首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Early Caledonian folded area in Central Asia (Early Caledonian superterrane) hosts micro-continent fragments with an Early and Late Precambrian crystalline basement, the largest of them being the Dzabkhan and Tuva-Mongolian fragments. Their junction zone hosts exposures of crystalline rocks that were previously thought to be part of the Early Precambrian Dzabkhan microcontinent. The Bayannur zone in the southern part of the Songino block hosts the Baynnur gneiss-migmatite and Kholbonur metavolcanic-terrigenous metamorphic complexes. The former is believed to be the Early Proterozoic crystalline basement, and the latter is thought to unconformably overly the Late Riphean cover complex of the Songino block. Various rocks of the tectono-stratigraphic complexes in the Bayannur zone were studied geologically and geochronologically (by the U-Pb technique of zircon). Regional metamorphism and folding in the Bayannur Complex were dated at 802 ± 6 Ma. The Nd model ages lie within the range of 1.5–2.0 Ga and thus preclude the correlation of these rocks with those in the Archean and Early Proterozoic basement of the Dzabkhan microcontinent. The upper age limit for folding and metamorphism in the Bayannur zone is marked by postkinematic granites dated at 790 ± 3 Ma, and the lower limit of the volcano-sedimentary complex is determined by the Nd model age of the sandstone (1.3 Ga). The upper age limit of the volcano-plutonic rocks in this zone is set by the gabbroids and anorthosites: 783 ± 2 and 784 ± 3 Ma, respectively. The complex of island-arc granitoids in the Bayannur zone is dated at 859 ± 3 Ma. The age constraints make it possible to correlate crystalline rocks in the Bayannur Complex of the Sangino block and the Dzhargalant Complex in the Tarbagatai block. Currently available data testify that the Precambrian Khangai group of blocks in the Early Caledonian Central Asian superterrane includes continental crustal blocks related to the processes of Early Precambrian, Late Riphean, and Vendian tectonism.  相似文献   

2.
The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.  相似文献   

3.
Borehole and surface samples from the Archean Tanzania Craton were analysed for apatite fission track(AFT) and(U-Th)/He data with the aim of deciphering cooling histories of the basement rocks. Fission track dates from borehole and outcrop samples are Carboniferous-Permian(345± 33.3 Ma to271±31.7 Ma) whereas(U-Th)/He dates are Carboniferous-Triassic(336±45.8 Ma to 213±29 Ma) for outcrop grains and are consistently younger than corresponding AFT dates. Single grain(U-Th)/He dates from the borehole are likely to be flawed by excessive helium implantation due to their very low effective uranium contents, radiation damage and grain sizes. All AFT and(U-Th)/He dates are significantly younger than the stratigraphic ages of their host rocks, implying that the samples have experienced Phanerozoic elevated paleo-temperatures. Considerations of the data indicate removal of up to 9 km overburden since the Palaeozoic.Thermal modelling reveals a protracted rapid cooling event commencing during the early Carboniferous(ca. 350 Ma) at rates of 46 m/Ma ending in the Triassic(ca. 220 Ma). The model also suggests minor cooling during the Cretaceous of the samples to surface temperatures. The suggested later cooling event remains to be tested. The major cooling phase during the Carboniferous is interpreted to be associated with compressional tectonics during the Variscan Orogeny sensu far field induced stresses. Coeval sedimentation in the Karoo basins in the region suggests that most of the cooling of cratonic rocks during the Carboniferous was associated with denudation.  相似文献   

