首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U-Th dated 2.46 ± 0.10 to 2.10 ± 0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46-2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.  相似文献   

2.
A varied assemblage of algal stromatolites was encountered in caves along the northern section of the Dead Sea Fault Escarpment. The caves are situated at the lower part of the escarpment at altitudes ?310 to ?188 m relative to mean sea level (m.s.l.), i.e. ca 110–230 m above the present Dead Sea level. The cave stromatolites are mainly composed of aragonite yielding U–Th ages of ~75–17 ka. The altitude, mineralogy and ages, as well as comparison with previously documented stromatolite outcrops in the area, ascribe the cave stromatolites to the aragonite-precipitating hypersaline Lake Lisan—the Late Pleistocene predecessor of the Dead Sea.The stromatolites are used as a lake level gauge, based on the algae being reliant upon the light of the upper water layer. Preservation of the original structure and aragonite mineralogy of the stromatolites, suggests a closed system regarding the radioactive elements, enabling reliable U–Th dating. A curve of Lake Lisan levels is constructed based on the stromatolite ages and cave elevations. The following points are noted: (1) Lake levels of ?247 m relative to m.s.l., are recorded at ~75–72.5 ka; (2) relatively high lake levels above ?220 m relative to m.s.l., are achieved at ~41.5 ka, and are still recorded at ~17 ka; (3) the peak level is ?188 m relative to m.s.l., at ~35.5–29.5 ka. These results indicate lake stands up to 80 m higher than previously accepted, for large parts of the Lake Lisan time span. This difference is explained by tectonic subsidence of up to 2.2 m/ka within the Dead Sea depression since the latest Pleistocene. This subsidence rate is in the same order of magnitude with previously calculated subsidence rates for the Dead Sea depression [Begin, Z.B., Zilberman, E., 1997. Main Stages and Rate of the Relief Development in Israel. Geological Survey of Israel report, Jerusalem]. Unlike previous Lake Lisan level estimations, the new curve is measured at the relatively stable shoulders of the Dead Sea depression.  相似文献   

3.
This paper deals with the hydrogeological relationship between base levels of saline lakes and the formation of sub-horizontal caves. The mechanism presented here suggests that many horizontal cave levels in carbonate sequences are created adjacent to the saline lakes shorelines because of the converging of the groundwater flow above the fresh–saline water interface. The main factors that control enhanced carbonate dissolution and cave formation are high groundwater flow velocities in the shallow phreatic zone during a relative long steady state of the water table. High groundwater flow velocities are evident close to the Dead Sea due to the convergent fast flows above the shallow interface adjacent to the shoreline. The same could prevail in the case of previous paleo-lakes that existed in the basin. The synergetic combination of the above preconditions for enhanced cave formation seems to be responsible for the formation of elevation-controlled alignment of paleo-near shore cave levels in the central and southern (Dead Sea) portion of the study area. These are found on the western fault escarpment and basin margin in different stratigraphic horizons of carbonate lithology. Many of the cave levels can be linked to late Quaternary–Holocene lake levels obtained from dated lake sediments within the basin. The most common cave’s elevation was found to be around 200 m below sea level which was the elevation of the Lisan Lake during part of its history. On the other hand, the Hula Basin in the northern part of the Dead Sea Basin was not occupied by saline water bodies since its formation as a base level, and thus the above preconditions for enhanced cave formation did not prevail. Indeed, this is evident by the lack of horizontal cave levels on its western carbonate margins unlike the situation in the south.  相似文献   

4.
The Dead Sea basin is often cited as one of the classic examples for the evolution of pull-apart basins along strike–slip faults. Despite its significance, the internal structure of the northern Dead Sea basin has never been addressed conclusively. In order to produce the first comprehensive, high-resolution analysis of this area, all available seismic data from the northern Dead Sea (lake)–lower Jordan valley (land) were combined. Results show that the northern Dead Sea basin is comprised of a system of tectonically controlled sub-basins delimited by the converging Western and Eastern boundary faults of the Dead Sea fault valley. These sub-basins grow shallower and smaller to the north and are separated by structural saddles marking the location of active transverse faults. The sedimentary fill within the sub-basins was found to be relatively thicker than previously interpreted. As a result of the findings of this study, the “classic” model for the development of pull-aparts, based on the Dead Sea, is revised. The new comprehensive compilation of data produced here for the first time was used to improve upon existing conceptual models and may advance the understanding of similar basinal systems elsewhere.  相似文献   

