silicate,during or after which,reduction of silicates occurred;the reducing agent is likely to have been sulfur.After redox reaction,the sample underwent thermal metamorphism,which produced the corona on the olivine, rims on the inverted pigeonite phenocrysts and overgrowths on the orthopyroxene phenocrysts,and homogenized matrix pyroxenes.Nevertheless,metamorphism was not extensive enough to completely reequilibrate the GRV 020175 materials.  相似文献   

17.
Small Islands south off Hahajima, the southernmost of the Ogasawara Archipelago, consist of primitive basalts (<12 wt.% MgO) to dacite erupted during the transitional stage immediately following boninite volcanism on the incipient arc to sustained typical oceanic arc. Strombolian to Hawaiian fissure eruptions occurring on independent volcanic centers for the individual islands under a shallow sea produced magnesian basalt to dacite fall-out tephras, hyaloclastite and a small volume of pillow lava, which were intruded by NE-trending dikes. These volcanic strata are correlated to the upper part (<40 Ma) of the Hahajima main island. Volcanic rock samples have slightly lower FeO*/MgO ratios than the present volcanic front lavas, and are divided into three types with high, medium and low La/Yb ratios. Basalt to dacite of high- and medium-La/Yb types show both tholeiitic (TH) and calc-alkaline (CA) differentiation trends. Low-La/Yb type belongs only to TH basalt. The multiple magma types are coexistence on the each island. TH basalts have phenocrysts of olivine, clinopyroxene and plagioclase, while CA basalts are free from plagioclase phenocrysts.  相似文献   

18.
Geochemical data from melt inclusions in olivine phenocrysts in a picritic basalt from the Siqueiros Transform Fault on the northern East Pacific Rise provide insights into the petrogenesis of mid-ocean ridge basalts (MORB). The fresh lava contains ~10% of olivine phenocrysts (Fo89.3-91.2) and rare, small (<1 mm) plagioclase phenocrysts with subhedral to irregular shapes with a range of compositions (An80-90, An57-63). Melt inclusions in olivine phenocrysts are glassy, generally rounded in shape and vary in size from a few to ~200 µm. Although most of the inclusions have compositions that are generally consistent with being representative of parental melts for the pillow-rim glasses, several inclusions are clearly different. One inclusion, which contains a euhedral grain of high-Al, low-Ti spinel, has a composition unlike any melt inclusions previously described from primitive phenocrysts in MORB. It has a very high Al2O3 (~20 wt%), very low TiO2 (~0.04 wt%) and Na2O (~1 wt%) contents, and a very high CaO/Na2O value (~14). The glass inclusion is strongly depleted in all incompatible elements (La =0.052 ppm; Yb =0.34; La/Sm(n) ~0.27), but it has large positive Sr and Eu anomalies (Sr/Sr* ~30; Eu/Eu* ~3) and a negative Zr anomaly. It also has low S (0.015 wt%) and relatively high Cl (180 ppm). We suggest that this unusual composition is a consequence of olivine trapping plagioclase in a hot, strongly plagioclase-undersaturated magma and subsequent reaction between plagioclase and the host olivine producing melt and residual spinel. Two other melt inclusions in a different olivine phenocryst have compositions that are generally intermediate between 'normal' inclusions and the aluminous inclusion, but have even higher CaO and Sr contents. They are also depleted in incompatible elements, but to a lesser degree than the aluminous inclusion, and have smaller Sr and Eu anomalies. Similar inclusions have also been described in high-Fo olivine phenocrysts from Iceland and northern Mid-Atlantic Ridge. We suggest that the compositions of these inclusions represent assimilation of gabbroic material into the hot primitive magma. The localised nature of this assimilation is consistent with it occurring within a crystal mush zone where the porosity is high as primitive magmas pass through earlier formed gabbroic 'cumulates'. In such an environment the contaminants are expected to have quite diverse compositions. Although the interaction of primitive melts with gabbroic material may not affect the compositions of erupted MORB melts on a large scale, this process may be important in some MORB suites and should be accounted for in petrogenetic models. Another important implication is that the observed variability in melt inclusion compositions in primitive MORB phenocrysts need not always to reflect processes occurring in the mantle. In particular, inferences on fractional melting processes based on geochemistry of ultra-depleted melt inclusions may not always be valid.  相似文献   