4.
《International Geology Review》2012,54(10):1180-1193
The basement of the Maya block of eastern Mexico is generally covered by Mesozoic and Cenozoic platformal carbonate rocks. However, the 65.5 Ma Chicxulub meteorite impact in the northern Yucatan Peninsula excavated deep into the crust and brought crystalline basement fragments into the impact breccias. Common Pb isotopic data from impact melt and a granitic clast from drill core (Y6) are highly radiogenic, consistent with the Archaean derivation. A granodiorite clast in this breccia from drill core (Yaxcopoil-1) yielded a continuous range of concordant 206Pb/238U laser ablation inductively coupled plasma mass spectrometry zircon ages between 546 ± 5 Ma and 465 Ma, with three discordant zircons having 206Pb/238U ages between 130 Ma and 345 Ma. The ca. 546 Ma age is interpreted as the age of granodiorite intrusion, with younger ages representing variable Pb loss during melting associated with the meteorite impact. This is consistent with previous U–Pb zircon data that gave an upper intercept age of 550 ± 15 Ma at Chicxulub, which becomes 545 ± 5 Ma when combined with the zircon data from distal ejecta. Such arc rocks are absent in the southern Maya block, and in the neighbouring Oaxaquia terrane (s.s.) they are replaced by a 546 ± 5 Ma plume-related dike swarm. On the other hand, Ediacaran arc rocks continue through the peri-Gondwanan terranes of the Appalachians and Europe (Florida, Carolinia, Avalonia, Iberia, Armorica, Massif Central, Bohemia, and NW Africa). Arc magmatism in these areas ended between 570 Ma (Newfoundland) and 540 Ma (Carolinia/UK) as the subduction zone was replaced by a transform fault along the northern Gondwanan margin. This age range is synchronous with the two-stage birth of Iapetus, suggesting that both are related to major plate reorganization. The source of plume-related dikes may have been located at the rift–rift–transform triple junction between Laurentia, Baltica, and Gondwana.  相似文献   

5.
The origin of the Anti‐Atlas relief is one of the currently debated issues of Moroccan geology. To constrain the post‐Variscan evolution of the Central Anti‐Atlas, we collected nine samples from the Precambrian basement of the Bou Azzer‐El Graara inlier for zircon and apatite fission‐track thermochronology. Zircon ages cluster between 340 ± 20 and 306 ± 20 Ma, whereas apatite ages range from 171 ± 7 Ma to 133 ± 5 Ma. Zircon ages reflect the thermal effect of the Variscan orogeny (tectonic thickening of the ca. 7 km‐thick Paleozoic series), likely enhanced by fluid advection. Apatite ages record a complex Mesozoic–Cenozoic exhumation history. Track length modelling yields evidence that, (i) the Precambrian basement was still buried at ca. 5 km depth by Permian times, (ii) the Central Anti‐Atlas was subjected to (erosional) exhumation during the Triassic‐Early Cretaceous, then buried beneath ca. 1.5 km‐thick Cretaceous‐Paleogene deposits, (iii) final exhumation took place during the Neogene, contemporaneously with that of the High Atlas.  相似文献   

6.
耿元生  周喜文 《岩石学报》2012,28(9):2667-2685
在阿拉善变质基底中发现了大量的早二叠世的弱变形花岗岩类。采自阿拉善东部的闪长质片麻岩(AL0705-1)、含石榴英云闪长质片麻岩(AL0709-1)、英云闪长岩(AL0718-1)、条痕状黑云斜长片麻岩(AL0822-1)和片麻状花岗岩(AL0822-3)的锆石U-Pb年龄分别为270±1.6Ma、276±1.8Ma、269±2.4Ma、276±2.4Ma和287±2.5Ma。采自阿拉善变质基底西部的花岗闪长质片麻岩(AL0805-1)、闪长质片麻岩(AL0805-4)、粗粒花岗闪长质片麻岩(AL0810-1)和中粒闪长质片麻岩(AL0810-2)的锆石LA-ICP-MSU-Pb年龄分别为284±3Ma、289±3Ma、276±2Ma和279±2Ma。尽管早二叠世花岗岩的岩石类型和化学成分不同,但它们都形成于269~289Ma一个较短的时间范围,属于同一期岩浆热事件的产物。早二叠世花岗岩的形成年龄与基底变质岩中角闪石39Ar-40Ar的坪年龄277~288Ma近于一致,表明这期岩浆热事件对基底变质岩石产生了改造,使角闪石等变质矿物的Ar-Ar同位素体系发生了重置。在阿拉善变质基底中大量早二叠世花岗岩类侵入体的发现表明,阿拉善变质基底在古生代晚期受到中亚造山带碰撞造山作用的强烈影响和改造。  相似文献   

