首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
M. Cattaneo  C. Eva 《地学学报》1990,2(6):577-584
Travel-time residuals of teleseismic P waves were analysed in order to elucidate the crust–upper mantle structure in Northwestern Italy, and the Western Alpine Arc. Using digital data obtained from both fixed seismograph networks operating in NW Italy (notably Liguria–Piedmont) and temporary arrays with the aid of cross-correlation techniques reliable travel-time residuals were calculated which were then inverted to obtain models of propagation anomalies. The reliability of the inversion procedure was tested using synthetic data. The model thus obtained appears to be stable and shows strong lateral heterogeneities at a litho–asthenospheric level; in particular, it confirms the high velocity contrast caused by the ‘Ivrea Body’ in the shallower layers and the presence of Alpine ‘roots’ reaching down to at least 200 km. A statistical analysis performed on the propagation times of rays crossing the resulting four-layered model reveals rms below 0.1 s.  相似文献   

2.
J. Makris 《Tectonophysics》1976,36(4):339-346
Combined gravity and seismic data from Greece and the adjacent areas have been used to explain the high seismicity and tectonic activity of this area. Computed 2-D gravity models revealed that below the Aegean region a large “plume” of hot upper-mantle material is rising, causing strong attenuation of the crust. The hot “plume” extends to the base of the lithosphere and has very probably been mobilized through compressional processes that forced the lithosphere to sink into the asthenosphere. The above model is supported by: high heat flow in the Aegean region; low velocity of the compressional waves of 7.7 km/sec for the upper mantle; lower density than normal extending to the base of the lithosphere; teleseismic P-wave travel-time residuals of the order of +2 sec for seismic events recorded at the Greek seismic stations; volcanics in the Aegean area with a chemical composition which can be explained by assuming an assimilation of oceanic crust by the upper mantle; deep seismicity (200 km) which has been interpreted by various authors as a Benioff zone.  相似文献   

3.
1.IntroductionTheManzhouli-SuifenheGeoscienceTransect(M-SGT)isinthenortheastChina,acrosstheprovincesofInnerMongoliaandHeilongiiang.Geologically,itissitllatedamongtheplatesofNorthChina,SiberiaandWesternPacific.ThewholeIengthoftheM-SGTisaboutl3Ookm,whichcrossesmanytectonicunits(Fig.l).ItisclearthatitstectonicsitUationisuniqueanditsgeologicstructUreiscomplex.Deepearthquakeshappenfrequentlya1ongthetransect.Therefore,itisarepresentativeprofileofnortheastChinaandtheNortheastAsia.TheM-S…  相似文献   

4.
We evaluated the quality of seismic phase data from Indian seismological stations through the analysis of teleseismic travel times reported during 1976–83 and infer that only WWSSN stations (NDI, SHL, POO, KOD) apart from GBA and HYB can be rated satisfactory while the majority of stations (more than 40) produce very poor quality data sets. Detailed analysis of teleseismic P-wave travel time residuals shows that while the average structure of the upper mantle beneath India has high velocity (negative residuals) there are marked lateral variations. In particular, three zones of anomalous positive residuals (low velocity) are observed: one beneath the north western part of the Deccan trap, the second covering the southernmost peninsula (granulite terrain) and a third rather localized one, to the north of Delhi coinciding with Delhi-Haridwar ridge. New Delhi exhibits strong negative residuals in the E-SE quadrant along with negative station anomaly, implying that it is underlain by an anomalous high velocity crust/upper mantle. The negative residuals observed over India, continue beneath the Himalaya till the south of Lhasa but change sign further northward, suggesting the northern limit of the Indian upper mantle structure.  相似文献   

5.
The Japan Trench is a plate convergent zone where the Pacific Plate is subducting below the Japanese islands. Many earthquakes occur associated with plate convergence, and the hypocenter distribution is variable along the Japan Trench. In order to investigate the detailed structure in the southern Japan Trench and to understand the variation of seismicity around the Japan Trench, a wide-angle seismic survey was conducted in the southern Japan Trench fore-arc region in 1998. Ocean bottom seismometers (15) were deployed on two seismic lines: one parallel to the trench axis and one perpendicular. Velocity structures along two seismic lines were determined by velocity modeling of travel time ray-tracing method. Results from the experiment show that the island arc Moho is 18–20 km in depth and consists of four layers: Tertiary and Cretaceous sedimentary rocks, island arc upper and lower crust. The uppermost mantle of the island arc (mantle wedge) extends to 110 km landward of the trench axis. The P-wave velocity of the mantle wedge is laterally heterogeneous: 7.4 km/s at the tip of the mantle wedge and 7.9 km/s below the coastline. An interplate layer is constrained in the subducting oceanic crust. The thickness of the interplate layer is about 1 km for a velocity of 4 km/s. Interplate layer at the plate boundary may cause weak interplate coupling and low seismicity near the trench axis. Low P-wave velocity mantle wedge is also consistent with weak interplate coupling. Thick interplate layer and heterogeneous P-wave velocity of mantle wedge may be associated with the variation of seismic activity.  相似文献   

