首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on treatment of landfill leachate in column experiments by immobilized Trametes versicolor on polyurethane foam, collected from Nonthaburi landfill site, Thailand. In this study, glucose was used as a co-substrate. The effect of biomass growth on color removal was observed by immobilizing fungi on polyurethane foam. The same immobilized fungi were used for four cycles of 5 days each to find the reuse of fungi. Leachate was diluted to see the effect of organic loading on color removal. At optimum pH of 4 and in 20 days with 3 g/L of glucose, the fungi could decolorize 78 % and 63 % for 5-times dilution and concentrated leachate, respectively, using immobilized fungi after 4 days initial growth. Fungi could also reduce biological oxygen demand and chemical oxygen demand of 52 % and 42 % (with initial biological oxygen demand and chemical oxygen demand of 48,900 and 96,512 mg/L), respectively, with glucose 3 g/L in concentrate leachate and with 4 days initial immobilization of fungi on polyurethane foam. About 1–6% higher color removal was observed on day 20 with 15 days fungi immobilization initially as compared to 4 days immobilization. Higher removal efficiency was observed for the same leachate after dilution due to reduction in organic loading. Addition of co-substrate enhances significantly removal of color, biological oxygen demand and chemical oxygen demand. Chemical oxygen demand removal reached to 0.6 mg/mg of biomass with the co-substrate. Therefore, white rot fungi can be considered as potentially useful microorganisms in landfill leachate treatment.  相似文献   

2.
Assessment of heavy metal pollution in surface water   总被引:4,自引:3,他引:1  
A total of 96 surface water samples collected from river Ganga in West Bengal during 2004–05 was analyzed for pH, EC, Fe, Mn, Zn, Cu, Cd, Cr, Pb and Ni. The pH was found in the alkaline range (7.21–8.32), while conductance was obtained in the range of 0.225–0.615 mmhos/cm. Fe, Mn, Zn, Ni, Cr and Pb were detected in more than 92% of the samples in the range of 0.025–5.49, 0.025–2.72, 0.012–0.370, 0.012–0.375, 0.001–0.044 and 0.001–0.250 mg/L, respectively, whereas Cd and Cu were detected only in 20 and 36 samples (0.001–0.003 and 0.003–0.032 mg/L). Overall seasonal variation was significant for Fe, Mn, Cd and Cr. The maximum mean concentration of Fe (1.520 mg/L) was observed in summer, Mn (0.423 mg/L) in monsoon but Cd (0.003 mg/L) and Cr (0.020 mg/L) exhibited their maximum during the winter season. Fe, Mn and Cd concentration also varied with the change of sampling locations. The highest mean concentrations (mg/L) of Fe (1.485), Zn (0.085) and Cu (0.006) were observed at Palta, those for Mn (0.420) and Ni (0.054) at Berhampore, whereas the maximum of Pb (0.024 mg/L) and Cr (0.018 mg/L) was obtained at the downstream station, Uluberia. All in all, the dominance of various heavy metals in the surface water of the river Ganga followed the sequence: Fe > Mn > Ni > Cr > Pb > Zn > Cu > Cd. A significant positive correlation was exhibited for conductivity with Cd and Cr of water but Mn exhibited a negative correlation with conductivity.  相似文献   

3.
《Applied Geochemistry》2005,20(8):1533-1545
Spring waters were analysed in the field by anodic stripping voltammetry, using equipment which is sufficiently portable to be useful in a remote heavily forested area accessible by foot only. The equipment and techniques are capable of producing analyses on site to the μg/L level for labile metals. Field analysis avoids issues of sample storage and transport protocols that limit confidence in laboratory measurements of labile elements. Samples were taken as a feedback to immediate analysis resulting in a fine grid map of the geological site. Acid rock drainage emanates from a New Zealand historic mine site, with elevated concentrations of metals. However, ground water and surface water discharging naturally from mineralised rocks in the same area also have elevated levels of metals. This study quantifies natural metalliferous discharges from a single site, and compares this to the overall metal flux from the mine area. Acid (pH 3) metalliferous springs emanate from colluvium and bedrock in a young (months-old) landslide. Labile Cu, Pb, Zn and Cd are the environmentally most significant metals in the studied area. Labile metal concentrations observed in the natural springs are up to 24 μg/L Cu, up to 50 μg/L Pb, up to 5 μg/L Cd and up to 9 mg/L Zn. Labile Cu and Zn concentrations are similar to laboratory-determined total concentrations, whereas labile Pb and Cd concentrations are generally distinctly lower than total Pb and Cd concentrations. Four different spring water compositions occur within metres of each other: acid metalliferous water with high Pb, acid metalliferous water with low Pb, high Cu, Pb, Zn acid water and high pH water with elevated Cu. High metal concentrations in these waters are readily attenuated by adsorption to Fe oxyhydroxides (HFO), especially when rain raises spring water pH at the surface. Copper, Pb and Cd are >99% adsorbed, and Zn >95% adsorbed, during this rainfall dilution. Natural spring waters have potential to contribute up to 10% of the total Zn flux from the catchment, but negligible proportions of Cu, Pb and Cd.  相似文献   