7.
Triassic igneous and sedimentary rocks exposed within the basement of the Andes were deposited in a series of rifts, and may record the early disassembly of western Pangaea. These rocks are sporadically exposed along almost the entire length of western South America, although reliable geochronological and isotopic data are sparse. We combine new geochronological (zircon U–Pb), isotopic (Hf, Nd) and geochemical data with stratigraphic observations to constrain the age and tectonic setting of the Mitu Rift of southern Peru. The Peruvian Mitu Rift is compared with other Triassic rifts in Colombia and Ecuador (Palanda Rift; 240–225 Ma), Bolivia (Mitu Rift; Triassic), Bolivia, Chile and Argentina (e.g. Cuyo Basin; 246–230 Ma), and conclusions are reached regarding the relationship between Triassic extension along the western margin of Pangaea, and the eventual formation of the Proto-Caribbean and Central Atlantic oceans. The Mitu Rift (Peru) was active during ~ 245–240 to ~ 220 Ma and was synchronous with rifting along the Pacific margin of Colombia and Ecuador, along the Chilean margin and western Argentina, and probably rifting within Bolivia. Rifting north of the Huancabamba Deflection was accompanied by subduction and led to seafloor spreading, whereas rifting along the Peruvian and Chilean margins mainly occurred in the absence of subduction and terminated prior to the formation of extensive transitional crust. Extension within Peru and Chile probably occurred via a combination of transtension, steepening and detachment of an arrested slab. We propose that plate tectonic forces initiated the early break-up of Pangaea by attenuating its margins and enhancing mantle upwelling. Prolonged extension may have propagated along pre-existing weak zones that extended into the continental interior, captured melts derived from the upwelled mantle forming a LIP (e.g. Central Atlantic Magmatic Province), became hot and weak and eventually lead to the formation of a juvenile ocean (e.g. Central Atlantic).  相似文献   

8.
The timing of high‐pressure (HP) metamorphism in the internal basement massifs of the Western Alps has been contentious. In the Gran Paradiso massif silvery micaschists, thought to have developed from granitic precursors, contain assemblages indicative of pressures in excess of 18 kbar at 500–550 °C. This paper presents unique geochronological data for the paragenesis of the silvery micaschist HP assemblage. Rb–Sr microsampling of an apatite–phengite pair thought to have remained closed to Rb–Sr exchange since the HP paragenesis formed has yielded an age of 43.0 ± 0.5 Ma. Greenschist retrogression occurred after 36.3 ± 0.4 Ma, probably in the interval 36–34 Ma. The localised disturbance of the Rb–Sr system in phengite, apatite and allanite during retrogression means that only in situ microsampling could obtain meaningful ages from these rocks. The new data indicating a Tertiary age for HP metamorphism in the Gran Paradiso massif agree with recent data for other internal basement massifs in the Western Alps. A model fitting the Gran Paradiso massif into the Western Alpine framework is presented.  相似文献   

9.
The paper presents new data on the composition, age, and relationships (with host and overlying deposits) of intrusive rocks in the basement of the Fore Range zone (Greater Caucasus), in the Malaya Laba River Basin. The evolutionary features of intrusive units located within the Blyb metamorphic complex are described. It is shown for the first time that the lower levels of this complex are, in a structural sense, outcrops of the Late Vendian basement. The basement is composed of the Balkan Formation and a massif of quartz metadiorites that intrudes it; for the rocks of this massif, ages ranging from 549 ± 7.4 to 574.1 ± 6.7 Ma are obtained for three U–Pb datings by the SHRIMP-II method. The Herzyinan magmatic event is represented by a group of granodiorite intrusions penetrating the Blyb complex on a series of faults extending along its boundary with the Main Range zone. The obtained estimate for the U–Pb age of one of the intrusions (319 ± 3.8 Ma) corresponds to the end of the Serpukhovian stage of the Early Carboniferous.  相似文献   