6.
Jianshe Lei  Dapeng Zhao 《Tectonophysics》2005,397(3-4):281-295
We present the first seismic image of the upper mantle beneath the active intraplate Changbai volcano in Northeast Asia determined by teleseismic travel time tomography. The data are measured at a new seismic network consisting of 19 portable stations and 3 permanent stations. Our results show a columnar low-velocity anomaly extending to 400-km depth with a P-wave velocity reduction of up to 3%. High velocity anomalies are visible in the mantle transition zone, and deep-focus earthquakes occur at depths of 500–600 km under the region, suggesting that the subducting Pacific slab is stagnant in the transition zone, as imaged clearly by global tomography. These results suggest that the intraplate Changbai volcano is not a hotspot like Hawaii but a kind of back-arc volcano related to the deep subduction and stagnancy of the Pacific slab under Northeast Asia.  相似文献   

7.
Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling–Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian–Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.  相似文献   

8.
利用冈底斯中-东部197个宽频带天然地震台站记录到的数据和远震P波走时层析成像方法,获得了该区域的P波速度扰动图像。层析成像结果显示研究区地壳和上地幔地震波速度结构存在着复杂的空间变化。首先,在藏南拆离系断层(STD)以北的特提斯喜马拉雅地壳中存在着较强的低速异常,但是该低速异常的北端在远离裂谷带的地方并没有明显越过雅鲁藏布江缝合线(YZS),这与前人的观测结果略有不同;在亚东-古露(YGR)和措美-桑日(CSR)裂谷带的下方存在低速异常,但异常强度都没有前者大;在两个裂谷带之间的拉萨地块中-南部,地壳表现为强高速特征。这些结果表明,影响青藏高原地壳构造演化的"地壳通道流(Crustal Channel Flow)"在藏南主要分布在特提斯喜马拉雅地区,在雅鲁藏布江缝合线以北的冈底斯地区,可能主要局限于沿裂谷带分布。其次,被解释为印度岩石圈地幔的上地幔高速异常,在研究区西部,抵达了雅鲁藏布江缝合线以北100km或更远的地方,而在研究区东部,并没有越过雅鲁藏布江缝合线,而是停留在缝合线以南~100km的高喜马拉雅下方,印证了前人给出的印度板块俯冲角度在研究区附近存在东西向变化的层析成像结果。此外,我们的层析成像结果还印证了冈底斯东南侧的上地幔低速异常根植于上地幔底部,我们认为该现象可能与巽他块体的顺时针旋转引起向东俯冲的缅甸弧向西后撤有关。  相似文献   

9.
武夷山成矿带燕山期岩浆-成矿活动的深部动力学机制一直是学者们研究的热点.已有的研究结果表明,武夷山成矿带及邻区的上地幔存在着显著的低速异常,可能与地表的岩浆-成矿活动存在着密切的联系.本研究利用分布在华夏地块98个固定地震台站以及59个流动地震台站所记录到的278个远震事件,采用远震层析成像方法构建了武夷山成矿带及邻区...  相似文献   

10.
郑洪伟  李廷栋  苏刚 《地球科学》2020,45(7):2485-2494
扬子与华北板块在三叠纪的俯冲碰撞形成了著名的苏鲁超高压造山带,其板块碰撞接触关系一直是热点问题.利用国家台网中心64个省台记录的1 079个近震事件的10 922个P波到时和251个远震事件的11 931个P波到时数据,采用远近震联合反演的层析成像方法对苏鲁地区进行了地壳上地幔速度结构反演.结果显示,研究区内两个低速异常区分别对应山东半岛西部的华北板块地幔上隆区和壳幔相互作用强烈的长江中下游成矿带地区.在地幔300 km深度之下出现的高速异常体可能代表了早中生代扬子与华北板块碰撞之前俯冲拆沉的古特提斯洋板块.传统观点的扬子板块岩石圈向北俯冲不明显,华北板块表现为向东南俯冲的高速特征.华北板块俯冲以苏鲁造山带中部的北纬35°为界,分为南北两种俯冲样式.北部俯冲不明显,华北板块停滞在郯庐断裂带以西;南部则表现华北板块向东南陡倾俯冲到苏鲁造山带之下.   相似文献   