4.
The Swan Lake Inlet, the State Primary Wildlife Protection Area, is a lagoon-inlet system located in the Rongcheng Bay, Shandong Peninsula, China. It has been undergoing development for aquaculture and tourism. In the summer of 1999, a study on the environment of the Swan Lake Inlet was carried out. The concentrations of the major elements and trace elements Fe, Al, Pb, Zn, Cd, Cu, Cr, Mn and P have been measured by ICP-AES and graphite furnace atomic adsorption spectrometry. The sources and distribution of the elements in the Swan Lake Inlet have been discussed. It is concluded that the Swan Lake Inlet has not been subjected to significant environmental pollution. The chemical results show that the dissolved oxygen (DO) contents are generally normal. At some locations DO solubility appears to be >100 %. The BOD5 ( five-day biochemical oxygen demand) values are generally <4 mg/L and COD (chemical oxygen demand) 3~4 mg/L. The seawater N, P and Si contents are lower than the Class I water type specified by the Chinese National Standard of Water Quality. The low nutrient distribution reflects little discharge from land, therefore lacking of nutrient supply.  相似文献   

5.
Due to the explosive industrialization and rapid expansion of the population in many parts of the world, heavy metals are released into the environment continuously and pose a great risk on human health. Street dust and surface soil samples from very heavy, heavy, medium and low traffic areas and a natural site in Tehran, Iran, were analyzed for some physicochemical features, total and chemical fractionating of selected metals (Zn, Al, Sr, Pb, Cu, Cr, Cd, Co, Ni and V) to investigate the influence of traffic on their mobility and accumulation in the environment. The pH, electrical conductivity (EC), carbonates and organic carbon contents were similar in soil and dust samples from the areas with same traffic. The traffic increases EC contents in dust/soil matrixes, but has no effect on concentrations of metals in soil samples. Rises in metal levels with traffic were found in dust samples. Moreover, the traffic increases the percentage of both acid-soluble and reducible fractions, which are related to Pb and Zn. The mobilization of Cu, Zn, Pb, Cr in dust samples was easier than in soil. The speciation of metals except Cd is mainly affected by physicochemical features in soil, though total metals affected the speciation in dust samples (except chromium and nickel).  相似文献   

6.
A geochemical assessment of groundwater quality and possible contamination in the vicinity of the Bhalswa landfill site was carried out by using a hydrochemical approach with graphical and multivariate statistical methods with the objective of identifying the occurrence of various geochemical processes and understanding the impact of landfill leachates on groundwater quality. Results indicate that nitrate, fluoride and heavy-metal pollution are in an alarming state with respect to the use of groundwater for drinking purposes. Various graphical plots and statistical analyses have been applied to the chemical data based on the ionic constituents, water types, and hydrochemical facies to infer the impact of the landfill on groundwater quality. The statistical analysis and spatial and temporal variations indicate the leaching of contaminants from the landfill to the groundwater aquifer system. The concentrations of heavy metals in the landfill leachates are as follows: Fe (22 mg/l), Mn (~20 mg/l), Cu (~10 mg/l), Pb (~2 mg/l), Ni (0.25 mg/l), Zn (~10 mg/l), Cd (~0.2 mg/l), Cl (~4,000 mg/l), SO42− (~3,320 mg/l), PO43− (~4 mg/l), NO3 (30 mg/l) and fluoride (~50 mg/l); all were much higher than the standards. The study reveals that the landfill is in a depleted phase and is affecting groundwater quality in its vicinity and the surrounding area due to leaching of contaminants.  相似文献   