10.
Central North Sudan, west of the Keraf suture, is part of the Saharan Metacraton whose crystalline basement encompasses migmatite gneisses and granites. Granites intrude migmatites in form of small plutons, veins, lenses and pods, indicating a complex chronology. This study, based on whole rock element concentrations, isotope geochemistry and single mineral geochronology, is aimed to unravel the petrogenesis of these basement rocks.Whole rock geochemistry indicates an I-type potassic calc-alkaline meta- to peraluminous composition. Granite zircon U–Pb and Pb–Pb evaporation analyses yield an identical age range (597 ± 25–602 ± 3.5 Ma). Similar ages (597 ± 8.6–603.8 ± 2 Ma) are obtained for the migmatite gneisses. Titanite U–Pb ages are also similar in both rock types, but are younger or closely conform with zircon ages. Biotite Rb/Sr ages are younger and identical (566 ± 11–570 ± 17 Ma). These age data suggest coeval granitization and migmatization during the Pan-African period and somewhat later cooling of the central North Sudan basement. Older zircon U–Pb ages, ranging from 613 to 1322 Ma, are thought to be signatures of inheritance, while younger ones (336–594 Ma) suggest radiogenic Pb loss. Sr initial ratios (0.70257–0.72102) and εNd values (−2.3 to −8.8), calculated for the zircon crystallization age of ∼600 Ma indicate a crustal signature. Coupled with Nd model ages of 1460–1990 Ma, isotope data indicate that the central North Sudan basement is recycled Middle to Late Proterozoic continental crust.  相似文献   

11.
The Early Caledonian Central Asian Orogenic Belt hosts fragments of continental blocks with Early and Late Precambrian crystalline basement. One of the structures with an Early Precambrian basement was thought to be the Dzabkhan microcontinent, which was viewed as an Early Precambrian “cratonal terrane”. The first geochronologic data suggest that the basement of the Dzabkhan microcontinent includes a zone of crystalline rocks related to Late Riphean tectonism. Geological, geochronological (U-Pb zircon dates), and Nd isotopic-geochemical data were later obtained on the northwestern part of the Dzabkhan microcontinent. The territory hosts the most diverse metamorphic complexes thought to be typical of the Early Precambrian basement. The complexes were determined to comprise the Dzabkhan-Mandal and Urgamal zones of high-grade metamorphic rocks. Gabbrodiorites related to the early metamorphic episode and dated at 860 ± 3 Ma were found in the Dzabkhan-Mandal zone, and the gneiss-granites marking the termination of this episode were dated at 856 ± 2 Ma. The granitoids of the Dzabkhan batholith, whose emplacement was coeval with the termination of the late high-grade metamorphic episode in rocks of both zones, have an age of 786 ± 6 Ma. Similar age values were determined for the granitoids cutting across the Late Precambrian rocks of the Songino and Tarbagatai blocks, which mark the stage when the mature Late Riphean continental crust was formed. The Late Riphean magmatic and metamorphic rocks of the Dzabkhan microcontinent were found out to have Nd model ages mostly within the range of 1.1–1.4 Ga at ?Nd(T) from +1.9 to +5.5. The Nd model age of the metaterrigenous rocks is 2.2?1.3 Ga at ?Nd(T) from ?7.2 to +3.1. The results of our studies provide evidence of convergence processes, which resulted in the Late Riphean (880?780 Ma) continental crust in Central Asia. Simultaneously with these processes, divergence processes that were responsible for the breakup of Rodinia occurred in the structures of the ancient cratons. It is reasonable to suggest that divergence processes within ancient continental blocks and Rodinia shelf were counterbalanced by the development of the Late Riphean continental crust in the convergence zones of its surrounding within established interval.  相似文献   

12.
海南岛地处华南陆块南缘,紧邻印支陆块,大地构造位置独特,其地质特征一直备受关注。厘定该地区中元古代岩石的成因对恢复华南中元古代构造演化具有重要意义。海南岛西部公爱地区花岗质岩石与围岩抱板群变沉积岩呈侵入接触关系,绝大部分岩石片麻状构造发育、韧性剪切标志明显。这些岩石高SiO_2、K_2O、Al_2O_3、Rb、U,贫CaO、MgO、FeO~T、TiO_2,铝饱和指数A/CNK1.1,具S型花岗岩特点,稀土元素配分模式类似于抱板群变沉积岩,全岩ε_(Nd)(t)=-2.02~-2.38,Nd同位素二阶段亏损模式年龄(t_(DM2)~(Nd))为2.2~2.3 Ga,锆石Hf同位素ε_(Hf)(t)=-5.4~4.0,Hf同位素二阶段亏损模式年龄t_(DM2)~(Hf)=1.71~2.53 Ga。对四个代表性花岗片麻岩样品进行LA-ICP-MS锆石U-Pb定年,其~(207)Pb/~(206)Pb加权平均年龄为1444±15 Ma、1439±19 Ma、1433±31 Ma和1450±23 Ma,属中元古代。综合区域研究资料认为,海南岛西部公爱地区中元古代花岗质岩石的熔融源区为类似抱板群变沉积岩组分,推测其产出于大陆边缘构造背景,是哥伦比亚超大陆边缘的增生产物。  相似文献   