5.
The shrinkage of the Lisan Lake (LL) to form the recent Dead Sea (DS) was mainly a result of the reduction of the catchment area from around 157,000 km2 during Late Pleistocene to 43,000 km2 presently. The reduction in the catchment area resulted from the eruption and spread of the basalt flows of Jabal Arab-Druz (JAD), which together with the resulting deposition of thick rock debris and gravels occupied the drainage system. The filling of the pre-basalt drainage system, which used to feed the Dead Sea, with basalts and alluvial sediments blocked the inflows from reaching the Dead Sea. Local base levels along the basalt flow boarders such as Azraq Oasis, Sirhan Basin and Damascus Oasis, and numerous pools and mud flats were created.  相似文献   

6.
The Dead Sea fault (DSF) is one of the most active plate boundaries in the world. Understanding the Quaternary history and sediments of the DSF requires investigation into the Neogene development of this plate boundary. DSF lateral motion preceded significant extension and rift morphology by ~ 10 Ma. Sediments of the Sedom Formation, dated here between 5.0 ± 0.5 Ma and 6.2− 2.1inf Ma, yielded extremely low 10Be concentrations and 26Al is absent. These reflect the antiquity of the sediments, deposited in the Sedom Lagoon, which evolved in a subdued landscape and was connected to the Mediterranean Sea. The base of the overlying Amora Formation, deposited in the terminal Amora Lake which developed under increasing relief that promoted escarpment incision, was dated at 3.3− 0.8+ 0.9 Ma. Burial ages of fluvial sediments within caves (3.4 ± 0.2 Ma and 3.6 ± 0.4 Ma) represent the timing of initial incision. Initial DSF topography coincides with the earliest Red Sea MORB's and the East Anatolian fault initiation. These suggest a change in the relative Arabian–African plate motion. This change introduced the rifting component to the DSF followed by a significant subsidence, margin uplift, and a reorganization of relief and drainage pattern in the region resulting in the topographic framework observed today.  相似文献   

7.
The freshwater Lake Kinneret (Sea of Galilee) and the hypersaline Dead Sea are remnant lakes, evolved from ancient water bodies that filled the tectonic depressions along the Dead Sea Transform (DST) during the Neogene-Quartenary periods. We reconstructed the limnological history (level and composition) of Lake Kinneret during the past ∼40,000 years and compared it with the history of the contemporaneous Lake Lisan from the aspect of the regional and global climate history. The lake level reconstruction was achieved through a chronological and sedimentological investigation of exposed sedimentary sections in the Kinnarot basin trenches and cores drilled at the Ohalo II archeological site. Shoreline chronology was established by radiocarbon dating of organic remains and of Melanopsis shells.The major changes in Lake Kinneret level were synchronous with those of the southern Lake Lisan. Both lakes dropped significantly ∼42,000, ∼30,000, 23,800, and 13,000 yr ago and rose ∼39,000, 26,000, 5000, and 1600 yr ago. Between 26,000 and 24,000 yr ago, the lakes merged into a unified water body and lake level achieved its maximum stand of ∼170 m below mean sea level (m bsl). Nevertheless, the fresh and saline water properties of Lake Kinneret and Lake Lisan, respectively, have been preserved throughout the 40,000 years studied. Calcium carbonate was always deposited as calcite in Lake Kinneret and as aragonite in Lake Lisan-Dead Sea, indicating that the Dead Sea brine (which supports aragonite production) never reached or affected Lake Kinneret, even during the period of lake high stand and convergence. The synchronous level fluctuation of lakes Kinneret, Lisan, and the Holocene Dead Sea is consistent with the dominance of the Atlantic-Mediterranean rain system on the catchment of the basin and the regional hydrology. The major drops in Lake Kinneret-Lisan levels coincide with the timing of cold spells in the North Atlantic that caused a shut down of rains in the East Mediterranean and the lakes drainage area.  相似文献   