7.
《Applied Geochemistry》1999,14(5):621-633
Forms of Pb, Zn and Cd in the different size fractions (<2 μm, 2–53 μm and >53 μm) of waste dumps, stream sediments and surrounding soils from a former Au mine in Korea, were investigated chemically by sequential extraction analysis and mineralogically by XRD and analytical SEM, so as to clarify the relationships between chemical and mineralogical forms. Total concentrations for the waste dumps and the stream sediments range from 655 to 2920 mg/kg for Pb, 565 to 1191 mg/kg for Zn, and 24.4 to 71.4 mg/kg for Cd, while those for the surrounding soils do not exceed the natural background levels. Direct observations on the heavy mineral fractions of the waste dumps and the stream sediments indicates that the primary sphalerite is still the main pool of the Zn and Cd, while a large part of the primary galena has been changed into a carbonate-bound form. This is in a good agreement with the partitioning of chemical forms in the coarse fractions, in which most of the Zn (75.3 to 79.4% for the waste dumps) and Cd (54.8 to 60.1% for the waste dumps) are associated with the oxidizable form, while most of the Pb (68.8 to 71.0% for the waste dumps) is in the acid (NaOAc)-extractable form. On the other hand, the partitioning of metal forms in the clay fraction is characterised by the highest proportion of the reducible form for all metals (56.6 to 73.8% for Pb, 60.2 to 68.4% for Zn, and 27.1 to 36.8% for Cd in the waste dumps), suggesting precipitation of easily to moderately reducible oxides and hydroxides from the other forms during weathering. With the increase of pH, the dramatic changes of the acid-extractable Pb, the oxidizable Zn and Cd in the coarse fractions, and the exchangeable form, especially for Cd in the clay fraction indicate that pH is the prime factor controlling the partitioning of heavy metals.  相似文献   

8.
Multi-matrix environmental monitoring was used to evaluate the influence of a municipal solid waste landfill (Ginestreto, Emilia Romagna, Italy) on the level and distribution of heavy elements in the surrounding environment (air, soil and soil biota). Concentrations of As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Tl and Zn were measured by inductively coupled plasma-mass spectrometry in transplanted lichens, topsoils and isopods. The highest accumulation levels found for Cd, Cr, Pb, Sb and Zn in lichens transplanted within the Ginestreto landfill. However, similar concentrations of these heavy elements were also found in lichens exposed in monitoring sites influenced by other man-made sources, such as vehicle traffic and truck movements. The fallout of heavy elements emitted by the landfill had low impact on their levels in topsoil: Cd, Cr, Pb, Sb and Zn showed higher contents in topsoil collected close to the landfill and a slight decrease in concentrations with increasing distance from the landfill. There was no variation in heavy element accumulation in isopods in relation to distance from the landfill. The results of this study indicate that the Ginestreto municipal solid waste landfill had limited impact on the environmental distribution of heavy elements, since accumulation and enrichment in lichens and topsoils were only detected close to the landfill, up to about 100 m from its border.  相似文献   

9.
The impact of waste disposal on trace metal contamination was investigated in eleven wetlands in the Lake Victoria Basin. Samples of soil, water and plants were analysed for total Zn, Cu, Pb and Ni concentrations using flame atomic absorption spectrophotometry. The trace metal concentrations in soil were the highest in Katanga wetland with the highest mean concentrations of 387.5±86.5 mg/kg Zn, 171.5±36.2 mg/kg Pb, 51.20±6.69 mg/kg Cu and 21.33±2.23 mg/kg Ni compared to the lowest levels observed at Butabika (30.7±3.2 mg/kg Zn, 15.3±1.7 mg/kg Pb, 12.77±1.35 mg/kg Cu and 6.97±1.49 mg/kg Ni). Katanga receives waste from multiple industrial sources including a major referral city hospital while Butabika is a former solid waste dumpsite. Wetland soil near a copper smelter had a Cu concentration of 5936.3±56.2 mg/kg. Trace metal concentrations in industrial effluents were above international limits for irrigation water with the highest concentrations of 357,000 μg/L Cu and 1480 μg/L Zn at a Cu smelter and 5600 μg/L Pb at a battery assembling facility compared to the lowest of 50 μg/L Cu and 50 μg/L Zn in water discharged from Wakaliga dumpsite. Uptake of trace metals from soil differed from plant to plant and site to site. Higher levels of trace metals accumulated in the root rather than in the rhizome and the least amount was in the leaf. The study identifies industry as a potential source of trace metal contamination of water and the environment pent-up need for policy intervention in industrial waste management.  相似文献   