11.
长白山及邻区地壳、上地幔顶部三维速度结构   总被引:2,自引:0,他引:2  
根据沿长白山布设的宽频带流动地震台站及吉林省地震台网所记录的近震P波走时数据,利用层析成像方法对长白山及邻区(39°N-45°N、122°E-130°E)深至40 km的地壳和上地幔顶部三维速度结构进行了研究。结果表明:地震的发生和分布多集中于断裂等复杂地质构造。利用较高分辨率的地壳、上地幔顶部三维速度结构证实了长白山火山区岩浆囊存在,并推测岩浆囊的位置位于火山口的西南方向,深度为10~40 km。壳内岩浆囊分布对进一步解释、认识火山灾害提供了重要的深部信息。  相似文献   

12.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   

13.
Phase velocities of teleseismic Rayleigh waves have been measured in the central North Atlantic on both sides of the Azores-Gibraltar Ridge (AGR) by means of a specially designed long-period station network. The dispersion data obtained were regionalized and then subjected to a “hedgehog” inversion, which gives a set of upper mantle models compatible with the observational data within specified error bounds.Reasonable model solutions were selected by using regional body-wave observations, such as Pn- and Sn-wave velocities determined from earthquakes along the AGR. The S(itn) velocities measured indicate that the shear-wave velocity in the mantle part of the lithosphere is much higher on the northern side of the AGR. Strongly negative P-wave residuals in this area indicate faster seismic propagation than implied by the Jeffreys-Bullen travel-time tables, while propagation is much slower in the Gulf of Cadiz area. Furthermore the residuals show a clear difference for paths through oceanic and continental domains and suggest that the transition between these two domains extends much further into the ocean on the southern side of the AGR than on the northern side.The proposed model for the structure of the upper mantle in that region shows that there exists a pronounced velocity contrast across the AGR. Thickening of the lithospheric plate with increasing plate age is indicated to the south of the ridge. The greatest thickness is reached close to the continental margin within a zone about 500 km wide, whose velocity close to the Canary Islands and Madeira is significantly lower, probably due to the well-known volcanic activity there. These observations together with the travel time residuals reveal that this zone seems to be of a transitional nature somewhere between a continental and oceanic structure.  相似文献   

14.
Seismic tomography can provide both fine P-wave and S-wave velocity structures of the crust and upper mantle.In addition,with proper computation,Poisson’s ratio images from the seismic velocities can be determined.However,it is unknown whether Poisson’s ratio images have any advantages when compared with the P-wave and S-wave velocity images.For the purposes of this study,high-resolution seismic tomography under the eastern part of North China region was used to determine detailed 3-D crustal P- and S-wave seismic velocities structure,as well as Poisson’s ratio images.Results of Poisson’s ratio imaging show high Poisson’s ratio(high-PR) anomalies located in the Hengshan-North Taihang-Zhangjiakou(H-NT-Z) region,demonstrating that Poisson’s ratio imaging can provide new geophysical constraints for regional tectonic evolution.The H-NT-Z region shows a prominent and continuous high-PR anomaly in the upper crust.Based on Poisson’s ratio images at different depths, we find that this high-PR anomaly is extending down to the middle crust with thickness up to about 26 km.According to rock physical property measurements and other geological data,this crustal Poisson’s ratio anomaly can be explained by Mesozoic partial melting of the upper mantle and basaltic magma underplating related to the lithospheric thinning of the North China craton.  相似文献   

15.
We obtain a lithospheric shear‐wave velocity model across the Tien Shan orogenic belt by jointly inverting Rayleigh wave group velocities and teleseismic P‐wave receiver functions at 61 broadband seismic stations deployed in this region. Our new model reveals prominent lateral variations of shear‐wave velocity in both the crust and uppermost mantle. This model reveals different structures in the upper and middle crust across the Talas Fergana Fault, which may suggest the presence of a tectonic boundary between the western and central Tien Shan beneath the fault. According to the velocity images, the depth extent of the fault is ~40 km and this is confined to the crust. Pronounced low‐velocity anomalies are imaged in the middle crust and uppermost mantle beneath the southern and middle Tien Shan, implying that the upwelling of the materials from the upper mantle could have played an important role in the mountain building.  相似文献   

16.
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai–Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in mainland China and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional(3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai–Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north–south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by lowvelocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan–Dian and Songpan–Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan–Ganzi Block and the sub–block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80–120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background forthe area's strong earthquake activity.  相似文献   