8.
The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.  相似文献   

9.
This paper presents a model of late‐glacial and post‐glacial deposition for the late‐Neogene sedimentary succession of the Archipelago Sea in the northern Baltic Sea. Four genetically related facies associations are described: (i) an ice‐proximal, acoustically stratified draped unit of glaciolacustrine rhythmites; (ii) an onlapping basin‐fill unit of rotated rhythmite clasts in an acoustically transparent to chaotic matrix interpreted as debris‐flow deposits; (iii) an ice‐distal, acoustically stratified to transparent, draped unit of post‐glacial lacustrine, weakly laminated to homogeneous deposits; and (iv) an acoustically stratified to transparent unit of brackish‐water, organic‐rich sediment drifts. The debris‐flow deposits of the unit 2 pass laterally into slide scars that truncate the unit 1; they are interpreted to result from a time interval of intense seismic activity due to bedrock stress release shortly after deglaciation of the area. Ice‐berg scouring and gravitational failure of oversteepened depositional slopes may also have contributed to the debris‐flow deposition. Comparisons to other late‐Neogene glaciated basins, such as the Hudson Bay or glacial lakes formed along the Laurentide ice sheet, suggest that the Archipelago Sea succession may record development typical for the deglaciation phase of large, low relief, epicontinental basins. The Carboniferous–Permian glacigenic Dwyka Formation in South Africa may provide an ancient analogue for the studied succession. Chronological control for the studied sediments is provided by the independent palaeomagnetic and AMS‐14C dating methods. In order to facilitate dating of the organic‐poor early post‐glacial deposits of the northern Baltic Sea, the 10 000 year long Lake Nautajärvi palaeomagnetic reference chronology ( Ojala & Saarinen, 2002 ) is extended by 1200 years.  相似文献   

10.
I. Zak  R. Freund 《Tectonophysics》1981,80(1-4):27-38
The Dead Sea depression sensu stricto, forms the deepest continental part of the Dead Sea rift, a transfer which separates the Levanthine and Arabian plates. It is occupied by three distinct sedimentary bodies, deposited in basins whose depocenters are displaced northward with time. They are: the continental red beds of the Hazeva Formation (Miocene), the Bira-Lido-Gesher marls and the exceptionally thick rocksalt of the Sedom Formation (Pliocene—Early Pleistocene), and the successive Amora, Lisan and Dead Sea evaporites and clastics (Early Pleistocene—Recent). Lengthwise and crosswise asymmetries of these sedimentary basins and their respective depocenters are due to: leftlateral shear combined with anticlockwise rotation of the Arabian (eastern) plate; steeper faulting of the crustal eastern margin than of the western sedimentary margin, and modification of depositional pattern by twice filling up of basins, by Hazeva red beds during Late Miocene pause of shear and by Sedom rocksalt during Pliocene marine ingression.  相似文献   

11.
Salt tectonics in pull-apart basins with application to the Dead Sea Basin   总被引:1,自引:0,他引:1  
The Dead Sea Basin displays a broad range of salt-related structures that developed in a sinistral strike-slip tectonic environment: en échelon salt ridges, large salt diapirs, transverse oblique normal faults, salt walls and rollovers. Laboratory experiments are used to investigate the mechanics of salt tectonics in pull-apart systems. The results show that in an elongated pull-apart basin the basin fill, although decoupled from the underlying basement by a salt layer, remains frictionally coupled to the boundary. The basin fill, therefore, undergoes a strike-slip shear couple that simultaneously generates en échelon fold trains and oblique normal faults, trending mutually perpendicular. According to the orientation of basin boundaries, sedimentary cover deformation can be dominantly contractional or extensional, at the extremities of pull-apart basins forming either folds and thrusts or normal faults, respectively. These guidelines, applied to the analysis of the Dead Sea Basin, show that the various salt-related structures form a coherent set in the frame of a sinistral strike-slip shearing deformation of the sedimentary basin fill.  相似文献   