10.
Guiyang is a famous tourist city located in southwestern China. In this study, dust from eleven residential areas, seven city squares, and nine schools was collected to measure the heavy metal levels and evaluate its risk. At each sampling site, 4-5 sub-samples were taken as a bulk sample. All samples were air-dried, ground, passed through a 0.105 mm nylon sieve, digested with HNO3-HC104 to determine the concentrations of Cd, Cu, Ni, Pb and Zn by ICP-MS, and digested with 1:1 aqua regia to determine As by AFS. The results show that the concentrations of As, Cd, Cu, Ni, Pb and Zn in dust of Guiyang City follow normal distribution with means of 16.1, 1.54, 138, 47.7, 129 and 479 mg/kg, respectively. Levels of As, Cd, Cu, Ni, Pb and Zn exceed the background level of soil in Guizhou Province by 33%, 96%, 100%, 78%, 96%, and 100%, respectively. Cd, Cu, Pb and Zn are heavily accumu- lated in dust of living areas with accumulation factors of 4.10, 5.12, 4.12 and 5.51, respectively. City square pos- sesses the highest geometric means of As, Cd, Cu, Pb, and Zn. The risks of heavy metal exposure to teenagers are not obvious and in an order ofAs〉Pb〉Cu〉Ni〉Zn (Cd).  相似文献   

11.
Heavy metal accumulation due to industrial activities has become a very sensitive issue for the survival of the aquatic life. Therefore, distributions of several heavy metals have been studied in the surface sediments of Tapti–Hazira estuary, Surat, to assess the impact of anthropogenic and industrial activities near estuary. Totally 60 sediment samples were collected from four different sites at Tapti–Hazira estuary, Surat from January 2011 to May 2011 and examined for metal contents. The average heavy metal load in the study area are found to be 43.28–77.74 mg/kg for Pb, 48.26–72.40 mg/kg for Cr, 117.47–178.80 mg/kg for Zn, 71.13–107.82 mg/kg for Ni, 123.17–170.52 mg/kg for Cu, 0.74–1.25 mg/kg for Cd, 14.73–21.69 mg/kg for Co. Calculated enrichment factors (EF) reveal that enrichment of Pb and Cd is moderate at all sites, whereas other metals Cr, Ni, Zn, Co, and Cu show significant to very high enrichment. Geo-accumulation index (I geo) results revealed that the study area is nil to moderately contaminated with respect to Cd, moderately to highly polluted with respect to Pb, Zn, and Cu and high to very highly polluted with respect to Co and Cr.  相似文献   

12.
In the aquatic system, heavy metals always exist in a number of physico-chemical forms: particulate (Cp), soluble which consists of labile (MALI) and bound (inorganic MAb and organic MLb). The environmental behaviors of a metal are critically dependent on these forms. In this paper, the forms of heavy metals in waters from the Changjiang River source to mainstream and lakes were determined by ASV method. The main results are as follows: 1. The total contents (Ct) of Zn, Pb, Cu and Cd in the source were 4.0, 1.88, 1.28 and 0.07 (g/L) respectively, while Ct (g/L) in the mainstem were in the order of Zn (20.1) > Cu (14.9) > Pb (6.73) > Cd (0.15). Ct (g/L) in Dianchi Lake were Zn (7.2) > Pb (0.72) > Cu (0.53) > Cd (0.05), and in Poyang Lake were Zn (12.5) > Pb (4.2) > Cu (3.4) > Cd (0.05), and in Poyang Lake were Zn (12.5) > Pb (4.2) > Cu (3.4) > Cd (0.05). However, most of them were presented as Cp. Their dissolved contents (Cs, /L) were lower. 2. The distribution of soluble forms was related to the type of metal and to environmental variables. In general, Zn and Cd have a tendency to be present in MALi, Pb in MAb and Cu in MLb.  相似文献   