19.
Deccan volcanism with a tremendous burst of volcanic activity marks a unique episode in Indian geological history and covers nearly two third of Peninsular India. Occurrences of mafic sill in the continental basalts are rather rare throughout the flood basalt provinces and only few sporadic reports have been described from different Continental Flood Basalts of the world. In the present article, petrology of mafic sill from the Narshingpur-Lakhnadon section of Eastern Deccan province of India has been presented. The mafic sill in the field is found to occur in a relatively deep valley amidst Gondwana rocks, which occur as the basement of the extrusion. The sill is spatially associated with three initial flows viz. flow I, II and III of adjacent Narshingpur-Harrai-Amarwara section. The sill in its central part is a medium grained rock and petrographically corresponds to dolerite containing augite, plagioclase and rare olivine grains; the chilled facies of the sill is characterized by phenocrysts of olivine, plagioclase and augite that are set in groundmass consisting predominantly of plagioclase, olivine and glass. Mineral chemistry indicates that olivine phenocrystal phase is magnesian (Fo61). Plagioclase phenocrystal composition ranges from An 51 to An 71 whereas the same variation of the groundmass plagioclase composition corresponds to An 31 to An 62. The overlap in the compositions for groundmass and phenocrystal plagioclase may be explained due to fluctuating PH2O condition. The pyroxene compositions (both groundmass and phenocryst) in majority of the cases are clubbed well within the augite field, however, in a few cases, groundmass compositions are found to fall in the sub-calcic augite and pigeonite field. Some zoned pyroxene phenocrysts, characteristically display different types of zoning patterns. Opaque minerals in the mafic sill are found to be magnetite and ilmenite and this coexisting iron-oxide composition helps to constrain the prevalent fO2 condition in the parent magma. The geochemistry of the mafic sill and associated basaltic lava flows indicates close genetic link amongst them. Critical consideration of trace elements indicates a distinct enriched mantle source (EM-I/EM-II/HIMU) for the parental magma. Trace element modeling indicates that equilibrium batch-melting of plume source followed by fractionation of olivine, clinopyroxene and plagioclase and subsequent heterogeneous mixing of melt and settled crystals can very well explain the genesis of the mafic sill and the associated basaltic flows.  相似文献   

20.
Three genetically unrelated magma suites are found in the extrusivesequences of the Troodos ophiolite, Cyprus. A stratigraphicallylower pillow lava suite contains andesite and dacite glassesand shows the crystallization order plagioclase; augite, orthopyroxene;titanomagnetite (with the pyroxenes appearing almost simultaneously).These lavas can in part be correlated chemically and mineralogicallywith the sheeted dikes and the upper part of the gabbro complexof the ophiolite. The second magma suite is represented in astratigraphically upper extrusive suite and contains basalticandesite and andesite glasses with the crystallizaton orderchromite; olivine; Ca-rich pyroxene; plagioclase. This magmasuite can be correlated chemically and mineralogically withparts of the ophiolitic ultramafic and mafic cumulate sequence,which has the crystallization order olivine; Ca-rich pyroxene;orthopyroxene; plagioclase. The third magma suite is representedby basaltic andesite lavas along the Arakapas fault zone andshows a boninitic crystallization order olivine; orthopyroxene;Ca-rich pyroxene; plagioclase. One-atmosphere, anhydrous phaseequilibria experiments on a lava from the second suite indicateplagioclase crystallization from 1225?C, pigeonite from 1200?C,and augite from 1165?C. These experimental data contrast withthe crystallization order suggested by the lavas and the associatedcumulates. The observed crystallization orders and the presenceof magmatic water in the fresh glasses of all suites are consistentwith evolution under relatively high partial water pressures.In particular, high PH2O (1–3 kb) can explain the lateappearances of plagioclase and Ca-poor pyroxene in the majorityof the basaltic andesite lavas as the effects of suppressedcrystallization temperatures and shifting of cotectic relations.The detailed crystallization orders are probably controlledby relatively minor differences in the normative compositionsof the parental magmas. The basaltic andesite lavas are likelyto reach augite saturation before Ca-poor pyroxene saturation,whereas the Arakapas fault zone lavas, which have relativelyless normative diopside and more quartz, reached the Ca-poorpyroxene-olivine reaction surface and crystallized Ca-poor pyroxeneafter olivine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号