12.
 High radon fluxes in the seismically active Dead Sea Rift seem to be affected by the hydrological system and the different salinities of groundwater bodies involved. The time domain electromagnetic (TDEM) method was employed to delineate those different bodies and the configuration of the interfaces between them. The present hydrological system and the related brines and interfaces are controlled by the Dead Sea base level, presently at 408 m below MSL. TDEM measurements detect low resistivity (<1 ohm/m) units representing brines and the interface between them as well as the overlying fresher water bodies. In addition, high resistivity (freshwater) units are also detected, underlying the brines, related herein to a multiple hydrological system. Low-resistivity brines, detected above the present base level, are interpreted herein as yet unflushed ones which correspond to a former higher base level. Higher sequences, below historical (sixteenth century) base levels, are already devoid of brines, which gives an indication as to the rate of flushing. Received: 3 June 1996 / Accepted: 23 July 1996  相似文献   

13.
Clastic sediments deposited in caves and rock shelters bear peculiar sedimentological characteristics and have seldom been considered as a high‐resolution proxy record of climatic or environmental changes. The Romito Cave has its entrance at 275 m above sea level, about 25 km from the Tyrrhenian coast of Calabria, southern Italy. New archaeological excavation performed since 2000 has revealed a sedimentary succession spanning the record of Gravettian to Late Epigravettian cultures (Late Pleistocene). The present study focuses on the lower part (2.5 m thick) of the succession, where three main unconformity‐bounded stratigraphic units have been recognised (labelled RM1–3). Each unit consists of water‐lain deposits indicating high‐ to low‐competence flow, capped with anthropogenic deposits. The gradual deactivation and reactivation of the water drainage between 23 475 ± 190 and 16 250 ± 500 cal. a BP is correlated with regional precipitation changes due to the onset of dry climatic conditions of the Last Glacial Maximum. However, the deactivation of cave drainage after the deposition of unit RM3, around 15 400 ± 500 cal. a BP, deviates from the regional hydrological trend of progressively increasing water discharges and is attributed to the drainage cut‐off by probable cave wall collapses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The Dead Sea as a unique geological and geographical phenomenon has an effect on its adjacent areas. Therefore, 17 sampling sites at the eastern highlands facing the Dead Sea; beside three blank sites were collectedlocated during summer (2005). The aim was to investigate such influence on the chemical and mineralogical composition of dry deposition, and to measure the settling rate. The investigations showed that the depositional rate at the studied sites was much lower than other areas at central and southern Jordan. The average heavy metal contents are almost similar in all sampling sites and the blanks, and they exhibit similar enrichment series, whereas, the meaningful difference between sampling sites and blank was in cation and anion content, which caused different enrichment series between the two sites. The index of pollution (IP) confirms that mainly cations and anions have IP > 1.0 and they dominate the southern and the closest sampling sites to the Dead Sea. The XRD results reveals that the studied samples have minor phases such as halite, gypsum, and dolomite. Meanwhile, these mineral phases are not found in blank samples. All these results indicates the influence of the Dead Sea, as it is a highly saline large water mass, which accompanied with by high evaporation rates causing causes the atmosphere over the Sea to be enriched with these cations, anions, elements and minerals, which eventually are adsorbed in air particulate or carried out as dry deposition and transported by the NW–SE prevailing winds, and fall over the eastern highlands.  相似文献   