13.
High-silica (SiO2 > 70 wt.%) granites (HSGs) are the main source of W, Sn, and rare metals. However, abundant HSGs, temporally, spatially, and genetically associated with Pb–Zn mineralization, in the Lhasa terrane (LT), provided an ideal opportunity to study the key factors responsible for Pb–Zn enrichment, instead of W–Sn enrichment. Here we contribute to this topic through U-Pb dating of zircon and garnet, and whole-rock and Sr–Nd–Hf isotopic geochemistry of ore-related quartz porphyries in the Bangbule deposit and compared these results with published data from large and giant Pb–Zn and W deposits in the LT. The magmatism-alteration-mineralization event in the Bangbule deposit was recorded by robust zircon U–Pb ages of 77.3 ± 0.9 Ma and hydrothermal garnet U–Pb ages of 75.7 ± 4.8 Ma, which is 10–15 Ma earlier than the main Paleocene metallogenic event and the first record of late Cretaceous Pb–Zn polymetallic mineralization in the LT. The late Cretaceous-Paleocene magmatism and mineralization events are a response to the subduction of Neotethyan oceanic lithosphere, which occurred as a result of the collision of the Indian and Asian plates. These HSGs related to Pb–Zn mineralization, with high total-alkalis and low magnesian contents, are enriched in Ba, Th, and Rb, but depleted in Ti, Eu, Sr, and P. They belong to either the S-type, or I-type granites. The Sr–Nd–Hf isotopic compositions of the Pb–Zn mineralized granites demonstrate that they were generated by the partial melting of Proterozoic basement with or without mantle-derived melt input. This was consistent with the postulated source of W enrichment in the LT. The Pb–Zn and W related granites have similar zircon-Ti-saturation temperatures, comparable low whole-rock Fe2O3/FeO ratios, and zircon oxygen fugacity. This indicated that the Pb–Zn–W enrichment in the high-silica magma system could be attributed to a relatively reduced magma. The Pb–Zn related HSGs, abundant quartz and feldspar phenocrysts, and weak fractionation of twin-elements in whole-rock analysis, can be used to reconstruct a model of the magma reservoir. We postulate that these features could be reproduced by silica-rich crystal accumulation in a magma reservoir, with a loss of magmatic fluids. The magma associated with W mineralization exhibited a higher level of differentiation compared to the Pb–Zn related magma; however, different groups of zircon texture with varying rare earth elements and concomitance of rare earth elements tetrad effect and high fractionation of twin-elements in whole-rock are formed by a magmatic-hydrothermal transition in highly evolved system. As the source and oxygen fugacities of the Pb–Zn and W related magmas are similar, the absence of a giant W–Sn deposit in the LT may indicate that parent magmas with a low degree of evolution and magmatic-hydrothermal transition are not conducive to their formation. This implies that the rocks that originated as highly evolved silicate-rich parent magmas, with a high degree of magmatic-hydrothermal alteration, would need to be targeted for W–Sn mineral exploration in the LT. In summary, our results emphasize that variations in chemical differentiation and the evolution of high-silica magmatic-hydrothermal systems can lead to differences in Pb–Zn and W enrichment. This has implications for the evaluation of the mineral potential of high-silica granites and hence their attractiveness as targets for mineral exploration.  相似文献   

14.
This research is focused on evaluating heavy metals (Cd, Cu, Fe, Mn, Pb, and Zn) uptake and removal by Eleocharis ovata, Cyperus manimae, Typha dominguensis, and Pteridium aquilinum in a natural wetland impacted by mining activities. We analyzed heavy metals content and distribution in native plants, soils, and water of a semipermanent natural wetland in Taxco de Alarcón, Guerrero, and we also determined the physicochemical characteristics of the water. Translocation factor (TF) and bioconcentration factor (BCF) were evaluated. Results showed that physical and chemical conditions are favorable for plants development. Correlation analysis showed a good and positive relation (0.95) between Cu and Pb in soils and plants. In the analyzed matrices: Zn (0.62–2.20 mg/L) exceeded the permissible limits in water, high concentrations of Pb and Zn (26.57–525.67 and 266.67–983.33 mg/kg, respectively) were detected in the studied soils, and Pb exceeded the normal range for E. ovata and P. aquilinum in the analyzed plants. Uptake of heavy metals in the tissues of different species was found in the following order: root > leaf. Data of TF and BCF showed that E. ovata is a tolerant plant with respect to heavy metals exposure since TF value was greater than 1. This study showed that E. ovata could be considered as a bioaccumulator of heavy metals in contaminated soils.  相似文献   