13.
The Oligocene Ethiopian continental flood basalt province (ca. 29–31 Ma) contains significant silicic pyroclastic rocks (>60,000 km3 constituting up to 20% of the volcanic stratigraphy). Rhyolitic tephras, synchronous with the Ethiopian silicic pyroclastic rocks, are found in Indian Ocean ODP holes 711A. They are geochemically akin to the Ethiopian silicic pyroclastic rocks. This suggests that the Indian Ocean tephras originated from Ethiopian silicic eruptions and represents more distal fallout of this volcanism. The temporal coincidence of the Ethiopian flood volcanism with the Oligocene global cooling event (Oi2?~?30.3 Ma) and the emplacement of the Ethiopian silicic pyroclastic eruptions on a near-global scale strongly suggest that the Ethiopian continental flood basalt province may have contributed or at least accelerated the climate change that was already underway.  相似文献   

14.
Three independent single‐grain geochronometers applied to detrital minerals from Central Dinaride sediments constrain the timing of felsic magmatism that associated the Jurassic evolution of the Neotethys. The Lower Cretaceous clastic wedge of the Bosnian Flysch, sourced from the Dinaride ophiolitic thrust complex, yields magmatic monazite and zircon grains with dominant age components of 164 ± 3 and 152 ± 10 Ma respectively. A unique tephra horizon within the Adriatic Carbonate Platform was dated at 148 ± 11 Ma by apatite fission track analysis. These consistent results suggest that leucocractic melt generation in the Central Dinaride segment of the Neotethys culminated in Middle to Late Jurassic times, coeval with and slightly post‐dating subophiolitic sole metamorphism. Growth of magmatic monazite and explosive volcanism call for supra‐subduction‐zone processes at the convergent Neotethyan margin. New compilation of geochronological data demonstrates that such Jurassic felsic rocks are widespread in the entire Dinaride–Hellenide orogen.  相似文献   

15.
A similar succession of Foliation Inflection/Intersection Axis (FIAs) trends preserved within porphyroblasts is present in two areas separated by 200 km along the Rocky Mountains. The Precambrian rocks in Central Colorado and Northern New Mexico were affected by deformation and metamorphism from ~1506 to 1366 Ma. A succession of five FIAs trending W–E, SSW–NNE, NNW–SSE, NW–SE and WSW–ENE is distinguished in Central Colorado and dated at 1506 ± 15 Ma, 1467 ± 23 Ma, 1425 ± 18 Ma, not dated and 1366 ± 20 Ma respectively. To the south in Northern New Mexico, a succession of five FIAs trending SSW–NNE, WNW–ESE, NNW–SSE, NW–SE and WSW–ENE is distinguished and dated at 1482 ± 48 Ma, 1448 ± 12 Ma, 1422 ± 35 Ma, not dated and 1394 ± 22 Ma. The excellent correlation of the sequence of FIA trends and their ages between regions reveals a sixfold‐FIA succession across the region with the first developed FIA set in Central Colorado not present in Northern New Mexico and the third FIA set in the region not present in Central Colorado. Preferential partitioning of W–E trending deformation into the Central Colorado region ~1506 ± 15 Ma was followed by SSW–NNE trending deformation that affected both regions at 1470 ± 20 Ma. However, preferential partitioning of WNW–ESE trending deformation into Northern New Mexico at 1448 ± 12 Ma left Central Colorado unaffected. Both regions were then affected by the three remaining periods of orogenesis, the first trending NNW–SSE at 1424 ± 15 Ma followed by one trending NW–SE that has not yet been dated, and then one trending WSW–ENE at 1390 ± 19 Ma. This suggests that the Yavapai terrane was tectonized at ~1506 Ma, prior to amalgamation with the Mazatzal terrane ~1470 Ma. Subsequent orogenesis was initially partitioned preferentially into the Mazatzal terrane, but the following three periods of tectonism affected both terranes in a similar manner.  相似文献   