17.
Three-dimensional seismic mapping of the upper mantle beneath Fennoscandia (Baltic Shield) using an ACH-type of inversion technique in combination with P-wave travel-time residual observations from the local seismograph network gave the following results. The central parts of the Baltic Shield are characterized by relatively high seismic velocities down to approximately 300 km. Those parts of the shield most affected by the Caledonide orogeny exhibit relatively low velocities particularly in the uppermost 100 km depth interval. The lower part of the upper mantle (300–600 km) does not exhibit pronounced seismic velocity anomalies and in this respect is in contrast to results from similar studies in regions subjected to neotectonic processes like parts of central and southeastern Europe. The seismic anomaly pattern in the presumed thickened lithosphere is in quantitative agreement with similar ones derived from surface wave dispersion analysis and inversion of electrical measurements. The general orientation of these anomalies coincides with that of the glacial uplift.  相似文献   

18.
利用地震台阵观测资料研究大庆地区深部构造   总被引:1,自引:0,他引:1  
利用绥芬河-满洲里地学断面上布设的流动地震台阵,并结合固定地震台记录到的2009年6月-2011年5月间的远震资料,通过有限频方法开展体波走时层析成像研究,获取研究区上地幔三维P波速度结构;采用瑞利面波双台相速度和背景噪声相速度层析成像方法,反演研究区的三维S波速度结构。应用两种方法最终得到大庆地区三维速度分布特征。结果显示:松辽盆地地壳厚度较薄,盆地周边的大、小兴安岭隆起区厚度变厚,松辽盆地地壳内部多存在低速异常,壳幔及上地幔与周边相比呈现高速异常,分析上地幔物质上升会造成局部高速异常结构。速度结构异常多是南北向或北北东向,可能与区域性断裂对上、中地壳影响有关。  相似文献   

19.
The VRANCEA99 seismic refraction experiment is part of an international and multidisciplinary project to study the intermediate depth earthquakes of the Eastern Carpathians in Romania. As part of the seismic experiment, a 300-km-long refraction profile was recorded between the cities of Bacau and Bucharest, traversing the Vrancea epicentral region in NNE–SSW direction.

The results deduced using forward and inverse ray trace modelling indicate a multi-layered crust. The sedimentary succession comprises two to four seismic layers of variable thickness and with velocities ranging from 2.0 to 5.8 km/s. The seismic basement coincides with a velocity step up to 5.9 km/s. Velocities in the upper crystalline crust are 5.96.2 km/s. An intra-crustal discontinuity at 18–31 km divides the crust into an upper and a lower layer. Velocities within the lower crust are 6.7–7.0 km/s. Strong wide-angle PmP reflections indicate the existence of a first-order Moho at a depth of 30 km near the southern end of the line and 41 km near the centre. Constraints on upper mantle seismic velocities (7.9 km/s) are provided by Pn arrival times from two shot points only. Within the upper mantle a low velocity zone is interpreted. Travel times of a PLP reflection define the bottom of this low velocity layer at a depth of 55 km. The velocity beneath this interface must be at least 8.5 km/s.

Geologic interpretation of the seismic data suggests that the Neogene tectonic convergence of the Eastern Carpathians resulted in thin-skinned shortening of the sedimentary cover and in thick-skinned shortening in the crystalline crust. On the autochthonous cover of the Moesian platform several blocks can be recognised which are characterised by different lithological compositions. This could indicate a pre-structuring of the platform at Mesozoic and/or Palaeozoic times with a probable active involvement of the Intramoesian and the CapidavaOvidiu faults. Especially the Intramoesian fault is clearly recognisable on the refraction line. No clear indications of the important Trotus fault in the north of the profile could be found. In the central part of the seismic line a thinned lower crust and the low velocity zone in the uppermost mantle point to the possibility of crustal delamination and partial melting in the upper mantle.  相似文献   


20.
P-wave travel-time residuals for seismograph stations in eastern Europe as reported by ISC for the years 1964–1977 were used for constructing a seismic image of upper mantle heterogeneities in the network region. For the depth range 0–100 km, dominant tectonic features like the Pannonian Basin and the Aegean Sea and western Turkey correlate well with pronounced velocity lows which a ppear to extenddown to a 300 km depth. The velocity anomaly patterns in the depth intervals 300–500 km and 500–600 km are broadly similar but quite different from those of shallower depths. The observed seismic heterogeneities are briefly discussed in terms of large-scale tectonic and geophysical (heat-flow) characteristics of eastern Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号