15.
云蒙湖表层沉积物重金属分布特征及风险评价   总被引:1,自引:0,他引:1  
为了解云蒙湖表层沉积物中重金属的污染状况,选取云蒙湖沉积物中6种重金属(Cu、Zn、Pb、Cr、Cd、As)作为研究对象,测定并分析其在云蒙湖表层沉积物中的分布、来源及生态风险,以期为云蒙湖沉积物中重金属污染治理及饮用水安全保障提供依据。采用富集系数法、相关性分析及聚类分析对重金属来源进行分析,并选用富集系数法、地累积指数法和潜在生态危害指数法对重金属污染程度及潜在生态危害进行了评价。结果表明:云蒙湖表层沉积物中6种重金属Cu、Zn、Pb、Cr、Cd、As平均含量分别为20.9、73.1、23.1、62.0、0.4和4.5 mg/kg;与临沂市土壤背景比较,Cd、Zn和Cr的含量超过临沂市土壤背景值,Cd污染最严重。重金属来源分析结果显示:Cd受人类活动影响较大,可能与区域农业和林业施肥有关;Cu、Zn、Pb、Cr和 As这几种重金属以自然来源为主。综合富集系数法、地累积指数法和潜在生态危害指数法3种评价方法的结果得出,云蒙湖表层沉积物中Cd 为最主要的污染元素,且具有较强的生态危害。  相似文献   

16.
The distribution of trace metals in active stream sediments from the mineralized Lom Basin has been evaluated. Fifty-five bottom sediments were collected and the mineralogical composition of six pulverized samples determined by XRD. The fine fraction (<?150 µm) was subjected to total digestion (HClO4?+?HF?+?HCl) and analyzed for trace metals using a combination of ICP-MS and AAS analytical methods. Results show that the mineralogy of stream sediments is dominated by quartz (39–86%), phyllosilicates (0–45%) and feldspars (0–27%). Mean concentrations of the analyzed metals are low (e.g. As?=?99.40 µg/kg, Zn?=?573.24 µg/kg, V?=?963.14 µg/kg and Cr?=?763.93 µg/kg). Iron and Mn have significant average concentrations of 28.325 and 442 mg/kg, respectively. Background and threshold values of the trace metals were computed statistically to determine geochemical anomalies of geologic or anthropogenic origin, particularly mining activity. Factor analysis, applied on normalized data, identified three associations: Ni–Cr–V–Co–As–Se–pH, Cu–Zn–Hg–Pb–Cd–Sc and Fe–Mn. The first association is controlled by source geology and the neutral pH, the second by sulphide mineralization and the last by chemical weathering of ferromagnesian minerals. Spatial analysis reveals similar distribution trends for Co–Cr–V–Ni and Cu–Zn–Pb–Sc reflecting the lithology and sulphide mineralization in the basin. Relatively high levels of As were concordant with reported gold occurrences in the area while Fe and Mn distribution are consistent with their source from the Fe-bearing metamorphic rocks. These findings provide baseline geochemical values for common and parallel geological domains in the eastern region of Cameroon. Although this study shows that the stream sediments are not polluted, the evaluation of metal composition in environmental samples from abandoned and active mine sites for comparison and environmental health risk assessment is highly recommended.  相似文献   

17.
甘肃嘉峪关市表层土壤重金属空间分布与评价   总被引:1,自引:0,他引:1  
为研究嘉峪关市重金属分布对环境的影响,分析了嘉峪关市表层土壤重金属分布和含量变化,并评价其富集程度,判断其来源和影响因素。采用电感耦合等离子体质谱仪(ICP-MS)测量嘉峪关市134个表层土壤样品中六种重金属元素(Cr、Cd、Cu、Pb、Ni、Zn)的含量,其平均含量分别为281.6 mg/kg、0.35 mg/kg、60.68 mg/kg、51.39 mg/kg、108.65 mg/kg、161.0 mg/kg。在土壤重金属含量空间分布的基础上,用内梅罗指数法和地累积指数法对研究区土壤重金属富集程度进行了评价,六种元素地累积指数排序依次为: Cr > Cd > Pb > Cu > Zn > Ni,各功能区重金属元素整体富集程度依次为工业区 > 戈壁 > 生活区 > 农业区。戈壁采样点重金属元素含量(除Ni外)高于农业区,除工业因素外,地表植被的缺失加剧了戈壁地区重金属元素的富集。结合主成分分析,重金属元素空间展布,及内梅罗指数评价和地累积指数评价,分析了各元素可能的来源,认为Cr、Zn主要来自以钢铁生产加工为主的工业源,Cd、Cu、Pb来自于交通源,Ni可能与钢铁生产或当地背景值有关。通过分析嘉峪关市土壤重金属分布情况,以期为改善当地土壤质量提供科学依据,为我国西北地区土壤重金属的研究提供参考。  相似文献   