15.
Although it has long been recognised that passive salt diapirism may encompass sub-ordinate cycles of active diapirism, where sedimentary overburden is periodically shed off the roof of the rising salt, there has been very little study of this process around exposed salt (halite) diapirs. However, the Late Miocene-Pliocene Sedom salt wall, on the western side of the Dead Sea Basin, presents an opportunity for detailed outcrop analysis of diapiric salt and the associated depositional and deformational record of its movement during both passive and active phases of diapirism. The sub-seismic scale record of diapirism includes sedimentary breccia horizons interpreted to reflect sediments being shed off the crest of the growing salt wall, together with exceptional preservation of rotated unconformities and growth faults. Areas of more pronounced dips directed towards the salt wall are capped by unconformities, and interpreted to represent withdrawal basins within the overburden that extend for at least 1500 m from the salt margin. Elsewhere, broad areas of upturn directed away from the salt extend for up to 1250 m and are marked by a sequence of rotated unconformities which are interpreted to bound halokinetic sequences. The margins of the salt wall are defined by steep extensional boundary faults that cut upturned strata, and have enabled rapid and active uplift of the salt since the Holocene. The Sedom salt wall therefore charts the transition from passive growth marked by withdrawal basins, growth faults and unconformities, to more active intrusion associated with major boundary faults that enable the rapid uplift of overburden deposited on top of the salt to ∼100 m above regional elevations in the past 43 ka. Individual cycles of passive and active diapirism occur over timescales of <30 ka, which is up to an order of magnitude less than typically suggested for other settings, and highlights the dynamic interplay between salt tectonics and sedimentation in an environment undergoing rapid fluctuations in water level.  相似文献   

16.
The Western Black Sea basin opened during Cretaceous times by back-arc rifting in association with a north dipping subduction at the rear of the Cretaceous–Early Tertiary Pontide volcanic arc. The sedimentary wedge developed on the shelf of the Romanian Black Sea sector reflects a complex interplay between large scale rifting, uplift of the orogenic flanks, large-scale post-rift subsidence and sea level changes. We examine the detailed structural configuration of this sector for a regional correlation with the adjacent offshore in Ukraine and Bulgaria. The evolution of the western Black Sea basin started in the Albian–Cenomanian times, when two extensional phases with significantly different directions (N–S and subsequently E–W) lead to the formation of a complex interplay between isolated blocks organised in horsts and grabens generally deepening eastwards. Superposition of normal faults footwall blocks from the two extensional episodes generated a deeply subsided area with enhanced accommodation space, i.e., the Histria Depression, and, consequently, recorded a larger thickness of Paleogene sediments in the post-rift stage. (Re)activation of faults and associated folding reflects repeated inversion during the Late Cretaceous–Oligocene times, associated with subsequent periods of non-deposition and/or erosion during moments of basin fill exposure. These periods of inversion recorded in the Black Sea are controlled by coeval orogenic deformations taking place in the Balkans, Pontides and the Crimean thrust belt. Sea level fluctuations during the Neogene and late Alpine tectonics in the neighbouring orogens caused massive sedimentation followed by sediment starvation and/or significant erosion. Large thicknesses of sediments accumulated during the Pontian, presumably associated with an extensional episode deepening the distal parts of the basin and with differential compaction structures. The interpretation of a high-quality seismic dataset combined with published data allowed the correlation of major structural units and lineaments defined onshore towards the Carpathians with the ones deeply buried below the western Black Sea basin sediments. Unit correlations are furthermore used to derive an integrated tectonic image of the western Black Sea area.  相似文献   

17.
The Dead Sea is a terminal lake whose level is currently dropping at a rate of about 1 m per year due to the over exploitation of all its tributaries. The lowering started about four decades ago but geological hazards appeared more and more frequently from the end of the 1980s. The water level lowering is matched by a parallel groundwater level drop, which results in an increasing intensity of underground and surface water flow. The diagonal interface between the Dead Sea brine and the fresh groundwater is pushed downwards and seawards. Nowadays, sinkholes, subsidence, landslides and reactivated salt-karsts affect wide coastal segments. Until now, mainly infrastructures were damaged and few people/animals were injured, but the ongoing development of tourism in this very attractive situation will increase the risk if precautionary measures are not included in the development plans. This paper discusses the main observations made all around the Dead Sea and shed a light on the differences between the geological hazards of the western shore (Israel, Palestinian Authority) and the eastern shore (Jordan). It is the first attempt to bring together an overview of the human-induced geological hazards encountered along the Dead Sea coast.  相似文献   