16.
Multi-method thermochronology applied to the Peake and Denison Inliers (northern South Australia) reveals multiple low-temperature thermal events. Apatite fission track (AFT) data suggest two main time periods of basement cooling and/or reheating into AFT closure temperatures (~60–120°C); at ca 470–440 Ma and ca 340–300 Ma. We interpret the Ordovician pulse of rapid basement cooling as a result of post-orogenic cooling after the Delamerian Orogeny, followed by deformation related to the start of the Alice Springs Orogeny and orocline formation relating to the Benambran Orogeny. This is supported by a titanite U/Pb age of 479 ± 7 Ma. Our thermal history models indicate that subsequent denudation and sedimentary burial during the Devonian brought the basement rocks back to zircon U–Th–Sm/He (ZHe) closure temperatures (~200–150°C). This period was followed by a renewal of rapid cooling during the Carboniferous, likely as the result of the final pulses of the Alice Springs Orogeny, which exhumed the inlier to ambient surface temperatures. This thermal event is supported by the presence of the Mount Margaret erosion surface, which indicates that the inlier was exposed at the surface during the early Permian. During the Late Triassic–Early Jurassic, the inlier was subjected to minor reheating to AFT closure temperatures; however, the exact timing cannot be deduced from our dataset. Cretaceous apatite U–Th–Sm/He (AHe) ages coupled with the presence of contemporaneous coarse-grained terrigenous rocks suggest a temporally thermal perturbation related with shallow burial during this time, before late Cretaceous exhumation cooled the inliers back to ambient surface temperatures.  相似文献   

17.
The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz ± tourmaline ± titanite ± sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite ± apatite ± magnetite ± pyroxene ± garnet ± quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz ± garnet ± plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on me  相似文献   

18.
The Mount Athos Peninsula is situated in the south-easternmost part of the Chalkidiki Peninsula in northern Greece. It belongs to the Serbo-Macedonian Massif (SMM), a large basement massif within the Internal Hellenides. The south-eastern part of the Mount Athos peninsula is built by fine-grained banded biotite gneisses and migmatites forming a domal structure. The southern tip of the peninsula, which also comprises Mount Athos itself, is built by limestone, marble and low-grade metamorphic rocks of the Chortiatis Unit. The northern part and the majority of the western shore of the Mount Athos peninsula are composed of highly deformed rocks belonging to a tectonic mélange termed the Athos-Volvi-Suture Zone (AVZ), which separates two major basement units: the Vertiskos Terrane in the west and the Kerdillion Unit in the east. The rock-types in this mélange range from metasediments, marbles and gneisses to amphibolites, eclogites and peridotites. The gneisses are tectonic slivers of the adjacent basement complexes. The mélange zone and the gneisses were intruded by granites (Ierissos, Ouranoupolis and Gregoriou). The Ouranoupolis intrusion obscures the contact between the mélange and the gneisses. The granites are only slightly deformed and therefore postdate the accretionary event that assembled the units and created the mélange. Pb–Pb- and U–Pb-SHRIMP-dating of igneous zircons of the gneisses and granites of the eastern Athos peninsula in conjunction with geochemical and isotopic analyses are used to put Athos into the context of a regional tectonic model. The ages form three clusters: The basement age is indicated by two samples that yielded Permo-Carboniferous U–Pb-ages of 292.6?±?2.9?Ma and 299.4?±?3.5?Ma. The main magmatic event of the granitoids now forming the gneiss dome is dated by Pb–Pb-ages between 140.0?±?2.6?Ma and 155.7?±?5.1?Ma with a mean of 144.7?±?2.4?Ma. A within-error identical age of 146.6?±?2.3?Ma was obtained by the U–Pb-SHRIMP method. This Late Jurassic age is also known from the Kerdillion Unit and the Rhodope Terrane. The rather undeformed granites are interpreted as piercing plutons. The small granite stocks sampled have Late Cretaceous to Early Tertiary ages of 66.8?±?0.8?Ma and 68.0?±?1.0?Ma (U–Pb-SHRIMP)/62.8?±?3.9?Ma (Pb–Pb). The main accretionary event was according to these data in the Late Jurassic since all younger rocks show little or no deformation. The age distribution together with the geochemical and isotopic signature and the lithology indicates that the eastern part of the Mount Athos peninsula is part of a large-scale gneiss dome also building the Kerdillion Unit of the eastern SMM and the Rhodope Massif. This finding extends the area of this dome significantly to the south and indicates that the tectonic boundary between the SMM and the Rhodope Massif lies within the AVZ.  相似文献   