18.
《Applied Geochemistry》2006,21(4):563-579
Element concentrations, element ratios and Pb and Zn isotope data are reported for different geologic samples (barren and ore-bearing granites and host rocks), technogenic products (ore concentrates and tailings) and biologic samples (lichens and birch leaves) from the Orlovka–Spokoinoe mining district, Eastern Transbaikalia, Russia, with the aim to trace the sources of Pb and Zn at a local level within the mining site. Lichens and birch leaves were used as receptors of contamination within the mining site. Pb/Zr and Zn/Zr values indicated Pb and Zn enrichment relative to host rocks. Zn isotope data of 15 geologic and 11 lichen samples showed different Zn isotopic signatures with the total range for the geologic suite of −0.4‰ to +1.2‰ and for lichens of +0.4‰ to +1.4‰ in δ66Zn relative to Lyon JMC Zn standard. The source of isotopically heavy Zn within the Orlovka–Spokoinoe mining site could be potentially associated with long-range atmospheric aerosols that also contributed Pb to the studied mining site. Our results demonstrated that Zn isotopes might be used as new tools for Zn source assessment.  相似文献   

19.
Continuous upflow anaerobic sludge blanket reactor performs more favorably at the higher organic loading rate than other anaerobic treatment. The treatment of municipal landfill leachate of Shiraz??s city investigated using continuous flow anaerobic reactor and subsequently aerated lagoon. Landfill leachate has chemical oxygen demand of 45,000?C90,000?mg/L and ammonia nitrogen at 1,000?C2,500 and heavy metals that can impact biological treatments. Capacity of anaerobic and aerobic reactors is 10 and 20?L that operated at detention time of 2 and 4?days, respectively. Organic loading rate of upflow anaerobic sludge blanket is between 0.5?C20?g chemical oxygen demand/L/day. Chemical oxygen demand removal efficiencies are between 57?C87, 35?C70 and 66?C94% in the anaerobic, aerobic and whole system, respectively. As the entry, leachate organic loading rate increased from 1 to 20?g/L/day, the chemical oxygen demand removal efficiency reached a maximum of 71% and 84% in the anaerobic reactor and whole system, respectively, at high organic loading rate. Ammonium removal efficiency was about 54% after the aerobic stage.  相似文献   

20.
The heavy metal contents of Mn, Ni, Cu, Zn, Cr, Co, Pb, Cd, Fe, and V in the surface sediments from five selected sites of El Temsah Lake was determined by graphite furnace atomic absorption spectrophotometer. Geochemical forms of elements were investigated using four-step sequential chemical extraction procedure in order to identify and evaluate the mobility and the availability of trace metals on lake sediments, in comparison with the total element content. The operationally defined host fractions were: (1) exchangeable/bound to carbonate, (2) bound to Fe/Mn oxide, (3) bound to organic matter/sulfides, and (4) acid-soluble residue. The speciation data reveals that metals Zn, Cd, Pb, Ni, Mn, Cu, Cr, Fe, and V are sink primarily in organic and Fe–Mn oxyhydroxides phases. Co is mainly concentrated in the active phase. This is alarming because the element is enriched in Al Sayadin Lagoon which is still the main site of open fishing in Ismailia. Average concentration of the elements is mostly above the geochemical background and pristine values of the present study. There is a difference on the elemental composition of the sediment collected at the western lagoon (Al Sayadin Lagoon), junction, the shoreline shipyard workshops, and eastern beach of the lake. Depending upon the nature of elements and local pollution source, high concentration of Zn, Pb, and Cu are emitted by industrial wastewater flow (shoreline workshops), while sanitary and agricultural wastewater (El Bahtini and El Mahsama Drains) emit Co and Cd in Al Sayadin Lagoon. On the other hand, there is a marked decrease in potentially toxic heavy metal concentrations in the sediments at the most eastern side of the lake, probably due to the successive sediment dredging and improvements in water purification systems for navigation objective. These result show that El Temsah receives concentrations in anthropogenic metals that risk provoking more or less important disruptions, which are harmful and irreversible on the fauna and flora of this lake and on the whole ecobiological equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号