18.
The alluvial aquifer is the primary source of groundwater along the eastern Dead Sea shoreline, Jordan. Over the last 20 years, salinity has risen in some existing wells and several new wells have encountered brackish water in areas thought to contain fresh water. A good linear correlation exists between the water resistivity and the chloride concentration of groundwater and shows that the salinity is the most important factor controlling resistivity. Two-dimensional electrical tomography (ET) integrated with geoelectrical soundings were employed to delineate different water-bearing formations and the configuration of the interface between them. The present hydrological system and the related brines and interfaces are controlled by the Dead Sea base level, presently at 410 m b.s.l. Resistivity measurements show a dominant trend of decreasing resistivity (thus increasing salinity) with depth and westward towards the Dead Sea. Accordingly, three zones with different resistivity values were detected, corresponding to three different water-bearing formations: (1) strata saturated with fresh to slightly brackish groundwater; (2) a transition zone of brine mixed with fresh to brackish groundwater; (3) a water-bearing formation containing Dead Sea brine. In addition, a low resistivity unit containing brine was detected above the 1955 Dead Sea base level, which was interpreted as having remained unflushed by infiltrating rain.  相似文献   

19.
This study describes a previously unobserved reflection seismic configuration comprising a honeycomb planform and a repeated erosion/infill cross‐section, based on high‐resolution three‐dimensional/two‐dimensional seismic data and bathymetric data. The honeycomb structures cover an area of more than 5000 km2 and are developed within the Late Miocene to recent deep‐water sediments of the north‐western South China Sea. Linear erosional troughs up to 10 km long and 1 km wide are widely developed in this area, are intimately related to the particular seismic configuration and interpreted to represent a new type of sediment drift that is caused by unsteady bottom current regimes operating since the Late Miocene. The unsteady bottom current regimes are suggested to be triggered by irregular seabed morphologies. Considerable sea‐floor topography was generated as a direct result of tectonic movements in the area since the Late Miocene, and this topography then influenced the pathways of strong bottom currents. This study highlights that: (i) an unsteady bottom current regime can be laterally extensive and persist for millions of years; (ii) structurally controlled sea‐floor relief plays an important role in controlling the depositional pattern; and (iii) the bottom currents were active since the Late Miocene, flowing from the south‐east through the Xisha–Guangle Gateway and crossing the honeycomb structure zone. This study documents a new style of drift and will help to improve current knowledge of palaeoceanography and understanding of the South China Sea deep‐water circulation which is at present still poorly understood.  相似文献   

20.
A 3D interpretation of the newly compiled Bouguer anomaly in the area of the “Dead Sea Rift” is presented. A high-resolution 3D model constrained with the seismic results reveals the crustal thickness and density distribution beneath the Arava/Araba Valley (AV), the region between the Dead Sea and the Gulf of Aqaba/Elat. The Bouguer anomalies along the axial portion of the AV, as deduced from the modelling results, are mainly caused by deep-seated sedimentary basins (D > 10 km). An inferred zone of intrusion coincides with the maximum gravity anomaly on the eastern flank of the AV. The intrusion is displaced at different sectors along the NNW–SSE direction. The zone of maximum crustal thinning (depth 30 km) is attained in the western sector at the Mediterranean. The southeastern plateau, on the other hand, shows by far the largest crustal thickness of the region (38–42 km). Linked to the left lateral movement of approx. 105 km at the boundary between the African and Arabian plate, and constrained with recent seismic data, a small asymmetric topography of the Moho beneath the Dead Sea Transform (DST) was modelled. The thickness and density of the crust suggest that the AV is underlain by continental crust. The deep basins, the relatively large intrusion and the asymmetric topography of the Moho lead to the conclusion that a small-scale asthenospheric upwelling could be responsible for the thinning of the crust and subsequent creation of the Dead Sea basin during the left lateral movement. A clear segmentation along the strike of the DST was obtained by curvature analysis: the northern part in the neighbourhood of the Dead Sea is characterised by high curvature of the residual gravity field. Flexural rigidity calculations result in very low values of effective elastic lithospheric thickness (t e < 5 km). This points to decoupling of crust in the Dead Sea area. In the central, AV the curvature is less pronounced and t e increases to approximately 10 km. Curvature is high again in the southernmost part near the Aqaba region. Solutions of Euler deconvolution were visualised together with modelled density bodies and fit very well into the density model structures. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号