19.
Some granites, granitoid dykes and volcanic rocks of the Southern Black Forest were dated by U–Pb techniques using zircon and monazite. An effusive rhyolite, which is interbedded in upper Visean sedimentary sequences of the Badenweiler-Lenzkirch zone, was dated at 340 ±2?Ma. This weakly metamorphic zone of supracrustal rocks borders high-grade gneiss terrains in the north and the south, which are intruded by a series of granitoid intrusions: the strongly sheared Schlächtenhaus granite is dated by monazite at 334±2?Ma and the hypothesis of a Devonian emplacement is therefore discarded. The emplacement of all other granites, crosscutting dykes and of an ignimbrite were all within analytical uncertainty: St. Blasien granite 333±2?Ma; Bärhalde granite 332±3?Ma; Albtal granite 334±3?Ma; and a porphyry dyke at Präg 332+2/-4?Ma. Deformation and thrusting of the basement units near the Badenweiler-Lenzkirch zone occurred after the emplacement of the Schlächtenhaus granite, but before the intrusion of the other granitoids, and may therefore be constrained to the time period unresolved between 334±2 and 333±2?Ma. The ignimbritic rhyolite of Scharfenstein was deposited in a caldera 333±3?Ma ago. This age coincides within error limits with published U–Pb monazite and Rb–Sr small slab ages of mimatitic gneisses, Ar–Ar hornblende ages of metabasites and Sm–Nd mineral isochron ages of eclogitic rocks in the underlying basement. This suggests that exhumation and cooling of this basement unit must have been active at rates of approximately 20?km and a few 100°C per million years. The silicic melts are interpreted to be of hybrid crust/mantle origin and their formation was most likely linked to these exhumation tectonics. A phase of mantle upwelling and heat advection into the crust is proposed to be the reason for this short-episodic magmatic pulse.  相似文献   

20.
The Early Caledonian folded area of Central Asia comprises a variety of continental crust fragments with Early to Late Precambrian crystalline basement. Crystalline rocks, which form part of the Songino block, outcrop at the junction between the Dzabkhan and Tuva-Mongolian terranes. The Bayannur zone in the southern part of the Songino block contains the Bayannur migmatite-gneiss and Kholbonur terrigenous-metavolcanic metamorphic complexes. Previous studies provide the 802 ± 6 Ma age for the regional metamorphism and folding within the Bayannur complex. On the basis of the minimum Nd model age of 1.5 Ga, gneisses from this complex cannot be regarded as Early Precambrian. Two main rock associations were distinguished in the Kholbonur complex. Mafic metavolcanics compose the dominant lithology of the first rock association, whereas the second association comprises terrigenous-volcanic and predominantly terrigenous suites. The rocks of the predominantly terrigenous suite, including mudstones, sandstones, and conglomerates, are interpreted to derive from the Late Riphean accretionary prism. The lithology and composition of metaterrigenous rocks suggest that they were possibly derived from erosion of a volcanic arc. The upper age limit of this suite is constrained by postkinematic granites (790 ± 3 Ma; U-Pb zircon), the lower age is given by plagiogranite (874 ± 3 Ma; U-Pb zircon) from comglomerate pebbles. Therefore, the timing of deposition of this terrigenous suite can be bracketed by the 874–790 Ma time interval. These ages and compositional features of the Kholbonur complex terrigenous rocks suggest that the convergence took place at around 870–880 Ma and thus it can be correlated with the divergent processes between the blocks of continental crust composing the supercontinent Rodinia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号